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Objective: As the global population ages, promoting healthy aging has become

increasingly important. Although metabolic syndrome (MetS) is associated with

aging, current research evidence remains insu�cient.

Methods: Data from the 1999–2010 National Health and Nutrition Examination

Survey (NHANES) were used for analysis. This dataset includes comprehensive

demographic characteristics and biochemical markers. Weighted multivariable

logistic regression models were employed to analyze the associations between

MetS, its components, and accelerated aging (quantified by PhenoAge

Acceleration, PhenoAgeAccel). Restricted cubic spline (RCS) curves were

used to explore non-linear relationships between MetS, its components,

and PhenoAgeAccel.

Results: The study included 10,049 participants, with a mean age of 45.90 years.

Compared to participants without MetS, those with MetS showed an increase

in age by 0.61 years (β 0.61, 95% CI 0.12–1.10). Among the five components

of MetS, after adjusting for all covariates, significant positive associations were

observed only for hypertension (β 0.92, 95% CI 0.36–1.48), reduced HDL-C

(β 0.66, 95%CI 0.28–1.04), and elevated blood glucose (β 1.43, 95%CI 0.92–1.94).

Conclusion: Our study demonstrates that patients with MetS are associated

with an increased risk of biological aging, with significant contributions from

hypertension, elevated blood glucose levels, and reduced HDL-C to the aging

process. These findings provide valuable insights for developing public health

strategies to mitigate aging.
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1 Introduction

It is projected that by 2050, the proportion of the global population aged 60 and

above will reach 22% (1). Concurrently, aging is often accompanied by numerous

chronic diseases, including cardiovascular diseases, respiratory diseases, cancer, and type

II diabetes, which impose a significant economic burden on families and society (2).

Consequently, monitoring aging has been a focal point of scientific research. Up until

now, various biomarkers have been proposed to collectively define the aging phenotype,

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1593214
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1593214&domain=pdf&date_stamp=2025-06-02
mailto:xiejiang@swjtu.edu.cn
mailto:wangmengyuan@swjtu.edu.cn
https://doi.org/10.3389/fpubh.2025.1593214
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1593214/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1593214

including genomic instability, telomere shortening, epigenetic

changes, and proteostasis loss (3–5). Evidence suggests that

patients with MetS exhibit significantly shorter telomere

lengths (TL), however current evidence is limited and does

not establish a critical TL threshold for defining biological age

(6). Recently, Phenotypic age (PhenoAge) has been proposed

as a measure to reflect an individual’s biological aging status.

Compared to relatively complex and expensive tests like those

for genomic instability and DNA methylation, the calculation

of PhenoAge typically relies on routine clinical laboratory

markers, such as blood chemistry and inflammatory markers.

By integrating multiple biomarkers, PhenoAge provides more

accurate information on health and aging than chronological age,

making it a more practical and cost-effective tool for assessing

biological age.

MetS is characterized by a group of interconnected conditions,

including obesity, hypertension, elevated triglyceride levels, and

insulin resistance (7). Although MetS itself is not an absolute risk

indicator, it remains a significant risk factor for cardiovascular

diseases, diabetes, chronic kidney disease, hyperinsulinemia, and

various mental disorders (8). Research indicates that aging-

related markers, such as telomerase, are present at increased

levels in individuals with MetS (9). Nannini et al. reported

that accelerated intrinsic epigenetic age significantly increases the

likelihood of developing MetS (6). Aging and MetS, potentially

due to shared risk factors such as unhealthy diet, obesity, and

various underlying chronic conditions (10). In this context,

integrating MetS and aging as a whole does not facilitate

disease management and risk prevention. Despite some evidence

highlighting the association between MetS and aging, there is

currently a lack of large-scale epidemiological studies to clearly

define the contribution of MetS to accelerated aging. Measuring

the PhenoAge of MetS patients can help identify and stratify the

individuals at highest risk for accelerated aging (11). Additionally,

there is no clear epidemiological evidence to evaluate whether

each component of MetS is positively correlated with aging.

To address these knowledge gaps, we aim to answer these

questions by analyzing NHANES data and further investigating

the relationship between MetS, its components, and aging in the

general U.S. population.

