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Introduction: Childhood fatigue is influenced by various factors, including 
health status, socioeconomic conditions, lifestyle choices, and environmental 
factors like air pollution. In this study we aimed to explore the relationship 
between children’s fatigue and air pollution in the classrooms.
Methods: 547 children from eight primary schools were enrolled into the 
study. Air pollution was measured in the classrooms including concentration 
of particulate matter (PM1, PM2.5, PM10) and micro elemental analysis of dust. 
Fatigue was assessed by the Pediatric Quality of Life Inventory Multidimensional 
Fatigue Scale self-reports in scores ranging from 0 to 100. Higher scores 
indicated less fatigue. Multivariate linear regression was performed to explore 
factors independently associated with children’s fatigue.
Results: Mean age (± standard deviation [SD]) of respondents was 9.03 (±0.42) 
years; 44.9% were males. The mean (±SD) total fatigue score was 80.13 (±7.99). 
We found that higher levels of fatigue in children were linked to worse overall 
health, lower academic performance, and fewer extracurricular activities. 
Additionally, levels of particulate matter, barium, and vanadium in the natural 
dust aggregates were independently related to increased fatigue.
Conclusion: A cross-sectional type of our study only allows for the confirmation 
of statistical associations between fatigue levels and their possible determinants 
as specific air pollutants; further research is needed to explain and understand 
causal pathways better.
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1 Introduction

Air pollution is a relevant public and environmental health issue which has a significant impact 
on population health (1, 2). The World Health Organization (WHO) indicates indoor air pollution 
as the largest environmental health risk factor which is responsible for more than 3 million 
premature deaths worldwide (3). Although majority of these deaths occur in developing countries, 
indoor air quality remains an important health factor at a global level (4). Particulate matter is one 
of the most important pollutants, causing oxidation and inflammation in tissues which lead to 
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various chronic diseases and health conditions. Health effects of 
particulate matter depend not only on particle size, but also on 
composition. More than 15 percent of particulate matter consists of small 
amounts of various chemical elements (alkali, alkaline earth, transition 
and basic metals, semimetals, non-metals, halogens and lanthanides) (5). 
The composition of these elements can vary depending on the 
environment and accordingly affect health.

Air pollution affects the health of all people in all age groups, 
including an increase in perinatal disorders, infant mortality, chronic 
diseases such as respiratory, cardiovascular and mental disorders, type 
2 diabetes and other health conditions (6, 7). Infants and children are 
one of the most sensitive population groups to air pollution, since they 
get higher air intake per body weight and their organs are still 
developing (8). Higher children exposure to air pollution might 
be related to reduced lung function, increase of respiratory disorders 
including asthma, neurodevelopmental disorders, cancer, and higher 
risk of chronic diseases in adulthood (8, 9). Exposure to toxic heavy 
metals in polluted air impairs children’s cognition, learning, may 
worsen fatigue and emotional well-being, can lead to increased 
vulnerability to mental health disorders like depression (10–12). The 
mechanism includes heavy metal accumulation in the prefrontal 
cortex, leading to neuroinflammation and disrupted neurotransmitter 
balance, and impaired brain network functioning (12, 13). Studies 
have identified significant associations between blood levels of lead, 
zinc, arsenic, selenium, mercury, and manganese and mental health 
issues in children, including conduct problems, learning disabilities, 
anxiety, and impulsivity–hyperactivity (14), as well as between 
elevated concentrations of strontium and barium and an increased 
risk of depression in adults (15). Although the exact mechanisms of 
barium toxicity remain unclear, its interference with potassium 
channel function and membrane ion regulation suggests a potential 
pathway for neurophysiological disruption, raising concerns about its 
impact on the developing nervous system and mental health in 
children (16). Prenatal vanadium exposure is associated with impaired 
neurodevelopmental outcomes in children, including reduced mental 
development scores, increased risk of developmental delay, and higher 
risk of attention deficit hyperactivity disorder (17, 18). Despite 
growing concern, research on the neurochemical pathways linking 
heavy metal exposure such as barium or vanadium to mental health 
in children remains limited.

Indoor air quality at schools plays an important role (10, 19, 20). 
Children spend a significant part of their time at schools, mostly in 
the classrooms where air pollution might be higher compared to their 
homes (10, 20). While there are many pieces of evidence proving air 
pollution association with chronic diseases (6–9,), and our previous 
research revealed that higher concentrations of vanadium may 
be associated with more frequent acute respiratory infections, there is 
still lack of data about minor health effects of air pollution in relatively 
safe environments where most children spend significant part of their 
time. Health outcomes as effects on intellectual functioning and 
performance, mental processes and fatigue might be more difficult to 
measure and there are less studies focusing on it. Fatigue is a common 
sign among school age children which often remains underestimated 
(21). Fatigue in children can be  determined by multiple factors: 
general health condition, workload at school, lifestyle and 
psychological factors, socioeconomic and physical environment as 
well as the quality of the air they breathe (22–26). Previous studies 
have linked common air pollutants such as particulate matter and O3 

to increased fatigue (24). The study from the United States indicated 
higher levels of lethargy in children on days when they were exposed 
to higher levels of carbon monoxide and nitrogen dioxide (11). 
However, there is insufficient data on how the specific composition of 
dust, particularly the concentrations of individual elements and 
metals, in typical, everyday environments may affect children’s overall 
well-being and levels of fatigue.

