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Standardization of case definition 
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respiratory infection syndromes 
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Background: Acute respiratory infection syndromes (ARIs) pose major public 
health challenges due to their high infectivity, rapid transmission, and the 
lack of standardized definitions balancing sensitivity and specificity in current 
surveillance systems.

Objective: Using data from Yinzhou Regional Health Information Platform 
(YRHIP), we  refined ARIs definition, improved classical epidemic criteria and 
designed a comprehensive graded early-warning model to enhance early 
response capabilities.

Methods: We optimized ARIs definition based on laboratory-confirmed cases 
and evaluating screening performance with clinical diagnoses. Anomaly 
detection methods, including historical limits method (HLM), moving percentile 
method (MPM), cumulative sum control chart (CUSUM), and exponentially 
weighted moving average (EWMA), were employed to develop a graded early-
warning model. Syndrome selection and parameter tuning were guided by 
Youden’s index, agreement rate and F1-score.

Results: The refined ARIs definition includes: Acute-phase fever with at least one 
typical respiratory symptoms; or acute-phase fever with at least two atypical 
respiratory symptoms; or at least one typical respiratory symptoms combined 
with at least two atypical respiratory symptoms. Furthermore, we demonstrate 
that ARIs outperform ILIs definition in early screening due to their broader 
symptom scope. By leveraging multidimensional time series data, we developed 
a robust epidemic criteria framework for early-warning models. The optimal 
early-warning parameters included configurations of HLM (K = 0.8), MPM (85th 
percentile), CUSUM(K = 0.7, H = 5), and EWMA (K = 3, λ = 0.05). The graded 
early-warning system revealed: Red early-warnings (all four models triggered) 
had the highest specificity; Orange early-warnings (at least three models 
triggered) demonstrated the best overall performance; Amber early-warnings 
(at least two models triggered) captured subtle trends; Green early-warnings (at 
least one model triggered) provided the highest sensitivity.

Conclusion: This study establishes an optimized, multi-model-based framework 
for ARIs early-warning that balances sensitivity and specificity to strengthen 
public health management against diverse pathogens.
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Background

The evolution of infectious disease early-warning models and 
syndromic surveillance systems has been fundamentally motivated by 
the public health necessity for timely identification and rapid response 
to aberrant epidemiological patterns or nascent disease trends (1). 
While originally conceived as countermeasures against bioterrorism 
threats in their embryonic stages (2), these surveillance frameworks 
have progressively evolved into comprehensive sentinel systems 
addressing multifaceted public health priorities.

The global evolution of respiratory infectious disease surveillance 
and early-warning architectures has undergone progressive refinement 
over decades, with pioneering nations including the United States, 
Canada, and the United Kingdom establishing robust operational 
frameworks. Epitomized by the US Centers for Disease Control and 
Prevention (US CDC) as the vanguard institution, these systems 
employ advanced symptom-centric surveillance frameworks 
exemplified by two landmark platforms: Biosurveillance Initiative for 
Operational Notification, Situational Awareness, and Epidemiology 
(BioSense) and Electronic Surveillance System for the Early 
Notification of Community-based Epidemics (ESSENCE). The 
BioSense system integrates national public health data from 
emergency departments, laboratories, and healthcare facilities for 
early disease warnings (3), while ESSENCE specializes in real-time 
respiratory infection monitoring through emergency department 
syndromic analysis (4). Parallel to North American developments, 
Canada’s FluWatch system demonstrates an integrated surveillance 
paradigm that combines virological surveillance data with population-
level influenza-like illness (ILI) indicators, employing wavelet analysis 
for epidemic curve decomposition and threshold determination (5). 
China emerged as a significant contributor to digital disease 
surveillance through the 2004 implementation of its web-based 
National Notifiable Disease Reporting System (NNDRS), which 
established critical infrastructure for subsequent early-warning 
systems (6). Subsequently, the Chinese Center for Disease Control and 
Prevention (CHN CDC) began researching detection and early-
warning technologies for infectious diseases, employing various 
warning methods such as fixed threshold methods, time models, and 
spatiotemporal models. In April 2008, a nationwide pilot of the China 
Infectious Diseases Automated-alert and Response System (CIDARS) 
was launched (7). Recently, research and medical institutions have 
implemented natural language processing techniques to automatically 
classify chief complaints and diagnostic codes in electronic health 
records, enabling real-time syndromic surveillance (8). While these 
systems have made significant advances in real-time data collection 
and anomaly detection, most remain limited to single-algorithm 
approaches, with insufficient research on integrated multi-algorithm 
systems or graded early warning functionality.

