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Background and aim: Accelerated aging poses significant physical, psychological, 
and social health challenge to Chinese. Successful aging (SA) serves as a 
proactive approach to population aging, reflecting individual health status and 
quality of life, thereby enhancing the capacity for healthy living among the older 
adults. However, the complexity of SA measurement methods often hinders its 
application in community healthcare. Currently, there is a dearth of prediction 
model tailored for the older adults in community. This study aimed to develop and 
validate a prediction model for SA in Chinese community older adults.
Methods: Data were derived from the fifth wave of the China Health and 
Retirement Longitudinal Study (CHARLS), targeting community-dwelling older 
adults individuals over 60. Employing health ecology theory, we comprehensively 
utilized variables from community health records. The Shapley Additive 
exPlanation (SHAP) method identified key variables contributing to outcome 
prediction. An extreme gradient boosting machine learning method was used to 
construct the prediction model for SA in Chinese community older adults. The 
final model was obtained through hyperparameter adjustment via 8-fold cross-
validation. The model’s performance was evaluated using area under the receiver 
operating characteristic curves (AUROC), discriminant slope, calibration curves, 
decision curves, SHAP-based risk factor analysis, and comparison with other 
methods to assess differentiation, calibration, interpretability, and clinical utility.
Results: The model incorporated variables available from community health 
records. SHAP indicated a robust importance ranking of variable features, with 
the most frequent top 16 features aligning with clinical practice, ensuring good 
interpretability and extensibility of the resulting prediction model. We used six 
machine learning methods to construct the prediction model. Among them, 
the extreme gradient boosting model demonstrated an AUROC of 0.78, a 
discrimination slope of 0.140, and a Brier score of 0.124. The proposed model is 
superior to other methods, and has outstanding discriminability and consistency. 
Decision curve analysis (DCA) indicated a higher clinical utility compared to 
other models.
Conclusion: We proposed a prediction model for SA in Chinese community 
older adults based on health ecology theory and machine learning, which 
demonstrate excellent prediction performance, interpretability, and extensibility. 
The prediction model can be  applied to community older population health 
management, promoting SA within community older adults.
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1 Introduction

In the 21st century, the global demographic landscape is 
witnessing a pivotal transformation, particularly in the form of 
accelerated population aging. China, with the world’s largest older 
population, is facing this challenge. By the end of 2022, the number of 
older individuals aged 60 and above in China soared to 280,04 million, 
constituting 19.8% of the total population, a figure that not only 
surpasses previous records but also indicates an escalating trend (1, 
2). This demographic shift exerts great pressure on the nation’s social 
security and healthcare infrastructures (3). It is important to note that 
community-based primary healthcare providers, as the sentinels of 
public health, play a crucial role in swiftly assessing the physical and 
mental well-being of the older population (4, 5).

The concept of Successful Aging (SA) is initially introduced by 
Havighurst in 1961 and later refined by Rowe and Kahn in 1987. It 
serves as a pivotal metric for evaluating the aging status of 
individuals and populations (6, 7). SA incorporates low levels of 
disease and disability, preserved cognitive and physical functionality, 
and active social engagement (8). As the older population grows, the 
ability to maintain good health and social participation becomes 
increasingly significant. Assessing the prevalence of SA within 
community-dwelling older populations is essential for proactively 
addressing the aging demography (9). The factors influencing SA 
are complex, as highlighted by Bronfenbrenner’s health ecology 
theory, which underscores the intricate interplay of multiple 
environmental levels in shaping human health (10). This theory 
posits that the health status of community-dwelling older adults is 
not an isolated phenomenon but is embedded within a health 
ecosystem that spans from micro to macro levels. At present, the 
World Health Organization’s Active Ageing model emphasizes 
health, participation and safety as the pillars of aging, which is 
consistent with our multi-dimensional approach to successful aging 
(physical, psychological, cognitive and social dimensions) (11, 12). 
Furthermore, Baltes’ SOC model, which focuses on adaptive 
strategies for aging, can clarify from another perspective how our 
research can predict and intervene in successful aging through 
measurable health and lifestyle factors, complementing this 
model (13).

Despite the burgeoning integration of SA and machine learning 
to evaluate the older population, many studies are constrained by 
ambiguous theoretical frameworks and the constraints of sample 
data source (14–16). There are limitations in the development of 
SA models with broad applicability, high differentiation, and 
significant clinical benefits. This study aims to leverage large, 
representative cross-sectional data from China to explore predictive 
factors of SA suitable for the older population in Chinese 
communities. By constructing a SA prediction model with strong 
interpretability, ease of application, and potential for widespread 
promotion in community settings, we aim to provide a convenient 
instrument for community assessment of the older adults. This 
instrument will facilitate targeted intervention measures and 
enhance the health and well-being of the older population 
in communities.

2 Materials and methods

2.1 Data sources and sample

A cross-sectional study design was employed in our research, 
utilizing data sourced from the fifth wave of the China 
Longitudinal Study of Health and Retirement (CHARLS) which is 
conducted in 2020. The CHARLS constitutes a nationally 
representative longitudinal investigation into aging, which has 
followed participants biennially since its baseline survey in 2011 
(17). This comprehensive survey has collected an extensive array 
of detailed information pertaining to the health status, familial 
structures, health behaviors, income, expenditures, and policy on 
older adults. The CHARLS surveys (including the 2020 wave) have 
been approved by the Peking University Institutional Review 
Board for Biomedical Research, with ethics approval number 
IRB00001052-11015. The specific details can be found in previous 
studies (18).