Gaining a deeper understanding of main air pollutants 
physiological effects is crucial (2, 5), including the impact of every day 
exposure on well-being and cognitive function. Therefore, in this 
study aimed to describe associations between children fatigue and air 
pollution in the classrooms including elemental composition of 
the dust.

2 Materials and methods

A cross-sectional study was performed in 8 primary schools in 
Vilnius, Lithuania. Vilnius has an average annual temperature of 7.0°C 
with 640 mm of precipitation, and is predominantly influenced by 
southwest and west winds carrying air masses from central and eastern 
Europe (27). Study composed of two parts: measurement of air pollution 
in the classroom and fatigue assessment of children (Figure 1). Invitations 
to participate in the study analyzing air pollution were sent to 107 schools 
in Vilnius. From the 25 schools that consented to participate in the study, 
every other school was selected in random order. Due to absence of 
primary classes, one school was excluded from the sample. From 11 
school selected, 8 agreed to participate in the survey. Each school enrolled 
in the study was assigned a number from 1 to 8 to ensure data protection 
and confidentiality. Schools numbered 1, 4, 6, and 7 were located in the 
central area of the city, schools numbered 2, 3, 5, and 8 were located in the 
peripheral part. All schools were located no more than 250 meters from 
roads, highways, or railways. Data of the study were collected during the 
2021/2022 winter season. The study was approved by the Vilnius Regional 
Biomedical Research Ethics Committee (protocol code 2021/11-1,381-
862). Consents from schools’ administrations as well as assents from 
children to participate in the study were obtained.

2.1 Measurement of air pollution in schools

Air pollution was measured in the typical/standard classrooms of 
schools enrolled into the study. According to the applicable hygiene 
standards, classroom ventilation can be ensured by both natural and 
mechanical means. In all classrooms there must be a possibility for 
natural ventilation through openable windows. Classrooms that are 
not equipped with a mechanical ventilation system must be ventilated 
after each lesson (28). During winter measurements in classrooms 
were made once in each studied school. In the schools, indoor 
measurements were conducted under the conditions typically found 
in classes during lessons from 8 am to 2 pm in five - eight classrooms 
on different floors for 10 min each. Generally, classroom windows 
were opened during breaks. Measurements of fraction particulate 
matter [PM1 (0.3–1 μm), PM2.5 (0.3–2.5 μm), PM10 (0.3–10 μm)], 
volatile organic compounds (VOCs) and micro elemental analysis of 
dust were performed. To determine aerosol particle number 
concentration (PNC) and particle mass concentration (PMC) in 
primary schools, an optical particle sizer (OPS, TSI model 3,330, PNC 
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in size range of 0.3–10.0 μm) were used. The PMC was calculated by 
OPS software with the predefined particle density of 1 g/cm3. Before 
measurements, the instruments were checked for contamination by 
using high-efficiency particulate arrestance filters. In parallel with the 
OPS, a Dräger X-am 8,000 (Drägerwerk AG & Co. KGaA, Germany) 
gas detector was used to determine the concentration of VOCs.

Collecting aerosol samples for trace element analysis in classrooms 
is challenging, as obtaining a sufficient sample mass often requires a 
prolonged period. Despite the fact that measurements on filters have 
advantages (29)—we can measure the concentrations of heavy metals 
in real time, it has an important disadvantage—the sample weight is 
small, so as a rule, the measurement errors of trace elements are large. 
Consequently, we opted to use dust samples instead, which typically 
accumulate in areas that are not reached during routine classroom 
cleaning. Aerosol particles can coagulate and deposit in the form of 
dust; thus, it is most convenient to study the micro elemental 
composition of the aerosols by collecting dust samples where they 
naturally accumulate. Such places in the classrooms not usually 
subjected to wet cleaning are the surfaces of high cupboards and 
places behind the radiator heaters where aerosol particles are 
deposited due to thermophoretic forces (30). Dust samples 
representing aerosol pollution were collected from the places behind 
radiators in each classroom of the primary school. It was avoided to 
collect dust samples from the floor due to the impact of soil 
contamination brought into the classroom by shoes.