Given the inherent delays in diagnosing infectious diseases (9), 
many health organizations worldwide have adopted syndromic 
surveillance as a strategy for early detection and monitoring (10). This 

approach focuses on tracking syndromes rather than specific diseases, 
aiming to quickly identify clusters of unusual activity and enable 
timely public health interventions (11). Acute Respiratory Infection 
Syndromes (ARIs) refer to a spectrum of contagious respiratory 
disorders clinically defined by the presence of fever and/or acute 
respiratory symptoms, with its classification system distinguishing 
upper respiratory infection (URI) from lower respiratory infection 
(LRI) based on anatomical involvement (12). ARIs possess distinct 
characteristics, including diverse pathogens (13–15), high infectivity 
(16), rapid transmission (17), the ability to spread during the 
incubation period (18), and sensitivity to environmental factors (19). 
These characteristics pose greater challenges for control and prevention 
compared to other infectious diseases. Currently, no unified global 
standard exists for defining ARIs. This lack of standardization poses 
challenges for accurate early warning of ARIs and complicates disease 
surveillance and control efforts. Institutions including the World 
Health Organization (WHO) typically employ the influenza-like 
illness (ILI) case definition when monitoring respiratory infections 
potentially caused by influenza viruses or other pathogens (20). ILIs 
prioritize fever with cough/sore throat but overlook critical atypical 
symptoms (e.g., fatigue, gastrointestinal manifestations). This oversight 
limits their ability to detect pathogens with non-classical presentations, 
such as COVID-19 variants causing anosmia or pediatric RSV 
infections presenting with wheezing and irritability. Furthermore, in 
practice, the European Centre for Disease Prevention and Control 
(ECDC) reported low sensitivity of the method (21). Atypical 
symptoms, while individually non-specific, significantly enhance 
diagnostic precision when presented in clusters, especially in 
conjunction with typical symptoms. This finding, while 
counterintuitive, reflects the heterogeneous nature of real-world cases. 
The choice of a case definition plays a crucial role in determining the 
specificity and sensitivity of surveillance systems. Achieving an optimal 
balance in case definition is essential for effective ARIs early-warning.

This study is based on the Yinzhou Regional Health Information 
Platform (YRHIP), utilizing big data technology and natural language 
algorithms to refine the definition standards for ARIs. Using pathogen-
positive cases and clinically diagnosed cases as the validation set, the 
study further optimizes the combination of symptom definition and 
verifies the advantages of the optimal symptom definition combination 
for ARIs in respiratory infectious disease surveillance, compared to 
the ILIs definition. The revised case definition integrates acute-phase 
fever with both commonly observed symptoms (such as cough and 
nasal congestion) and less common but clinically relevant 
manifestations (including fatigue, gastrointestinal discomfort, and 
sensory abnormalities). This expanded inclusion improves diagnostic 
power by capturing the broader clinical variability seen in real-world 
cases. Ultimately, by exploring various anomaly detection algorithms, 
we propose a robust, comprehensive graded early-warning model, 
which aims to enhance syndromic surveillance by achieving a more 
optimal balance between sensitivity and specificity. This system can 
capture potential outbreak signals promptly and enhance adaptability 
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to complex environments, thereby alleviating the economic burden 
and health threats posed by the disease.

Methods

Study setting and population

The data for this study are derived from the YRHIP, a health 
information platform in eastern coastal China, covering a resident 
population of 1.69 million in 2023 (22). Sourced from a network of 
five hospitals (both public and private) and 289 primary care 
institutions across Yinzhou, the YRHIP comprises comprehensive 
electronic medical record (EMR) data, including outpatient, 
emergency, and inpatient visits, primary and secondary diagnoses, 
laboratory tests, and medication usage (23).

Data sources

Pathogen-positive cases were obtained from clinical laboratory 
report, which aggregate data uploaded by the laboratory information 
system (LIS). This study utilized the thirteen respiratory pathogens 
published by the National Disease Control and Prevention 
Administration (NDCPA) as screening criteria, including: novel 
coronavirus, influenza viruses (H1N1, H3N2, B-type Victoria lineage, 
B-type Yamagata lineage, and other subtypes), respiratory syncytial 
virus, adenovirus, metapneumovirus, rhinovirus, parainfluenza 
virus, common coronaviruses, bocavirus, enterovirus, Mycoplasma 
pneumoniae, Chlamydia pneumoniae, and Streptococcus pneumoniae 
(24). Clinical diagnostic cases and syndromic cases are obtained 
from the outpatient clinic daily log and the outpatient medical record, 
respectively, with all information uploaded by the hospital 
information system (HIS). Clinical diagnostic cases, determined by 
clinical experts, were selected based on diagnostic codes for all 
respiratory symptom-related diseases (RSDs) according to ICD-10 
classification. The specific RSDs codes are detailed in 
Supplementary Table S1. The WHO defines the influenza-like 
illness syndromes as the presence of fever (≥38°C) accompanied by 
a cough. Similarly, the CDC defines it as fever (≥37.8°C in the USA 
and ≥38°C in China) combined with either a cough or sore throat 
(25, 26). However, the actual symptoms often extend beyond these 
criteria. Considering the diverse symptomatology of acute 
respiratory infections, we  expanded the definition of ARIs to 
encompass a combination of multiple symptoms, building upon 
existing ILIs criteria. Based on a review of existing literature and 
expert assessments (27–39), we categorized ARIs into three primary 
groups: acute phase fever symptoms, typical respiratory infection 
symptoms (including cough, throat discomfort, nasal symptoms, 
and pulmonary auscultation abnormalities), and atypical respiratory 
infection symptoms (encompassing fatigue, head, digestive, 
locomotor system, cardiopulmonary, psychiatric symptoms, 
sensory abnormalities, and rash symptoms). Cases presenting two 
or more symptom categories were classified as ARIs. The standards 
for natural language recognition are provided in 
Supplementary Table S2.