2 Methods

2.1 Study design and population

NHANES provides a comprehensive, ongoing assessment

of the health and nutritional status of the U.S. population

through a combination of interviews, physical examinations,

and laboratory tests. NHANES follows stringent ethical

protocols, including obtaining informed consent from all

participants and ensuring the confidentiality and privacy

of their data. The study protocol is reviewed and approved

by the National Center for Health Statistics Research Ethics

Review Board. In this study, we included participants

from the 1999–2010 NHANES cohorts (Figure 1). After

handling missing data for the necessary variables (by

deletion), a total of 10,049 participants were included in the

final analysis.

2.2 Assessment of PhenoAge and mets

PhenoAge, a well-established marker, is utilized to assess

the biological aging process through extensive research (12–14).

It is computed based on 10 indicators, including chronological

age, albumin, creatinine, glucose, C-reactive protein, lymphocyte

percentage, mean cell volume, red cell distribution width, alkaline

phosphatase, and white blood cell count (14). The incorporation

of these biological markers, intimately associated with the

functionality and metabolism of various bodily systems, allows

for a more accurate prediction of health-related outcomes (15).

PhenoAgeAccel is defined as the residual obtained by subtracting

the influence of chronological age using a linear regression model

(16). Specifically, PhenoAgeAccel was derived as the residual from

a linear regression model in which PhenoAge was regressed on

chronological age: (PhenoAgeAccel = PhenoAge – PhenoAge∧),

where PhenoAge∧ represents the predicted phenotypic age based

on chronological age. This method has been previously validated

in NHANES populations. Smaller residual values indicate a

slower biological aging process (17). PhenoAgeAccel aids in

understanding the contrast between physiological aging pace and

chronological age.

The National Cholesterol Education Program’s Adult

Treatment Panel III (NCEP ATP III) in 2005 for diagnosing MetS.

The criteria include a waist circumference of ≥102 cm for men or

≥88 cm for women, HDL-C levels <40 mg/dL for men or <50

mg/dL for women, triglycerides ≥1.7 mmol/L, blood pressure

≥130/85 mmHg or use of antihypertensive medication, and fasting

glucose ≥5.6 mmol/L or use of antidiabetic medication (18, 19).

2.3 Assessment of covariates

Hypertension is defined as a systolic blood pressure ≥140

mmHg, diastolic blood pressure ≥90 mmHg, self-reported

physician diagnosis, or current use of antihypertensive medic.

Diagnostic criteria for diabetes include a glycated hemoglobin

(HbA1c) level ≥6.5%, fasting blood glucose level greater than

or equal to 7 mmol/L, oral glucose tolerance test (OGTT), self-

reported diabetes, or current use of antidiabetic medications

such as metformin (20, 21). Covariates were defined as smoking

status (current: serum cotinine ≥10 ng/mL or self-reported daily

smoking; former: quit >1 year; never), alcohol consumption

(current: ≥1 drink/month; former; never), central obesity (waist

circumference ≥102 cm for men or ≥88 cm for women), and

HDL-C levels (<40 mg/dL for men or <50 mg/dL for women).

Marital status, level of education, race, Body Mass Index (BMI),

household income level [Poverty Income Ratio (PIR)<1.3, 1.3–3.5,

>3.5], smoking, hypertension (22), and alcohol consumption are

also considered important covariates (23, 24) HEI-2015 (Healthy

Eating Index-2015) is a scoring system designed to assess the

overall quality of diet based on adherence to the 2015–2020 Dietary

Guidelines for Americans (25–27).
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FIGURE 1

Flow chart of the patients included in the study.

2.4 Statistical analysis

All analyses incorporated NHANES examination weights,

accounting for primary sampling units (PSUs), strata, and

individual-level weights, with variance estimation adjusted for

PSU clustering using Taylor linearization (28). Variance inflation

factors (VIF) confirmed no severe multicollinearity (all VIF<5)

among MetS components. Baseline characteristics were presented

as weighted mean ± standard error (SE) for continuous variables

and unweighted counts with weighted percentages for categorical

variables. Weighted linear regression models calculated regression

coefficients (β) and 95% confidence intervals (CIs). Scatter plots,

unweighted, visualized the distribution of MetS components

(blood glucose, waist circumference, triglycerides, HDL-C) against

PhenoAge. RCS models explored potential non-linear relationships

between these components and PhenoAge, excluding hypertension

status. Key thresholds identified included HDL-C >50 mg/dL,

which was associated with reduced PhenoAgeAccel (β = −0.32,

95% CI: −0.55 to −0.09), and fasting glucose >100 mg/dL (5.6

mmol/L), which was linked to an increased risk of accelerated

aging (β = 0.41 per 10 mg/dL increase, 95% CI: 0.28–0.54).