Vacuum cleaner with an analytical filter type FPP (Filtering 
Polymeric Fibrous Materials) was used for dust collection. Plastic 
boxes (60 mL) were filled with collected dust samples. A micro 
elemental analysis of aerosol pollution was carried out using a 
SPECTRO XEPOS (Spectro Analytical Instruments GmbH, Germany) 
energy dispersive X-ray fluorescence (ED-XRF) spectrometer at the 
Lithuanian Geological Survey. The concentrations of arsenic (As), 
barium (Ba), bromine (Br), chromium (Cr), copper (Cu), manganese 
(Mn), nickel (Ni), lead (Pb), rubidium (Rb), antimony (Sb), tin (Sn), 
strontium (Sr), vanadium (V), tungsten (W), zinc (Zn), and zirconium 
(Zr) were measured in dust samples. Our study did not include 

radioactive elements, focusing instead on heavy metals detectable by 
our equipment. We analyzed potential correlations between heavy 
metals and self-reported fatigue. Some heavy metals (Hg, Co, Cd) 
were below the detection limit and therefore not included in the study. 
Notably, research on the health effects of trace elements in children 
remains limited, and while Lithuania has indoor air limits for heavy 
metals, they are not specifically tailored to children. The measurement 
time of one sample was 600 s and the accuracy of elemental 
composition was less than 10%. A more detailed methodology can 
be found in our previous publication (9).

2.2 Fatigue assessment

Age-appropriate versions of PedsQL Multidimensional Fatigue 
Scale proxy reports were used to assess the fatigue experienced by the 
children (31). Fatigue scale consisted of the 18 questions divided into 
three equal subscales (General Fatigue, Sleep/Rest and Cognitive 
Fatigue). The General Fatigue subscale includes 6 questions about 
feelings of tiredness and weakness, not being able to do things 
you enjoy or spend time with friends, and difficulties finishing or 
starting chores. The Sleep/Rest subscale includes 6 questions about 
sleep duration, difficulty staying asleep through the night, feeling tired 
in the morning, frequency of naps, rest, and time spent in bed. The 
Cognitive Fatigue questions aim to determine the child’s difficulties to 
concentrate, remember what is said to him/her, what he/she hears or 
thinks, the speed of thinking, and the ability to remember several 
things at once (32). Children assessed their experienced fatigue in 
different areas in points from 0 (never) to 4 (almost always). Scores for 
each question were recalculated to a 100-point scale according to the 
authors’ instructions. Higher scores correspond to lower levels of 
fatigue. Mean scores for each subscale as well as the Total Fatigue score 
were calculated. Children’s fatigue was assessed no later than 3 days 
after the air pollution measurements were taken.

Children also were asked to complete a general questionnaire 
which was created by authors and provided descriptive characteristics 

FIGURE 1

Flowchart of study design.
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about study participants: gender, age, height and weight, health and 
living conditions and other details.

2.3 Statistical analysis

Descriptive statistics were performed. In univariate analysis mean 
fatigue score was compared between groups using independent t-test. A 
one-way ANOVA was conducted to compare fatigue scores in schools, 
additionally post-hoc Bonferroni test (33) was performed to identify which 
specific schools have significant differences between their mean fatigue 
scores. Spearman correlation was used to assess the associations between 
fatigue scores and air pollution or other possible risk factors. Linear 
regression models were created to identify which factors were 
independently associated with children’s fatigue. Two models were created 
for overall fatigue score as well as each separate scale. The first model 
included all variables significantly related to fatigue score and the second 
one included only air pollution indicators.

Additionally, composition of air quality in schools with the 
highest and the lowest mean fatigue scores was analyzed. IBM 
SPSS statistics for Windows, version 28 was used for statistical 
analysis. A p-value of <0.05 indicated statistically significant  
difference.

3 Results

Eight primary schools located in different areas of Vilnius city were 
enrolled into the study. Air pollution including elemental composition 
of dust was measured in the classrooms. The subjective fatigue level of 
547 children who study in these classrooms was assessed.

Primary school students aged 8 to 10 years were included in the 
survey. The mean age (±SD) of respondents was 9.03 (±0.42) years. 
More girls (55.1%) than boys participated in this study. Most children 
assessed their general health as good or very good. Over 90% of 
children participated in extracurricular activities, while just over 
one-third assessed their academic performance as good or excellent. 
Further characteristics of study participants are presented in Table 1.

3.1 Fatigue level of children

Children were asked to complete an age-appropriate version of the 
PedsQL Multidimensional Fatigue Scale and self-assess their fatigue. In 
our study we found that children experience different signs of fatigue: 
they often feel tired, sleep and rest a lot, have difficulties thinking 
quickly, spend a lot of time in bed. The mean total fatigue score was 
80.13 (±7.99). The highest score was for General Fatigue scale [81.15 

TABLE 1  Characteristics of the study participants.