Study design

The workflow of this study is illustrated in Figure 1. From the LIS, 
laboratory-confirmed positive cases for 13 respiratory pathogens 
designated by the NDCPA were extracted to form a symptom 
validation set. Symptom profiles linked to these cases were analyzed to 
determine the optimal combination of symptoms for defining ARIs. 
Concurrently, the HIS provided a historical diagnostic set of outpatient 
records with ICD-10 codes for respiratory symptoms, enabling a 
comparative assessment of the performance of ARIs and ILIs 
definitions in real-time case identification. The syndrome set 
demonstrating optimal screening performance was subsequently 
applied to anomaly detection algorithms (HLM, MPM, CUSUM, 
EWMA). By integrating multi-temporal data (historical, current, and 
future information) and incorporating expert manual validation 
procedures, we established refined epidemic criteria to optimize model 
parameters. Finally, a graded early-warning system was established by 
employing a multi-model ensemble strategy to integrate the outputs of 
various predictive models. This workflow not only standardizes ARI 
case definitions but also establishes a robust, multi-model early-
warning system capable of adapting to seasonal variability and 
emerging respiratory threats.

Set up the epidemic criteria

The formula for calculating the daily diagnostic rate (DDR) of 
clinical diagnostic cases is as follows:

 
=
NDDR
M

N represents the daily diagnostic count of RSDs, while M denotes 
the total daily diagnostic count across all diseases. The daily diagnostic 
rate for syndrome cases is calculated using the same method, where N 
represents the daily screening count of respiratory symptom-related 
diseases, and M represents the total number of daily visits.

The classical epidemic definition, which describes disease 
incidence exceeding historical baseline levels, is qualitative in nature. 
To operationalize this concept, Yang et  al. (40) utilized an expert 
consultation method to establish a quantitative threshold, defining an 
epidemic as occurring when incidence surpassed Y.

 = +Y X 2S

X represents the historical contemporaneous moving average, S
denotes the corresponding standard deviation.

Building upon the foundational work of Yang et al., this study 
expands the classical definition of epidemics to address its limitations 
in early-warning sensitivity and specificity. The specific methodology 
is outlined as follows.

 (1) Taking into account the impact of COVID-19 on respiratory 
infectious diseases, only historical diagnostic data from 2009 
to 2019 were included in the calculation of the global average 
(GA) for clinical diagnostic cases:
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 (2) Next, calculate the historical contemporaneous moving 
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well as the ambispective moving average (AMA) for the seven 
days before and after the specified date:

 

− +
= =−

− +
= =−

=
∑ ∑

∑∑

5 7

,
1 7

5 7

,
1 7

y j d i
j i

HCMA

y j d i
j i

N

X
M

 

( )
σ

− +
= =−

− +
= =−

−

=
∑ ∑

∑∑

5 7 2
,

1 7
5 7

,
1 7

y j d i HCMA
j i

HCSD

y j d i
j i

DR X

M

 

+
−

+
−

=
∑

∑

7

7
7

7

d i

AMA

d i

N
X

M

y  represents the years (with 2009 to 2013 as the foundational 
dataset and 2014 to 2024 as the computational dataset), and d  
represents the dates (January 1 to December 31).

FIGURE 1

Flow chart of this study.
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 (3) To simultaneously account for historical seasonality,current 
information and future trends, we  calculated the weighted 
average (WA) by integrating HCMA and AMA:

 ( )ω ω= ⋅ + −1WA HCMA AMAX X X

ω is the weight factor, which ranges from 0 to 1. In this study, 
we have tentatively set it to 0.5.

 (4) Finally, we established the epidemic criteria for determining 
alert thresholds (2014–2024): The DDR of clinical diagnostic 
cases shows a significant upward trend when > WADDR X ; 
The DDR of clinical diagnostic cases shows a slight upward 
trend when > WADDR X  and > GADDR X ; The DDR of 
clinical diagnostic cases shows a significant downward trend 
when > WADDR X  and > GADDR X ; The DDR of clinical 
diagnostic cases shows a slight downward trend when 

> WADDR X ; Alert signals meeting criterion 
< <WA GAX DDR X  were subjected to expert panel review, 

with confirmed anomalies being systematically excluded from 
subsequent analysis.