These findings suggest the clinical importance of managing HDL-

C levels above 50 mg/dL and keeping fasting glucose levels below

100 mg/dL to mitigate accelerated aging risks. Sensitivity analyses

were conducted as follows. Firstly, α-Klotho (klotho) is a protein

involved in suppressing oxidative stress and inflammation. It

has been reported as the basis for many aging phenotypes and

longevity in animal models (29). Serum Klotho was measured

only by the NHANES working group during 2007 to 2010,

thus 2,228 out of 10,049 participants underwent serum Klotho

testing. We validated our findings by incorporating the measured

Klotho values as exposure variables in regression analyses with

PhenoAge as the outcome. Secondly, the International Diabetes

Federation (IDF) established diagnostic criteria for MetS in 2009

(8). Based on the IDF 2009 criteria, which account for racial

differences and central obesity, they are more applicable globally.

A second sensitivity analysis validated findings by redefining

MetS as exposure variables in regression analyses with PhenoAge

and accelerated PhenoAge as outcomes. Finally, regarding the

insightful question concerning potential cohort effects arising from

the extended data time span, we addressed this potential bias

by incorporating the survey years as categorical covariates in
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TABLE 1 Characteristics of participants in NHANES 1999–2010 (weighted).

Characteristics Metabolic syndrome

Overall No Yes P-values

Age, mean (SE), y 45.90 (0.35) 42.74 (0.39) 53.36 (0.40) <0.0001

Sex, n (%) 0.51

Female 4,926 (49.02) 3,132 (49.96) 1,794 (50.87)

Male 5,123 (50.98) 3,438 (50.04) 1,685 (49.13)

BMI, mean (SE), kg/m2 28.25 (0.11) 26.45 (0.08) 32.51 (0.20) <0.0001

PhenoAgeAccel −0.72 (0.11) −1.79 (0.11) 1.80 (0.22) <0.0001

Phynotypicage 41.05 (0.39) 36.65 (0.39) 51.42 (0.46) <0.0001

HEI-2015 score, mean (SE) 49.66 (0.30) 49.75 (0.36) 49.44 (0.34) 0.44

HDL-C, mg/dL 52.48 (0.28) 55.94 (0.30) 44.32 (0.33) <0.0001

Triglycerides, mean (SE), mmol/L 1.58 (0.02) 1.26 (0.01) 2.34 (0.05) <0.0001

Waist circumference, mean (SE), cm 96.95 (0.27) 91.82 (0.24) 109.07 (0.42) <0.0001

Blood glucose, mean (SE), mmol.L 5.39 (0.02) 5.06 (0.02) 6.19 (0.05) <0.0001

Alkaline phosphatase, mean (SE), u.L 70.04 (0.54) 67.88 (0.56) 75.16 (0.86) <0.0001

Albumin, mean (SE), g.L 42.97 (0.08) 43.31 (0.09) 42.15 (0.09) <0.0001

Creatinine, mean (SE), umol.L 76.59 (0.55) 75.02 (0.42) 80.31 (1.20) <0.0001

C reactive protein, mean (SE), mg.dl 0.41 (0.01) 0.34 (0.01) 0.57 (0.02) <0.0001

WBC, mean (SE), 1,000cells.ul 6.77 (0.03) 6.57 (0.03) 7.24 (0.04) <0.0001

Lymphocyte, mean (SE), % 30.01 (0.14) 30.22 (0.16) 29.52 (0.20) 0.003

Mean cell volume, mean (SE), femtoliters 90.08 (0.11) 90.33 (0.12) 89.49 (0.13) <0.0001

Red cell distribution width, mean (SE) 12.66 (0.02) 12.59 (0.02) 12.82 (0.03) <0.0001

Race, n (%) 0.01

Mexican American 1,998 (19.88) 1,250 (7.00) 748 (7.01)

Non-Hispanic Black 1,791 (17.82) 1,239 (10.36) 552 (8.91)

Non-Hispanic White 5,275 (52.49) 3,387 (72.49) 1,888 (75.94)