Parameters Total (N = 547)

% Males (n) 44.9 (244)

Mean age (±SD) 9.03 (±0.42)

Mean body mass index (BMI) (±SD) 16.89 (±3.02)

Mean BMI–z score (±SD) −0.0013 (±1.00)

Child’s general health % very good (n) 37 (201)

% good (n) 43.6 (237)

% moderate (n) 16.2 (88)

% satisfactory, (very) poor (n) 3.1 (17)

Number of siblings % none (n) 13.8 (75)

% one (n) 58.9 (321)

% two (n) 21 (115)

% three or more (n) 6.2 (34)

Learning results at school % very good and good (n) 38.4 (209)

% moderate (n) 60.1 (327)

% poor and very poor (n) 1.5 (8)

Number of afterschool activities % none (n) 9.4 (51)

% one (n) 45.3 (247)

% two or more (n) 45.4 (247)

Housing type % house (n) 30.4 (164)

% cottage (n) 8 (43)

% apartment (n) 61.6 (332)

% live in bedroom alone, without siblings (n) 48 (262)

Mean number of hours spent outdoors in autumn (±SD) 2.13 (±1.03)

Mean number of hours spent outdoors in winter (±SD) 2.19 (±1.03)

Mean number of hours spent outdoors in spring (±SD) 2.70 (±1.10)

Mean number of hours spent outdoors in summer (±SD) 3.65 (±0.91)
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(±9.99)] and lower scores were for Sleep/Rest [79.71 (±9.29)] and 
Cognitive Fatigue [79.51 (±10.39)] scales. There was no statistically 
significant difference between fatigue level in boys and girls. What is 
more, fatigue did not correlate with the age and BMI of respondents.

The mean overall fatigue scores differed in schools and varied 
from 77.86 (±7.05) to 81.89 (±7.35). Post-hoc comparison using 
Bonferroni test indicated that fatigue scores were significantly lower 
in the 1st school compared to the 6th (Table 2).

3.2 Quality of the air in the classrooms

To assess the quality of the air in the classroom following 
indicators were measured: fractions particulate matter, VOCs, 

elemental composition of dusts (As, Ba, Br, Cr, Cu, Mn, Ni, Pb, Rb, Sb, 
Sn, Sr., V, W, Zn, Zr). Table 3 presents main air quality indicators in 8 
primary schools.

Additionally, composition of air pollutants was compared in 
schools where fatigue scores were the highest (school no 6) and the 
lowest (school no 1). Table 3 includes arrows next to the pollutant 
concentration values for schools 1 and 6, indicating the quartile in 
which each value falls relative to the pollution levels determined for 
all schools participating in the study. These arrows help visualize how 
each measurement compares to the distribution of pollutant levels 
across all schools included in the analysis, providing a clearer 
understanding of whether a particular concentration falls within the 
lower, middle, or upper range of observed values. Concentrations of 
particulate matter in school no 1 were higher than the total median of 

TABLE 2  The mean (±SD) fatigue scores of children in 8 schools.

School number (N) 1 (106) 2 (85) 3 (62) 4 (49) 5 (41) 6 (61) 7 (79) 8 (64)

Total Fatigue score* 77.86 (±7.05)* 81.18 (±8.29) 79.89 (±9.04) 81.48 (±8.03) 79.60 (±7.25) 81.89 (±7.35)* 80.39 (±8.90) 79.99 (±7.24)

General Fatigue score* 78.41 (±8.92)* 82.61 (±10.22) 80.74 (±11.31) 82.53 (±10.62) 79.94 (±8.19) 84.09 (±10.41)* 81.75 (±10.56) 80.35 (±8.57)

Sleep/Rest score* 77.52 (±9.23)* 80.79 (±9.64) 80.18 (±9.07) 82.95 (±8.37)* 79.39 (±9.65) 81.28 (±8.11) 77.69 (±9.94)* 80.14 (±8.87)

Cognitive Fatigue score 77.65 (±9.26) 80.19 (±10.62) 78.76 (±10.87) 78.74 (±10.90) 79.57 (±10.19) 80.25 (±10.64) 81.75 (±11.23) 79.45 (±9.70)

*p < 0.05.

TABLE 3  Air quality indicators measured in schools.