Historical limits method

The Historical Limits Method (HLM) was first introduced by the 
Centers for Disease Control and Prevention in 1989 (41). The core 
concept of HLM involves using historical data from a defined baseline 
period to calculate the mean and standard deviation. These statistical 
measures are then employed to establish a range within which current 
observations are expected to fall. Observations falling outside this 
range are flagged as potential anomalies. The upper historical limit 
(UHL) is defined as follows:

 σ κ= ⋅ +HMSD HCMAUHL X

k is the confidence coefficient (one-sided).
The daily diagnostic rate is compared to the UHL. If the current 

value exceeds the UHL, it indicates a potential anomaly, prompting an 
alert for further investigation. By testing different ranges for the 
parameter k, the optimal early-warning model can be identified.

Moving percentile method

The Moving Percentile Method (MPM) is a robust, non-parametric 
approach to anomaly detection that effectively identifies unusual 
patterns and outliers in real-time data (42, 43). It uses a moving 
window of historical data to calculate dynamic percentile thresholds. 
Considering the seasonal nature of ARIs, this study employs a 365-day 
moving window. Within this historical window, the data is arranged 
in ascending order to generate a sorted sequence:

 
=  1 2 365, , ,W X X X

The index j for the p% percentile position is calculated using the 
following formula:

 = ∗365j p

The p% percentile corresponds to the value at the j-th position in 
W. If j is not an integer, it is rounded up to the nearest whole number.

When the DR exceeds Xj, it is classified as an “anomaly” and 
triggers a warning. By testing various ranges for the percentile p%, the 
optimal warning model can be determined.

Cumulative sum control chart

The Cumulative Sum Control Chart (CUSUM) model enhances 
sensitivity in detecting small shifts in the process by cumulatively 
summing the deviations between actual values and reference values, 
thereby effectively amplifying subtle changes (44). The formula is 
as follows:

 ( ){ }µ σ −= − + + 1max 0,t t t tC X k C

 = ∗σH h

The initial value is set at C0 = 0, and kσ represents the allowable 
deviation. If the mean shifts from μt to μt + kσ, this triggers an alert. H 
is the decision threshold, where Ct ≥ H indicates a statistically 
significant increase. Based on their sensitivity in identifying anomalies, 
Ct is classified into three categories: C1 - MILD (referred to as C1), 
C2 - MEDIUM (referred to as C2), and C3 - ULTRA (referred to as 
C3). C1 has the lowest sensitivity, followed by C2, while C3 exhibits 
the highest sensitivity. This plan adopts a moving average period of 7 
times unit, with the calculation formulas for C1, C2, and C3 as follows:

 ( ){ }−= − + +1 1 1 1max 0, t tC X MA kS C

 ( ){ }−= − + +2 2 2 1max 0, t tC X MA kS C

C3 is defined as the sum of Ct, Ct-1 and Ct-2 derived from the C2 
formula. Here, MA1 and S1 represent the moving average and moving 
standard deviation of reported cases from t-7 to t-1, while MA2 and 
S2 represent the moving average and moving standard deviation from 
t-9 to t-3. The parameters h and k are critical in the CUSUM model, 
as their values influence the model’s ability to detect anomalies. By 
testing different ranges for h and k, the optimal early-warning model 
can be established. To enhance the specificity of the CUSUM model’s 
predictions and minimize the risk of false alarms, this study integrates 
simultaneous early-warning signals from C1, C2, and C3 as alerts 
for ARIs.

Exponentially weighted moving average

The Exponentially Weighted Moving Average (EWMA) model is 
a type of moving average that applies exponentially decreasing weights 
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to historical data (45). This approach gives greater emphasis to recent 
observations while still considering older data, albeit with diminishing 
influence. The calculation formula is as follows:

 ( )γ γ−= − ⋅ + ⋅11t t tE E N

γ is a model parameter, where a larger value indicates greater 
weight is assigned to recent data in the predictions.

The formula for calculating the upper control limit (UCL) is 
as follows:

 

γκ σ
γ

= + ⋅ ⋅
−2tUCL E

k is a threshold parameter representing a specific confidence level, 
while σ denotes the standard deviation of baseline data from the past 
5 years. If the current value exceeds the UCL, it indicates a potential 
outbreak. This study determines the optimal warning model by 
establishing various ranges for the parameters γ and k.

Model fusion

Finally, after optimizing the parameters, the outputs of all models 
were integrated to establish a graded early-warning system. A red alert 
is issued when all four models generate warnings; an orange alert is 
triggered when three or more models issue warnings; a amber alert is 
indicated when two or more models issue warnings; a green alert is 
raised when at least one model issues a warning; and no alert is issued 
if none of the models generate warnings.