Other 985 (9.8) 694 (10.15) 291 (8.14)

Educational level, n (%) <0.0001

9-12th Grade or below 2,823 (28.09) 1,662 (16.54) 1,161 (22.55)

College graduate or above 2,032 (20.22) 1,533 (28.52) 499 (17.45)

High school Grad/GED or equivalent 2,407 (23.95) 1,499 (24.24) 908 (29.86)

Some college or AA degree 2,787 (27.73) 1,876 (30.71) 911 (30.14)

Martial status, n (%) <0.0001

Widowed/divorced/separated 2,175 (21.64) 1,215 (14.69) 960 (22.35)

Married/living with partner 6,360 (63.29) 4,136 (66.27) 2,224 (68.41)

Never married 1,514 (15.07) 1,219 (19.04) 295 (9.23)

Smoking status, n (%) <0.0001

Former 2,732 (27.19) 1,563 (22.95) 1,169 (32.39)

Never 5,152 (51.27) 3,508 (51.99) 1,644 (46.73)

Now 2,165 (21.54) 1,499 (25.05) 666 (20.88)

PIR, n (%) <0.0001

<1.3 2,727 (27.14) 1,647 (17.54) 1,080 (22.21)

(Continued)
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TABLE 1 (Continued)

Characteristics Metabolic syndrome

Overall No Yes P-values

1.3-3.5 3,944 (39.25) 2,568 (36.02) 1,376 (37.36)

≥3.5 3,378 (33.62) 2,355 (46.44) 1,023 (40.43)

Hypertension, n (%) <0.0001

No 5,798 (57.7) 4,698 (76.89) 1,100 (35.86)

Yes 4,251 (42.3) 1,872 (23.11) 2,379 (64.14)

Diabetes status, n (%) <0.0001

DM 1,660 (16.52) 399 (3.86) 1,261 (29.39)

IFG 887 (8.83) 324 (3.62) 563 (15.94)

IGT 583 (5.80) 356 (3.49) 227 (5.14)

No 6,919 (68.85) 5,491 (89.04) 1,428 (49.53)

Drinking status, n (%) <0.0001

Former 2010 (20.00) 1102 (13.54) 908 (23.34)

Never 1310 (13.04) 774 (9.95) 536 (13.27)

Now 6729 (66.96) 4694 (76.51) 2035 (63.40)

BMI, body mass index; HDL-C, High-Density Lipoprotein Cholesterol; HEI, Healthy Eating Index−2015; IFG, impaired fasting glucose; IGT, impaired glucose golerance; WBC, White Blood

Cells.

For continuous variables, P-values were calculated using a weighted Student’s t-test, and for categorical variables, P-values were computed using weighted chi-square tests.

the statistical model (30). Subgroup analyses were conducted by

gender, age, BMI, race, PIR, smoking, and alcohol history, with

interactions tested using the likelihood ratio test. Analyses were

performed in R (version 4.1.3), with significance at P < 0.05. No

formal adjustments were made for multiple comparisons. Findings

from secondary and sensitivity analyses should be interpreted with

caution as exploratory results (31).

3 Results

3.1 Baseline characteristics

The study included a total of 10,049 participants with an

average age of 45.90 years (SE 0.35), predominantly male (50.98%).

Among all participants, the majority were Non-Hispanic White.

Additionally, 63.29% were married or living with a partner, 51.27%

had never smoked, and only 13.04% had never consumed alcohol.

Participants with MetS had higher BMI, older PhenoAge, and more

comorbidities compared to those without the syndrome (Table 1).

3.2 Association between mets and its
components with
PhenoAge/PhenoAgeAccel

Scatter plots illustrating the associations between PhenoAge

and each component of MetS (except hypertension) are shown

in Figure 2. It is evident that triglycerides, blood glucose,

waist circumference, and HDL-C are positively correlated with

PhenoAge (R² > 0, P < 0.05). Further weighted linear regression

analysis (Table 2) reveals that participants with MetS age an

additional 0.61 years compared to those without the syndrome (β

0.61, 95% CI 0.12–1.10). Among the five components of MetS,

after adjusting for all covariates, significant positive correlations

were observed only for hypertension (β 0.92, 95% CI 0.36–

1.48), reduced HDL-C (β 0.66, 95% CI 0.28–1.04), and raised

blood glucose (β 1.43, 95% CI 0.92–1.94). Though triglycerides

(TG) and waist circumference (WC) did not reach significance,

their effect sizes (TG: β = 0.15; WC: β = 0.20) aligned with

known metabolic aging pathways, possibly masked by collinearity

(VIF<5) or diagnostic thresholds. Supplementary Table 1 presents

the weighted linear regression results for MetS and its components

with PhenoAgeAccel, consistent with the associations observed

for PhenoAge.