School number 1* 2 3 4 5 6* 7 8

PM1 μg/m3, mean 1.23 ↑↑ 1.09 1.03 0.61 1.20 0.62 ↓↓ 0.60 1.96

PM1 particles/m3, mean 18 ↑↑ 17 17 9 19 9 ↓↓ 11 50

PM2.5 μg/m3, mean 5.21 ↑↑ 4.40 3.93 3.80 5.21 3.51 ↓↓ 2.52 4.30

PM2.5 particles/m3, mean 19 ↑↑ 18 18 10 20 10 ↓↓ 12 51

PM10 μg/m3, mean 43.85 ↑↑ 39.13 24.84 36.70 39.12 36.19 ↓ 26.10 29.02

PM10 particles/m3, mean 20 ↑↑ 18 19 10 21 10 ↓↓ 12 51

VOCs, ppm 0.96 ↑↑ 1.02 0.85 0.66 0.70 0.70 ↓↓ 0.68 0.69

As, ppm 6.29 ↓ 6.23 5.79 5.29 28.17 7.94 ↑↑ 20.93 4.33

Ba, ppm 1,532 ↑↑ 890 480 740 3,301 654 ↓↓ 1,653 272

Br, ppm 14.93 ↓ 17.36 51.55 10.15 20.14 9.64 ↓↓ 19.07 49.04

Cr, ppm 96.21 ↓↓ 89 147 97.1 64 127.63 ↑ 180 168

Cu, ppm 134.12 ↑ 108.63 138.79 69.12 436.0 42.63 ↓↓ 77.83 134.60

Mn, ppm 72 ↓↓ 56 319 91 152 87 ↓ 159 240

Ni, ppm 8.4 ↓ 11.47 61.06 6.41 14.11 5.74 ↓↓ 20.46 26.88

Pb, ppm 17 ↓↓ 24 114 19 132 34 ↓ 504 185

Rb, ppm 11.81 ↓ 11.69 28.94 12.41 20.64 7.52 ↓↓ 18.52 23.53

Sb, ppm 7.52 ↓ 11.48 10.07 5.63 9.48 4.83 ↓↓ 13.0 10.74

Sn, ppm 6.11 ↓ 7.45 6.17 4.84 6.24 5.71 ↓↓ 9.42 9.42

Sr, ppm 82.69 ↓ 63.0 135.0 77.15 170.0 52.70 ↓↓ 136.0 110.08

V, ppm 41.63 ↑↑ 12.69 20.06 38.42 19.07 29.53 ↑ 17.18 15.49

W, ppm 11.85 ↓ 11.58 21.39 8.56 19.48 7.91 ↓↓ 14.69 34.61

Zn, ppm 319 ↓↓ 510 1,251 424 17,865 384 ↓ 1755 1887

Zr, ppm 27.42 ↓↓ 32.0 122.0 30.42 104.00 31.80 ↓ 93.55 120.0

↓↓ 1st quartile; ↓ 2nd quartile; ↑ 3rd quartile; ↑↑ 4th quartile. *Arrows next to the pollutant values at schools 1 and 6 show the relative position (quartile) of each concentration within the 
overall distribution across all schools.
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this study measurements as well as concentrations of VOCs, Ba, Cu 
and V. In school no 6 only As, Cr and V were above median.

3.3 Association of increased fatigue level 
with air pollution and other possible 
determinants

Possible determinants of increased fatigue level in children were 
analyzed. In univariate analysis fatigue correlated with the general 
child’s health condition: r = 0.338 for Total Fatigue score; r = 0.329 for 
General Fatigue scale; r = 0.190 for Sleep/Rest scale and r = 0.303 for 
Cognitive Fatigue scale (p < 0.001). The number of siblings did not 
correlate with the children’s lethargy. Housing type as well as having a 
separate bedroom were not related to fatigue scores. Children with 
lower fatigue scores reported worse results at school:

	•	 Total Fatigue scale: r = 0.174; p < 0.001.
	•	 General Fatigue scale: r = 0.166; p < 0.001.
	•	 Sleep/Rest scale: r = 0.134; p = 0.002.
	•	 Cognitive Fatigue scale: r = 0.127; p = 0.003.

Only Cognitive Fatigue score correlated with the number of 
afterschool activities (r = 0.119; p = 0.005): children who attended 

more extracurricular activities felt less fatigue. The total time spent 
outdoors significantly correlated with Sleep/Rest scale (r = 0.086; 
p = 0.045) and Cognitive Fatigue scale (r = 0.114; p = 0.008).

As shown in Table 4, overall fatigue scores were negatively correlated 
with concentrations of PM1, PM2.5, PM10, Cu and V: higher pollutant 
concentrations were associated with higher fatigue levels. General Fatigue 
Scale scores were lower in schools where Cu and W amounts were higher; 
Sleep/Rest Scale scores correlated with As, Ba and Sr. Cognitive fatigue 
was higher in the classrooms with higher amounts of Pb and V.

In order to find out the most important factors independently 
associated with increased level of fatigue in children linear regression 
models were created. Variables which significantly correlated in 
univariate analysis model were included into regression.