Statistical analysis

Parameter range determination
To determine the candidate parameter ranges for each model, 

we adopted an empirical tuning strategy informed by three factors: (1) 
previous literature on infectious disease surveillance and statistical 
control charts, such as EWMA (46), (2) expert consensus among 
epidemiologists and informatics specialists at the Yinzhou CDC, such 
as MPM, and (3) preliminary exploratory data analysis conducted on 
historical respiratory infection datasets from the YRHIP platform, 
such as HLM and CUSUM. This hybrid approach ensures that the 
final parameter space was not arbitrarily defined, but rather grounded 
in evidence, expert interpretation, and data-driven validation, thereby 
improving the transparency and reproducibility of the early-
warning system.

Screening performance evaluation
To evaluate the performance of various parameters, we utilized a 

comprehensive scoring method that integrates the Youden’s index, 
F1-score, and agreement rate.

 
= + −

+ +
′ 1A DYouden s index

A C B D

 
=

+ +
21

2
AF score

A B C

 
+

=
+ + +

 A DAgreement rate
A B C D

A represents true early-warning, B represents false early-warning, 
C represents false non-early-warning, D represents true 
non-early-warning.

Each metric was standardized to ensure comparability:

 

( )
( ) ( )
−

=
−

min
max min

M M
M

M M

The standardized values were then aggregated to calculate an 
overall composite score:

 ′= + +1   Youden s index F score Agreement rateComposite score M M M

This method provides a balanced assessment of model 
performance across multiple dimensions.

Mean squared error
We used the Mean Squared Error (MSE) to quantify the 

discrepancy between ARIs/ILIs and clinically diagnosed cases. The 
calculation formula is as follows:

 
( )2

1

1 n

i
MSE yi yi

n =
= −∑ 

Multi-group difference analysis
To evaluate overall differences among multiple groups, a two-way 

ANOVA was conducted. Post hoc pairwise comparisons were then 
performed using the Bonferroni correction method to account for 
multiple testing.

Results

Optimizing ARIs criteria

Based on YRHIP system data from 2019 to 2024, the clinical 
laboratory report recorded a total of 62,487,623 laboratory test records. 
Among these, 10,807,158 tests screened for thirteen target respiratory 
pathogens, identifying 424,234 positive cases and 10,382,924 negative 
results. Subsequently, we analyzed the frequency of the three primary 
symptom categories of ARIs in cases testing positive for thirteen 
respiratory pathogens (Figure  2). Acute-phase fever showed the 
highest prevalence, followed by typical respiratory infection 
symptoms. An exception was abnormal lung auscultation, which, 
while less commonly observed, demonstrated high specificity for 
respiratory diseases. Atypical symptoms were the least frequently 
reported among positive cases.
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Due to the prevalence of atypical symptoms, relying solely on a 
single-symptom screening for ARIs screening could increase the 
misdiagnostic rate, while incorporating all symptoms might elevate 
missed-diagnosis rates. To optimize this balance, we investigated the 
minimum inclusion threshold for atypical symptoms. Using a panel 
of thirteen pathogens as the symptom validation set, we evaluated 
various combinations of atypical symptoms across different minimum 
inclusion thresholds as screening criteria. The results demonstrated 
that as the minimum inclusion threshold for atypical symptoms 
increased, the agreement rate improved (Figure  3). Subsequently, 
we calculated the Youden’s index and F1-score, both of which peaked 
when the minimum inclusion threshold was set to 2. To identify the 
optimal cut-off point, we computed a composite score, which also 
reached its maximum when the minimum inclusion threshold was set 
to 2. Based on these findings and the definition of ILIs, we propose the 
following final criteria for defining ARIs: acute-phase fever symptoms 
combined with at least one typical respiratory infection symptoms; or 
acute-phase fever symptoms combined with at least two atypical 
respiratory infection symptoms; or at least one typical respiratory 
infection symptoms combined with at least two atypical symptoms.

Screening evaluation of ARIs and ILIs 
definition

According to the YRHIP data, from 2009 to 2024, the outpatient 
clinic daily log recorded a total of 184,961,667 clinical diagnoses, 
including 27,935,373 cases classified under ICD codes related to RSDs. 
Since patients assigned ICD codes were diagnosed by clinical experts, 
these diagnoses are considered highly authoritative. Consequently, 
this cohort was used for subsequent model validation. Additionally, 
from 2019 to 2024, the outpatient medical record documented 
39,859,297 outpatient visits, of which 1,340,626 met the ARIs criteria. 
In comparison, applying the ILIs definition from the WHO, US CDC, 
and CHN CDC identified 977,753, 1,156,905, and 1,154,118 cases, 
respectively.