3.3 RCS curve and sensitivity analysis

Non-linear associations between four principal components

of MetS and PhenoAge are depicted in Figure 3 through

smoothed visualization techniques. The results revealed non-

linear relationships for HDL-C and blood glucose with PhenoAge

(P for non-linearity < 0.05). Specifically, a turning point was

observed for HDL-C when levels exceeded 50 mg/dL, although

the confidence intervals were relatively wide. For blood glucose,

there was a marked positive correlation with PhenoAge beyond

100 mg/dL. Similar patterns were observed for triglycerides and

waist circumference, indicating a significant association with

increased PhenoAge.

Supplementary analyses provide additional insights into how

MetS and its components influence serum α-Klotho levels, further

supporting the robustness of our findings. These results are detailed

in Supplementary Tables 2, 3. The study revealed a significant

negative correlation between participants with MetS and serum
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FIGURE 2

Scatter plots depicting the relationship between the four components of metabolic syndrome and Phenotypic age.

α-Klotho levels. Given the inverse relationship between serum

α-Klotho levels and accelerated aging, this sensitivity analysis

further corroborated our findings. The results of sensitivity

analyses examining the associations between MetS and its

components—defined according to the IDF-2009 criteria—and

both PhenoAge and PhenoAge Acceleration are presented in

Supplementary Tables 4, 5. Consistent with the findings using the

ATP III definition of MetS, adopting the IDF-2009 criteria resulted

in stronger associations between MetS and PhenoAge (β 0.64, 95%

CI 0.18–1.10) or PhenoAgeAccel (β 0.75, 95% CI 0.27–1.24). The

Supplementary Tables 6, 7 demonstrate that after incorporating

survey cycles as covariates, the associations between metabolic

syndrome (and its components) with PhenoAge and PhenoAge

acceleration remained consistent with the primary analyses.

3.4 Subgroup analysis

Table 3 presents the results of subgroup analyses to assess

heterogeneity across different populations or disease states. After

adjusting for all covariates, we did not observe heterogeneity in

gender, BMI, race, smoking status, and drinking status. The results

suggest that within the age groups, participants younger than 65

years showed amore significant impact ofMetS status on PhenoAge

(β 3.29, 95% CI 2.40 to 4.18), whereas no such variation was

observed in the group aged 65 years or older. In the PIR subgroup

analysis, the overall trend indicated that higher income is associated

with a lower risk of biological aging in the presence of MetS. The β

values for PIR <1.3, 1.3–3.5, and >3.5 were 2.84, 2.83, and 2.21,

respectively, all P < 0.05, with P for interaction= 0.03.

Supplementary Table 8 displays the associations of MetS with

PhenoAgeAccel in subgroups. Heterogeneity was only observed

within the race subgroup. The results indicate that participants

from the Non-Hispanic White group (β = 0.96, 95% CI 0.38

to 1.54) are more susceptible to significant effects of MetS on

PhenoAgeAccel, whereas this phenomenon was not observed in the

Non-Hispanic Black, Mexican American, and other groups.

4 Discussion

This large-scale study aimed to evaluate the impact of MetS

on participants’ biological aging and accelerated aging. The
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TABLE 2 The associations of metabolic syndrome with PhenoAge.

Characteristic Crude model Model 1 Model 2

β (95 % CI) P β (95 % CI) P β (95 % CI) P

Metabolic syndrome

No ref ref ref

Yes 14.76 (13.81, 15.72)a <0.0001 2.49 (2.03,2.95)a <0.0001 0.61 (0.12, 1.10)a 0.01

Hypertension

No ref ref ref

Yes 19.2 (18.39, 20.00)a <0.0001 1.58 (1.01, 2.15)a <0.0001 0.92 (0.36, 1.48)a 0.002