As it can be seen from the Table 5, the most important fatigue 
determinant was subjective health assessment. An unstandardized B 
coefficient indicates that for each one-category improvement in health 
assessment [e.g., moving from “satisfactory/(very) poor” to “moderate”], 
the fatigue score increases by an average of 2.85 points, highlighting a 
positive association between better health assessments and higher 
fatigue scores (lower fatigue level). Overall fatigue scores were also 
higher in children with better grades at school. None of air quality 
variables were independently related to fatigue level in the first linear 
regression model, indicating their lower impact on fatigue level. The 
second model was created only with air quality indicators and showed 

TABLE 4  Correlations between air pollutants and PedsQL Fatigue scores.

Air pollutant Total fatigue score General fatigue scale Sleep/rest scale Cognitive fatigue scale

PM1 μg/m3, mean −0,110** −0,133** −0,049 −0,078

PM1 particles/m3, mean −0,123** −0,146** −0,084 −0,058

PM2.5 μg/m3, mean −0,126** −0,132** −0,061 −0,087*

PM2.5 particles/m3, mean −0,123** −0,146** −0,084 −0,058

PM10 μg/m3, mean −0,078 −0,074 −0,036 −0,060

PM10 particles/m3, mean −0,127** −0,150** −0,086* −0,063

VOCs, ppm −0,060 −0,047 −0,040 −0,038

As, ppm −0,017 0,011 −0,095* 0,051

Ba, ppm −0,059 −0,039 −0,110** 0,023

Br, ppm −0,030 −0,045 −0,038 0,012

Cr, ppm 0,038 0,032 −0,016 0,047

Cu, ppm −0,111* −0,127** −0,066 −0,062

Mn, ppm 0,009 −0,006 0,001 0,011

Ni, ppm −0,023 −0,038 −0,042 0,021

Pb, ppm 0,064 0,055 −0,005 −0,089*

Rb, ppm −0,044 −0,065 −0,028 −0,019

Sb, ppm 0,016 0,013 −0,050 0,075

Sn, ppm 0,005 −0,007 −0,057 0,071

Sr, ppm −0,069 −0,076 −0,098* 0,009

V, ppm −0,088* −0,076 −0,048 −0,086*

W, ppm −0,075 −0,095* −0,076 −0,013

Zn, ppm 0,042 0,023 0,014 0,061

Zr, ppm 0,043 0,029 0,024 0,045

*p < 0.05; **p < 0.001.
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that higher concentration of PM1 and vanadium were independently 
associated with lower fatigue score. Some additional correlations were 
found analyzing separate PedsQL Multidimensional Fatigue scales: 
higher barium concentrations were related to lower Sleep/Rest scale 
scores. Cognitive Fatigue scores were higher in children who attended 
more after-school activities and lower in children who were exposed to 
higher concentrations of PM2.5.

4 Discussion

Children spend significant part of their time in schools, mostly 
in their classrooms (10). Therefore, the quality of the air in the 
classrooms plays an important role in children’s cognitive 
performance, learning productivity and can be  the reason for 
increased fatigue level (10, 11, 34). What is more, air pollution is a 

TABLE 5  Linear regression models describing factors independently associated with PedsQL fatigue scores.