We used line graphs to depict the daily diagnostic rate of ARIs, 
ILIs, and RSDs. A two-way ANOVA (Table 1) revealed significant 
differences between syndromic surveillance (ARIs and ILIs) and 
clinical diagnoses after accounting for the blocking effect of Date 

(p < 0.001), To determine which syndrome exhibited the smallest 
discrepancy from actual clinical cases, we performed a MSE analysis. 
The results revealed that ARIs and RSDs had smaller discrepancies in 
DDR compared to ILIs (Figure 4). Using RSDs as diagnostic validation 
set and applying the ARIs and ILIs definition as screening tests, 
we evaluated the screening performance of each definition. Table 2 
presents a comparative analysis of diagnostic metrics, including 
Youden’s index, accuracy, and F1-score, for various ARIs and ILIs 
definition. A two-way ANOVA revealed significant differences in 
Youden’s index, accuracy rate and F1-score (p < 0.001) after 
accounting for the blocking effect of Date. Post hoc Bonferroni analysis 
further indicated that the screening value of the ARIs definition 
surpasses that of the ILIs definition.

Construction of the baseline early warning 
model for ARIs

Yang et al. employed the classical threshold formula to define 
epidemic criteria; however, our analysis revealed limitations in its real-
world early-warning utility. As shown in Figure 5A, this method failed 
to generate any epidemic signals during the COVID-19 pandemic or 
the winter RSDs epidemic seasons from 2015 to 2017. Paradoxically, 
it produced a cluster of alerts in mid-2024 when RSDs incidence 
exhibited a clear downward trend. These findings underscore the 
necessity to develop refined epidemic criteria that balance sensitivity, 
specificity, and robustness. To address this, we  developed new 
epidemic criteria based on a weighted average of multidimensional 
time series data—incorporating historical, current, and future 
trends—combined with manual validation, as detailed in the Methods 
section. From 2009 to 2019, the baseline RSDs diagnostic rate 
averaged 0.183. Using data from the first 5 years of the cohort as a 
reference, a total of 371 epidemic signals were generated between 2014 
and 2024, with 276 signals(74.4%) occurring between 2019 and 2024 
(Figure 5B). Prior to February 2020, signals predominantly occurred 
during winter months, precisely capturing seasonal epidemic peaks. 
Between 2020 and 2022, despite the impact of the COVID-19 
pandemic and the absence of distinct seasonal patterns due to 
generally low incidence rates, the model still sensitively identified 
sub-epidemic spikes that exceeded epidemic criteria, generating 51 

FIGURE 2

Frequency distribution of the main symptoms of ARIs.
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FIGURE 3

Evaluation of ARIs screening based on different minimum inclusion thresholds of atypical symptoms.

TABLE 1 Two-way ANOVA of DDR for ARIs and ILIs definitions.

Indicators Group Date RSDs-ARIs RSDs-WHO RSDs-US RSDs-CHN

F-value 12445.314 19.846 Bonferroni Bonferroni Bonferroni Bonferroni

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FIGURE 4

Daily diagnostic rates for ARIs, ILIs, and RSDs.

TABLE 2 Two-way ANOVA of diagnostic value for ARIs and ILIs definitions.

Indicators X S± Group Bonferroni P-value

ARIs WHO US CHN F-value P-value ARIs-
WHO

ARIs-
US

ARIs-
CHN

Youden’s index 0.187 ± 0.086 0.136 ± 0.073 0.168 ± 0.082 0.168 ± 0.083 9226.318 <0.001 <0.001 <0.001 <0.001

Accuracy rate 0.907 ± 0.042 0.904 ± 0.044 0.906 ± 0.043 0.906 ± 0.043 1804.193 <0.001 <0.001 0.220 0.035

F1-score 0.299 ± 0.117 0.232 ± 0.109 0.275 ± 0.117 0.275 ± 0.117 11753.723 <0.001 <0.001 <0.001 <0.001
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epidemic signals. Subsequently, a significant concentration of signals 
emerged around 2023, including 27 around the New Year period, 28 in 
March, 18 in May, and a cluster of 117 signals from November through 
the following February. From March through the end of 2024, no 
signals were triggered as RSDs activity remained below 
epidemic criteria.

Subsequently, we investigated early-warning models applicable to 
ARIs and identified the optimal parameters for each model 
(Supplementary Table S3, Supplementary Figure S1). Detailed 
methodological descriptions are provided in the Methods section. The 
parameter K for the HLM was examined within the range of 0.1 to 2. 
Based on the evaluation metrics (Supplementary Figure S2A), the 
model demonstrated optimal early-warning performance with a total 
of 402 warning points when K was set to 0.8, achieving a composite 
score of 2.80. The MPM evaluates whether a monitoring point should 
issue an early-warning signal by defining threshold values at different 
percentiles of historical data. Analysis of model performance across 
various percentiles revealed that the predictive performance was 
optimal at the 85th percentile, with a total of 288 warning points 
(Supplementary Figure S2B). For the CUSUM model, the parameters 
K and H were explored within the ranges of 0 to 1 and 0 to 10, 
respectively. The model achieved optimal performance when K = 0.7 
and H = 5, identifying a total of 336 warning points with a composite 
score of 2.89 (Supplementary Figure S2C). Similarly, for the EWMA 
model, the optimal performance was observed with K = 3 and 
λ = 0.05, resulting in 314 warning points and a composite score of 2.87 
(Supplementary Figure S2D).