Raised triglyceride

No ref ref ref

Yes 6.56 (5.50, 7.63)a <0.0001 0.94 (0.45, 1.43)a <0.001 0.15 (−0.29, 0.60) 0.49

Reduced HDL-C

No ref ref ref

Yes 0.20 (−0.72, 1.12)a 0.67 1.56 (1.09, 2.02)a <0.0001 0.66 (0.28, 1.04)a <0.001

Central obesity

No ref ref ref

Yes 10.61 (9.71, 11.51)a <0.0001 0.65 (0.24, 1.06)a 0.002 0.20 (−0.17, 0.57) 0.29

Raised blood glucose

No ref ref ref

Yes 15.54 (14.60, 16.48)a <0.0001 3.14 (2.71, 3.57)a <0.0001 1.43 (0.92, 1.94)a <0.0001

CI, confidence interval; Crude model, unadjusted; Model 1, adjusted for age, sex, race, BMI; Model 2, adjusted for variables in Model 1 plus, marital status, drinking status, smoking status,

educational level, hypertension, diabetes, PIR, and HEI-2015.
aStatistically significant.

study revealed that participants with MetS experienced a 0.61-

year increase in the PhenoAge of aging. RCS analysis unveiled

non-linear associations between HDL-C, blood glucose, and

PhenoAge. Sensitivity analysis further corroborated the robustness

and reliability of our findings. Subgroup analysis indicated that

participants under the age of 65, and low PIR levels exhibited a

more significant influence of MetS on PhenoAge.

Previous studies have shown that epigenetic age acceleration is

positively correlated with the severity score ofMetS and the number

of MetS components (6). Our study further confirms that similar

trends are observed with PhenoAge and PhenoAge acceleration.

PhenoAge offers more advantages in health management and

disease prevention than chronological age, as it better represents an

individual’s aging status and is more accessible in routine clinical

practice, making it a more practical and cost-effective tool for

assessing biological age (32).

Aging is accompanied by molecular damage and a decline

in maintenance and repair mechanisms, particularly oxidative

damage induced by reactive oxygen species (ROS), which

significantly impacts cellular homeostasis and physiological

functions (33). ROS-induced damage includes harm to

mitochondrial DNA and disruption of the electron transport

chain, further increasing ROS production and ultimately leading

to progressive cellular dysfunction and death (34). Among

various aging assessment tools, PhenoAge and epigenetic clocks

(such as DNA methylation-based biomarkers) together form a

multidimensional aging evaluation framework (35). Crucially,

PhenoAge—as a core clinical biomarker-based tool—differs

fundamentally from epigenetic clocks: while epigenetic clocks

strongly correlate with age-related health outcomes (e.g., frailty and

cognitive decline), PhenoAge’s broad coverage of clinical indicators

grants it unique advantages in holistic aging assessment. Future

studies should prioritize direct comparisons between PhenoAge

and epigenetic clocks to better contextualize these findings within a

broader aging research framework. Most importantly, investigating

how PhenoAge correlates with functional outcomes (e.g., frailty

and cognitive decline) will not only enhance its clinical utility but

also provide PhenoAge-driven insights into how MetS influences

aging at both molecular and functional levels.

Hyperglycemia-induced ROS and PKC can also activate NF-

κB in mesangial cells, participating in immune and inflammatory

responses (36). Chronic low-grade systemic inflammation is a

hallmark of aging. Senescent cells often secrete an inflammatory

mixture of cytokines, chemokines, and matrix metalloproteinases,

which can cause dysfunction in insulin signaling pathways (37).

The mechanisms by which MetS accelerates aging are related to

obesity, with oxidative stress and inflammation serving as critical

links. However, we did not observe evidence of biological aging

and accelerated aging in the MetS components Raised triglycerides

and Central obesity. According to the MetS definition of Raised

triglycerides and Central obesity, we believe this is partly due to

our study not excluding participants currently using lipid-lowering

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1593214
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1593214

FIGURE 3

Non-linear association between metabolic syndrome and PhenoAge. Cubic spline models adjusted for age, sex, race, BMI, marital status, drinking

status, smoking status, educational level, hypertension, diabetes, PIR, and HEI-2015. Knots = 3. CI, confidence interval.

medications and the racial heterogeneity in the definition of Central

obesity (38).