Variables Unstandardized coefficient Standardized coefficients

B Std. error Beta T p-value

Total fatigue score, model 1

Health 2.854 0.422 0.286 6.760 <0.001

Results at school 1.357 0.658 0.087 2.061 0.040

Constant 67.892 1.791 37.911 <0.001

N = 540; R2 = 0.103; Adjusted R2 = 0.099; F = 30.787; p < 0.001

Total fatigue score, model 2

V, ppm −0.066 0.031 −0.091 −2.106 0.036

PM1 μg/m3, mean −1.751 0.832 −0.091 −2.106 0.036

Constant 83.613 1.316 63.528 <0.001

N = 546; R2 = 0.014; Adjusted R2 = 0.010; F = 3.770; p = 0.024

General Fatigue scale score, model 1

Health 3.967 0.512 0.316 −7.750 <0.001

Constant 68.629 1.661 41.321 <0.001

N = 542; R2 = 0.100 Adjusted R2 = 0.098; F = 60.064; p < 0.001

General Fatigue scale score, model 2

PM1 μg/m3, mean −2.434 1.026 −0.101 −2.373 0.018

Constant 83.719 1.162 72.049 <0.001

N = 546; R2 = 0.010; Adjusted R2 = 0.008; F = 5.633; p = 0.018

Sleep/Rest scale score, model 1

Health 1.399 0.512 0.120 2.729 0.007

Results at school 1.690 0.797 0.093 2.119 0.035

Ba, ppm −0.001 0.001 −0.083 −1.960 0.050

Constant 72.428 2.271 31.895 <0.001

N = 540; R2 = 0.037; Adjusted R2 = 0.032; F = 6.953; p < 0.001

Sleep/Rest scale score, model 2

Ba, ppm −0.001 0.001 −0.096 −2.244 0.025

Constant 81.016 0.705 114.982 <0.001

N = 546; R2 = 0.009; Adjusted R2 = 0.007; F = 5.035; p = 0.025

Cognitive Fatigue score, model 1

Health 3.590 0.531 0.278 6.755 <0.001

Number of after-

school activities

1.262 0.418 0.124 3.017 0.003

Constant 66.107 1.855 35.635 <0.001

N = 540; R2 = 0.092; Adjusted R2 = 0.088; F = 27.158; p < 0.001

Cognitive Fatigue score, model 2

PM2.5 μg/m3, mean −1.170 0.508 −0.098 −2.304 0.022

Constant 84.337 2.143 39.353 <0.001

N = 546; R2 = 0.010; Adjusted R2 = 0.008; F = 5.308; p = 0.022
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relevant risk factor for respiratory and other chronic conditions (8, 
9, 35, 36). In our study we analyzed association of children self-
reported fatigue and air pollutants in the classrooms. Fatigue is a 
complex phenomenon influenced by various factors (37), including 
indoor air quality (10, 11, 38). Our study confirms relationship 
between indoor air quality and fatigue in children. We  revealed 
significant correlations between fatigue level and different air 
pollutants in school classrooms. Fatigue scores were lower which 
means higher lethargy in children who were exposed to higher 
concentrations of particulate matter, copper and vanadium. General 
Fatigue scale additionally correlated with tungsten and Cognitive 
Fatigue scale with lead. Sleep/Rest scale scores were lower, meaning 
higher fatigue in schools where arsenic, barium and strontium 
concentrations were higher. Although correlations were significant, 
but they were relatively weak which might be explained by presents 
of other confounding determinants of fatigue and small number of 
schools enrolled into the analysis.

Airborne particulate matter is one of the main air pollutants 
causing adverse health effects (10, 19, 39). It is well known that 
particulate matter causes oxidative stress and inflammation 
affecting key target—the mitochondria in lung tissue, brain and 
other organs (39, 40). This may result in different short and long-
term outcomes: from reduced productivity and increased fatigue to 
mental and physical conditions such as depression, respiratory, 
cardiovascular and other chronic diseases (12–15, 38–40). It is also 
known, that the smaller the particles are, the more damaging effect 
they cause as they can penetrate more deeply and reach more 
mitochondria (39). This can also be seen in our study where higher 
fatigue level was independently associated with higher 
concentrations of PM1 and PM2.5, but not PM10. What is more, 
additional adverse mental health effects can be seen due to heavy 
metal deposition in prefrontal cortex (13, 41). In this study higher 
concentrations of vanadium and barium were independently 
related to higher fatigue level in children, which aligns with 
evidences that excessive intake of these elements can cause severe 
health issues, including cardiovascular, respiratory, digestive, and 
neurological dysfunctions, with barium poisoning causing 
hypokalemia and muscle weakness and vanadium exposure linked 
to kidney toxicity, neurotoxicity, and olfactory dysfunction (16, 
42–44). In previous study we  also found a linear relationship 
between respiratory morbidity in children and the concentration of 
vanadium in dust aggregates. This suggests that any concentration 
of vanadium inhaled by children can increase respiratory morbidity 
caused by viruses and bacteria (9). Based on this we might assume 
that higher levels of air pollutants can cause other health outcomes 
such as decrease in cognitive performance and increased level 
of fatigue.

The quality of the air in the classroom is determined by both, 
indoor and outdoor air pollution. The primary source of indoor air 
pollution in schools was identified as canteens (45). Outdoor air 
pollution is no less significant, especially in our study were schools 
enrolled represent urban living environment (46). Since Vilnius does 
not have significant industrial pollution sources, the primary 
contributors to air pollution are heating plants and traffic (27). 
Specific levels of outdoor air pollution near the studied schools may 
have been affected by the geographical characteristics of the area, as 
Vilnius is located in a highly hilly area near two rivers (47). Since the 
data for the study were collected during the winter, this may have 

resulted in higher levels of pollutant concentrations observed due to 
both increased outdoor emissions during heating season (27) and 
reduced ventilation caused by cold weather. The main sources of 
particulate matter in Europe are vehicle emissions, industrial and 
agricultural activities, residential heating and natural sources as 
crustal matter including dust from soils and wildfires (48, 49). 
Specifically, vanadium mostly comes from anthropogenic activities: 
the combustion of fossil fuels and emissions from vehicles and 
industrial production (9, 50). Barium comes from natural sources 
like soil erosion, which releases it into the air. It is also used in 
various industries, including oil and gas, medicine, and the 
production of paints, glass, rubber, ceramics, pesticides, and fuel 
additives (51).

An appropriate school ventilation system is essential for 
reducing both indoor and outdoor air pollution, as well as 
minimizing the risk of infection transmission (52, 53). Ventilation 
and strategies for reducing dust exposure as well as monitoring of 
indoor air quality would be key measures to improve quality of the 
air in the classroom, lessen its health impact and decrease fatigue 
in children accordingly (9, 13, 52). School administration, 
municipalities and public health specialist could be involved in 
these mitigation strategies. Parents or caregivers, as well as 
teachers, should be  informed about possible air pollution at 
schools and its health effects on children (13).