Graded warning system based on 
multi-model fusion

We integrated the outputs of four early-warning models in a 
parallel configuration to construct a comprehensive graded early-
warning system. This system classifies warnings into four hierarchical 
levels based on the consistency of the models’ outputs (Table  3, 
Figure 6): “Red early-warnings,” represented by red points, these are 
triggered when all four models concur, resulting in 100 warning 
points. Red warnings demonstrate the highest specificity (0.997), 
minimizing false alarms, and show the greatest overlap with the 
epidemic criteria. These warnings are predominantly observed during 
peak epidemic periods, highlighting their accuracy and relevance in 
critical situations; “Orange early-warnings,” marked as orange points, 
these are activated when at least three models issue alerts, producing 
214 warning points. This level achieves the most balanced 
performance, with the highest Youden’s index (0.556), F1-score 
(0.657), and agreement rate (0.923). Orange early-warnings appear 
frequently during both moderate and high-risk periods; “Amber early-
warnings,” depicted by amber points, these are generated when at least 
two models agree, accounting for 372 warning points. Amber early-
warnings are observed in intermediate risk periods, effectively 
capturing more nuanced trends in disease incidence; “Green early-
warnings,” shown as green points, these are issued when at least one 
model signals an alert, leading to 654 warning points. Green early-
warnings demonstrate the highest sensitivity (0.902) but the lowest 
specificity (0.788) and are broadly distributed across the entire 

FIGURE 5

Epidemic signals based on RSDs. (A) Classical criteria. (B) Improved criteria.
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timeline. This level reflects the system’s ability to capture early signals 
of potential risk.

Discussion

Acute respiratory infection syndromes pose a significant public 
health concern, necessitating robust screening criteria and early-warning 
tools to mitigate their clinical and epidemiological burdens. This study 
developed and validated a comprehensive framework for optimizing 
ARIs definition, evaluating screening performance, improving the 
classical epidemic criteria and constructing an early-warning model 
tailored to regional healthcare data. By leveraging an extensive datasets 
and integrating advanced analytical approaches, this work highlights key 
strategies to enhance syndrome-based surveillance systems.

Extensive literature has consistently demonstrated that syndromic 
cases exhibit higher timeliness compared to clinically diagnosed and 
pathogen-confirmed cases, though with lower specificity (10, 47–49). 
The refined syndrome screening criteria proposed in this study 
address a long-standing challenge in syndromic surveillance: the 
sensitivity-specificity trade-off (50). The findings demonstrate that the 
integration of acute-phase fever with both typical and atypical 
respiratory symptoms enhances diagnostic robustness. While acute-
phase fever (51) and typical respiratory symptoms (52), as hallmark 
indicators of respiratory infections, have been consistently associated 
with high sensitivity, the strategic addition of atypical symptoms 
significantly improves accuracy—particularly when multiple 
symptoms co-occur. Notably, atypical symptoms’ inclusion of two or 
more significantly enhances diagnostic accuracy. Even when 
compared to the ILIs, the ARIs consistently shows superior screening 

performance and alignment with confirmed clinical diagnoses. A 
plausible explanation for this disparity lies in the greater adaptability 
of the ARIs to diverse clinical settings, as it encompasses a broader 
symptom spectrum, including both typical and atypical respiratory 
manifestations that traditional ILIs definition fail to capture 
adequately. This approach underscores the importance of flexible 
symptom inclusion to account for pathogen diversity and clinical 
variability, laying the groundwork for the development of definition 
for other complex disease syndromes.

While the classical epidemic criteria proposed by Yang et al. (40) 
provided foundational epidemiological insights, they failed to detect 
most pandemic signals and issued paradoxical alerts during 
epidemiologically quiescent periods. To address these limitations, 
we improved the classical epidemic criteria to capture both expected 
seasonal peaks and unexpected sub-epidemic spikes. Prior to 2020, 
epidemic signals showed distinct winter seasonality, consistent with 
established patterns of respiratory infection transmission (53). However, 
these patterns were disrupted during the COVID-19 pandemic, likely 
due to behavioral adaptations and policy interventions (54, 55). This 
disruption highlights the need to incorporate external factors, such as 
mask mandates and social distancing, into future prediction models. 
Following the gradual relaxation of non-pharmaceutical interventions 
(NPIs) and epidemic prevention policies, multiple infection peaks 
emerged in Yinzhou District since late 2022. This phenomenon, 
described as “immunological debt” in academic literature (56), 
underscores the complex dynamics of infectious disease transmission in 
the post-intervention era. The absence of signal disorder before and after 
the COVID-19 pandemic demonstrates the robustness of our criteria in 
capturing complex disease transmission dynamics, even under 
unprecedented epidemiological perturbations. Crucially, as RSDs activity 

TABLE 3 Performance metrics across graded early-warning system.