The non-significant associations of triglycerides and

waist circumference deserve nuanced interpretation. First,

the ATP-III criteria’s fixed thresholds (waist circumference

≥102/88 cm) may not capture ethnic-specific risks, as our Mexican

American subgroup had mean 96.95 cm. Second, lipid-lowering

medications (not excluded in primary analysis) could attenuate

triglyceride effects. Most importantly, their linear dose-response

relationships with PhenoAge in RCS analyses (Figure 3) suggest

cumulative harm below diagnostic cutoffs, echoing studies linking

visceral adiposity to inflammaging and hypertriglyceridemia to

mitochondrial dysfunction.

In this study, we explored the potential heterogeneity in

the relationship between MetS and biological aging, taking into

account the role of sex and race/ethnicity as potential effect

modifiers. Although the interaction between sex and MetS did

not reach statistical significance (P = 0.67), the data suggest

that sex may play a role in moderating the impact of MetS on

aging. Specifically, MetS was significantly associated with increased

PhenoAge in both men and women, but the association appeared

to be stronger in women (β = 2.87, P < 0.0001). This stronger

effect in women may be attributed to hormonal changes post-

menopause, which influence fat distribution, insulin sensitivity,

and lipid metabolism, thereby exacerbating MetS and accelerating

biological aging. Women also tend to have more pronounced

abdominal obesity, a key component of MetS, which may further

contribute to the observed sex differences.

Regarding racial/ethnic differences, while we did not find

significant modification effects of race/ethnicity on the MetS-

aging relationship (all p for interaction >0.05), there were notable

differences in MetS prevalence across racial/ethnic groups, as

shown in Table 1 (P = 0.01). For instance, Non-Hispanic Whites

had a higher prevalence of MetS compared to Mexican Americans

and Non-Hispanic Blacks. These differences highlight the complex

interplay between race, genetic susceptibility, lifestyle factors, and

access to healthcare, which may influence the relationship between

MetS and biological aging. However, due to the limited sample size

in certain subgroups, further stratified analyses were not conducted

in this study. This remains an important area for future research,
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TABLE 3 The associations of metabolic syndrome with PhenoAge in

subgroups.

Characteristic Metabolic syndrome

No Yes, β (95 %
CI)a

P P for
interaction

Sex 0.67

Male ref 2.47 (1.42, 3.52) <0.0001

Female ref 2.87 (1.97, 3.77) <0.0001

Age group <0.0001

<65 ref 3.29 (2.40, 4.18) <0.0001

>=65 ref 0.43 (−0.61, 1.46) 0.41

BMI group 0.27

Overweight ref 2.89 (1.69, 4.09) <0.0001

Obese ref 3.07 (2.00, 4.14) <0.0001

Normal ref 2.01 (−0.44, 4.46) 0.11

Race 0.63

Non-Hispanic White ref 2.72 (1.74, 3.71) <0.0001

Non-Hispanic Black ref 1.94 (0.08, 3.79) 0.04

Mexican American ref 2.5 (1.28, 3.71) <0.001

Other ref 3.08 (1.09, 5.07) 0.003

PIR 0.03

<1.3 ref 2.84 (1.06, 4.61) 0.002

1.3–3.5 ref 2.83 (1.76, 3.91) <0.0001

≥3.5 ref 2.21 (1.03, 3.38) <0.001

Smoking status 0.05

Former ref 2.19 (0.97, 3.40) <0.001

Never ref 2.58 (1.47, 3.69) <0.0001

Now ref 3.69 (1.56, 5.81) <0.001

Drinking status 0.15

Former ref 4.24 (2.61, 5.87) <0.0001

Heavy ref 3.86 (2.15, 5.57) <0.0001

Moderate ref 2.63 (0.64, 4.62) 0.01

Mild ref 1.19 (−0.09, 2.46) 0.07

Never ref 1.57 (−0.78, 3.93) 0.19

BMI, body mass index; CI, confidence interval; DM, diabetes; PreDM (IFG, impaired fasting

glucose; IGT, impaired glucose golerance).
aModel adjusted for age, sex, race, BMI, marital status, drinking status, smoking status,

educational level, hypertension, diabetes, PIR, and HEI-2015.

where larger and more racially/ethnically balanced studies are

needed to comprehensively examine potential effect modification.

Both sex and race/ethnicity may therefore be important

modifiers of the relationship between MetS and biological aging.

Future studies should continue to explore these factors to provide

more nuanced insights into how different populations experience

the effects of MetS on aging.