Multivariate linear regression showed that only small 
proportion of variance in children fatigue can be explained by 
exposure to air pollutants at school. This can be explained by the 
fact that the study was conducted in regular schools where 
children spend their time and the quality of the environment is 
monitored and controlled. What is more, children fatigue is much 
more influenced by general health condition, social, environmental 
and lifestyle factors. Mean total fatigue score in this study 
exceeded 80 scores and was similar to scores of healthy 
populations in previous studies (54–56). Fatigue scores were 
higher compared to children with chronic conditions: 
neurofibromatosis (57), asthma (58), cancer, type 1 diabetes (56), 
and other diseases (22, 54, 55, 59). Less fatigued children showed 
better results at school and attended more after-school activities. 
Socio-economic conditions such as household income and 
deprivation, parental education level, housing quality, and access 
to healthcare can significantly affect a child’s health, stress and 
fatigue levels. In previous study we  reported that lower 
socioeconomic status was related to higher fatigue among children 
with asthma (58). Similar results were found among children and 
adolescent’s females with physical disabilities (60). Despite this 
current understanding of how socio-demographic factors like 
socio-economic status and deprivation affect outcomes remains 
limited (57). In this study, we did not evaluate the respondents’ 
income, instead, we  focused on housing type and whether the 
children had a separate room as indicators of housing and 
environmental quality. However, these factors were not found to 
be  related to child fatigue. Family composition—another 
important determinant of fatigue in children. Children from 
single-parent families indicates higher levels of fatigue (58, 59). In 
this study we assessed only the number of siblings, but it was not 
related to fatigue scores. While we did not observe differences 
between boys and girls in our study, previous studies have 
reported gender differences, but the findings have been 
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inconsistent (22, 59, 60). Although Smout with colleagues 
reported fatigue associations with BMI (61), in our study 
population this correlation was not found.

This study has both strengths and limitations. One of the 
advantages of our study is that micro-elemental analysis of air pollution 
in the classrooms was performed. Many studies focus on air pollution 
in terms of the concentration of particulate matter, O3, CO, CO2, NO2, 
VOCs as the main air pollutants (6, 10, 11, 19, 24, 62), but far fewer 
studies focus on the impact of individual elements on health and well-
being. What is more, other studies analyzing dust composition (63, 64) 
collected dust from floors and windowsills and did not target to analyze 
the composition of the aerosol which is our study exclusivity. Another 
strength of our study is that validated methodology, the PedsQL 
Multidimensional Fatigue scale was used to assess fatigue in children. 
This instrument allows to compare results of our study with other 
studies, groups of population. Finally, there many studies analyzing 
fatigue in children with different chronic conditions (22, 54–61), but 
less studies focus on general population.

Our study has several limitations. First, a cross sectional type of the 
study allows identification of statistical associations, but it does not 
establish causality. The second limitation is that only subjective fatigue 
assessment was performed, and study would benefit from additional 
objective clinical and functional methods for fatigue measurement. The 
third limitation concerns the uncertainty regarding the duration of dust 
accumulation in each school. One of the weaknesses is that only 8 
schools were enrolled in the study. Higher number of schools would 
be  beneficial for statistical analysis and more associations could 
be found, especially in multivariate analysis. What is more, only self-
reports were used for fatigue assessment and some studies indicate that 
inclusion of both, self- and proxy- reports could give additional insights 
(22, 58). Finally, only subjective health assessment was involved in the 
study. Inclusion of medical data with doctor-confirmed diagnosis 
would add value to the study. On the other hand, self-reported general 
health condition is a good indicator of mental health which is closely 
related to children’s fatigue level (65, 66). Therefore, further research 
analyzing the links between children’s fatigue and other factors 
including psychological well-being and lifestyle factors are being 
planned by our research group.

5 Conclusion

Fatigue in children is a complex phenomenon determined by 
many factors: health condition, socio-economic status, lifestyle 
factors, as well as environmental conditions, including air pollution. 
In this study we  found that increased children’s fatigue was 
independently related to poorer general health conditions, lower 
results at school, and fewer after-class activities. Concentrations of 
particulate matter, barium and vanadium in the natural dust 
aggregates independently correlated with fatigue scores. These 
findings highlight the need for concrete public health actions, 
including regular and appropriate ventilation, standardized indoor 
air quality monitoring, and integration of air quality into school 
health policies. These measures, coordinated through collaboration 
among health authorities, educators, and caregivers, are essential to 
ensure a healthier, safer learning environment, reduce fatigue, and 
promote overall well-being in children.
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