Warning 
levels

Sensitivity Specificity Youden’s 
index

F1-score Agreement rate Composite 
score

Green 0.902 0.788 0.691 0.535 0.803 1.199

Amber 0.739 0.912 0.651 0.630 0.890 2.434

Orange 0.583 0.972 0.556 0.657 0.923 2.613

Red 0.344 0.997 0.342 0.505 0.915 0.932

FIGURE 6

Graded early-warning system.
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remained low in mid-2024, no epidemic signals were generated. In 
contrast to the false signal produced by the conventional criteria during 
the same period, this demonstrates higher specificity. Our epidemic 
criteria relies on multi-temporal data (historical, current, and future) and 
expert validation processes, posing challenges to its real-time 
implementation in real-world scenarios. Nevertheless, the system’s 
resilient design maintains reliability during major disruptions like the 
COVID-19 pandemic, establishing it as a robust benchmark for early-
warning model evaluation.

The global COVID-19 pandemic and subsequent emergence of 
multiple pathogens following NPIs relaxation emphasize the urgent need 
for effective ARIs early-warning systems. Timely and accurate early-
warning signals enable health professionals to implement interventions 
during outbreak initiation (57), enable health professionals to implement 
interventions during outbreak initiation. Previous studies underscore the 
necessity of multi-model fusion to address the heterogeneity inherent in 
epidemiological data and the complexities of outbreak dynamics (58). 
Our study advances this field through a novel multi-model system that 
incorporates HLM, MPM, CUSUM, and EWMA methods into a graded 
alert framework. The graded early-warning system developed in this 
study harnesses the strengths of four distinct methods, generating 
nuanced alerts—classified as red, orange, amber, or green—based on 
multi-model consensus. This approach achieves a balance between 
sensitivity and specificity, effectively reducing the risks of false positives 
and false negatives. Red alerts, triggered when all four algorithms detect 
anomalies, may correspond to the highest level of public health 
intervention, including enhanced hospital preparedness, targeted 
community interventions and mobilized emergency task force. Orange 
alerts, which offer the best balance between sensitivity and specificity, 
may prompt increased clinical surveillance, reinforcement of infection 
control measures, issuance of public health advisories, or mobilization of 
additional healthcare personnel. Amber alerts can serve as an early 
caution, triggering internal reviews of case trends and cross-departmental 
coordination without full-scale intervention. Green alerts, while having 
the highest sensitivity, can support routine surveillance and background 
monitoring, signaling areas for focused data validation or community-
level health messaging. To support real-world deployment, the alert 
levels could be visualized within existing digital dashboards of regional 
health platforms. Standard operating procedures (SOPs) linked to each 
alert level would ensure that the system is not only data-driven but also 
actionable, enabling local health authorities to scale their responses in a 
timely, proportionate, and resource-efficient manner. By integrating 
multi-model outputs, this system establishes a robust surveillance 
framework for respiratory infectious diseases, delivering reliable graded 
alerts through comprehensive analysis of complex epidemiological data.

Conclusion

In summary, this study establishes a robust foundation for 
enhancing ARIs surveillance and early-warning systems. Through the 
optimization of ARIs definition, evaluation of screening performance, 
improvement of classical epidemic criteria and integration of multi-
model predictions, we  have developed a scalable and adaptive 
framework for public health management. These findings hold 
significant implications for the management of respiratory infectious 
diseases, particularly in the face of increasing pathogen diversity and 
evolving global health challenges.
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Glossary

ARIs - acute respiratory infection syndromes

YRHIP - Yinzhou Regional Health Information Platform

HLM - historical limits method

MPM - moving percentile method

CUSUM - cumulative sum control chart

EWMA - exponentially weighted moving average

US CDC - US Centers for Disease Control and Prevention

ILI - influenza-like illness

CHN CDC - Chinese Center for Disease Control and Prevention

CIDARS - China Infectious Diseases Automated-alert and 
Response System

URI - upper respiratory infection

LRI - lower respiratory infection

ECDC - European Centre for Disease Prevention and Control

EMR - electronic medical records

NDCPA - National Disease Control and Prevention Administration

HIS - hospital information system

LIS - laboratory information system

RSDs - respiratory symptom-related diseases

ILIs - influenza-Like illness syndromes

DDR - daily diagnostic rate

GA - global average

HCMA - historical contemporaneous moving average

HCSD - historical contemporaneous standard deviation

AMA - ambispective moving average

WA - weighted average

UHL - upper historical limit

UCL - upper control limit

MSE - mean squared error

NPIs - non-pharmaceutical interventions

NNDRS - National Notifiable Disease Reporting System

BioSense - Biosurveillance Initiative for Operational Notification, 
Situational Awareness, and Epidemiology

ESSENCE - Electronic Surveillance System for the Early Notification 
of Community-based Epidemics
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