In the RCS analysis, there is evidence of a non-linear

association between blood glucose levels and HDL-C levels with

PhenoAge. The study found that prolonged high blood glucose

levels lead to the glycation of red blood cell membranes and

hemoglobin, resulting in decreased oxygen-carrying capacity (39).

This causes tissues and cells in the body to remain in a state

of hypoxia. Additionally, hyperglycemia is often accompanied

by insulin deficiency, which results in more protein breakdown

than synthesis, leading to hypoproteinemia and negative nitrogen

balance (40). Free cholesterol can be endocytosed by cells

and, through oxidation reactions with macrophages, release

inflammatory factors that contribute to atherosclerosis and

other cardiovascular diseases (41), HDL-C assists in excreting

cholesterol from the body in the form of bile, thus reducing free

cholesterol levels in the blood (42). Therefore, HDL-C reduces

the risk of aging primarily by controlling inflammatory responses.

Notably, triglycerides and waist circumference show a significant

linear dose-response relationship with PhenoAge. This partially

reflects that the potential harm of triglycerides and higher waist

circumference on biological aging might be underestimated when

defined by MetS criteria. Age itself induces changes in human

triglyceride metabolism, including elevated plasma triglyceride

levels, decreased postprandial plasma TG clearance, reduced

lipolysis in adipose tissue, and increased ectopic fat deposition (43).

Defining high TG with a fixed threshold may not be suitable for all

age groups, so stratifying triglyceride thresholds based on agemight

be reasonable. As people age, body fat redistributes, leading to an

increase in trunk fat (visceral fat) and a decrease in subcutaneous

fat (44). Waist circumference measurements cannot distinguish

between subcutaneous and visceral fat (45), which may lead to an

underestimation of waist circumference in determining health risks

associated with MetS and aging.

The α-Klotho protein is more than just an aging marker; it

plays a crucial role in overall health and longevity by exerting

various physiological effects on multiple tissues and organs.

Therefore, we aimed to corroborate our primary findings by

analyzing the relationship between MetS and its components with

α-Klotho protein. As a cofactor of FGFs, α-Klotho protein can

directly interact with FGFR1c, forming a ternary complex with

FGF23, α-Klotho, and FGFR1c (46). Knockout mice of the FGF23

gene exhibit hyperphosphatemia and high serum 1,25(OH)2D,

presenting a complex phenotype characterized by premature aging

features such as thymus and spleen atrophy (47). Studies have

also indicated that α-Klotho is associated with various metabolic

diseases, and high concentrations of α-Klotho can cut down

the risk of diabetes, kidney disease, and cardiovascular diseases

(48, 49). Our sensitivity analysis results further confirm the

association between MetS with biological aging and accelerated

aging. However, this study has the following methodological

limitations that warrant particular attention: the measurement

of serum Klotho concentrations was restricted to a subgroup of

participants from the 2007–2010 period, which may introduce

potential selection bias.

Subgroup analysis revealed that participants under 65 years

of age or with lower income levels showed a greater impact

of MetS status on their PhenoAge compared to older adults.

Adverse lifestyle habits among younger populations, such as poor

dietary choices (50) and lower educational attainment (51), might

make them more susceptible to the effects of MetS. Furthermore,

although age is merely a life cycle marker, it is inherently

associated with biological aging and comorbid conditions. Age
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may appear to contribute more to aging than MetS in statistical

analyses, but this might not fully capture age’s true impact.

Low-income individuals are disproportionately affected by MetS,

significantly influencing their physiological age, likely due to

limited healthcare access, psychological issues like anxiety and

depression, and higher rates of unhealthy habits such as smoking,

excessive alcohol consumption, and physical inactivity. While

our study provides valuable insights, it has limitations. First,

the cross-sectional design prevents establishing causality, limiting

observations to associations at a single time point. Second, datamay

be subject to information and recall bias. Additionally, unmeasured

confounders, such as disease duration, lifestyle factors, and other

variables, could influence the results.

5 Conclusion

Patients with MetS are associated with an increased risk of

biological aging, with components of MetS such as hypertension,

elevated blood glucose levels, and reduced HDL-C contributing

significantly to the aging process. Further research is imperative

to gain a more comprehensive understanding of the mechanisms

through whichMetS accelerates aging and to validate these findings

in longitudinal studies.
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