In our study, we followed to the definitions established by the 
United Nations and the World Health Organization (WHO), defined 
individuals aged 60 years and above as older adults (19, 20). 
Additionally, we utilized data from the CHARLS questionnaire, which 
includes inquiries about the respondents’ residential status to ascertain 
whether they reside within the community.

The original data from CHARLS2020 included a total of 19,395 
respondents. Consequently, we excluded participants who were below 
the age of 60, residing in the community, as well as datasets that were 
deemed incomplete, characterized by more than 70% missing data for 
critical variables.

The final set of variables in our analysis was derived through 
imputation using the “MICE” package within R Studio 4.1.2. 
We  employed the “missForest” algorithm, a multivariate iterative 
random forest method, which was iterated five times with 100 
estimators per iteration. This approach was selected to generate 
imputed datasets that minimize variance relative to the original 
dataset, ensuring the robustness and reliability of our 
subsequent analyses.

After the data cleaning process, we retained 4,324 eligible samples 
for inclusion in the data analysis. Among these, 614 individuals 
(14.20%) were identified as successful aging.

2.2 Outcome variable: successful aging

Aging is a multifaceted process that affects physical, mental, and 
social functioning. Rowe and Kahn have proposed a conceptual model 
of aging that describes aging as “normal” and “successful” (6, 8). Based 
on recent studies, specific measurements of the 5 criteria including 
“No major disease,” “No disability,” “No depression,” “High cognitive 
function” and “Active social engagement” (21–23). The specific details 
of potential predictors in this research are presented in Table 1. The 
outcome variable in this study was binary, which means that 
irrespective of whether community older population is successful 
aging or normal aging.
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2.3 Predictors and feature selection

Although the quantity of features plays a crucial role in model 
training, it is important to recognize that augmenting the number of 
features also escalates the level of difficulty and associated costs. 
Feature selection can be  used to reduce the number of eliminate 
irrelevant or redundant features, thereby simplifying the final model 
and enhancing its efficiency (24).

Based on the health ecology theory and utilizing the health 
records of community residents that are employed by primary health 
care providers in China, we conducted a systematic review of pertinent 
studies to identify potential factors influencing successful aging in 
Figure 1 (25–28).

Subsequently, we performed feature extraction and utilized the 
Shapley Additive explanation SHAP to compute the top 30 most 
significant features for the model based on their experimental 
result. To determine the feature factors included in the model 
training, we observed the model’s AUC performance and employed 
a reclassification method while considering various feature sets. 
After consulting with experts specializing in primary care, nursing, 
and gerontology, we finally selected 16 predictors that are indicative 
of potential SA within Chinese communities. The potential 
predictors of SA include five dimensions as outlined by the health 
ecology theory: personal characteristics, behavior and lifestyle, 
interpersonal network, living and working conditions, and policy 

environment. The specific details of potential predictors are 
presented in Table 2.

2.4 Model development

The research endeavor consists of a three-phased approach to 
model development: (1) construction of machine learning model, (2) 
model evaluation, and (3) model interpretation. The technical 
roadmap outlining this research methodology is depicted in Figure 2.

Prior to model construction, 67% of the samples were designated 
for the training set. The remaining 33% were allocated to the 
validation set.

In this study, we  employed the scikit-learn Python library in 
conjunction with the XGBoost package for model construction and 
hyperparameter fine-tuning. To ensure consistent and comparable 
data, we applied a linear function normalization technique, specifically 
mapping the original data to the range [0,1]. This approach achieved 
proportional scaling, effectively mitigating any potential dimensional 
biases among the data features.

We applied six machine learning methods comprise (1) Logistic 
Regression (LR), (2) Random Forest (RF), (3) Light Gradient Boosting 
Machine (LGBM), (4) Gradient Boosting Decision Tree (GBDT), (5) 
K-Nearest Neighbors (KNN), (6) Extreme Gradient Boosting 
(XGBoost). These algorithms were compared to assess their 

TABLE 1  Definition and measurement of successful aging.

Successful aging 
models*

Define Measures

No major disease No major chronic diseases No chronic diseases: cancer, chronic lung disease, heart disease and stroke.

No disability No restrictions in ADL No difficulty in washing, dressing, toileting, carrying, feeding, controlling urination and defecation.

No depression No depressive symptoms CESD-10 score <10.

High cognitive function
Use TICS to get a median 

or higher score

A set of cognitive tests with scores ranging from 0 to 30. This includes immediate and delayed recall of 10 

words, subtracting 7 words from 100 in a row (up to 5 times), drawing, answering the day of the week, 

year, month, day, and season.

Active social engagement
Get involved in social 

activities

Participate in “volunteer or charity work,” or “provide assistance to family, friends, or neighbors,” or 

“participate in sports, social, or other types of clubs,” or “interact with friends,” or “participate in 

community related organizations,” at least once a month.

*Rowe and Kahn’s model of successful aging. ADL, Activity of Daily Living; CESD-10, The Center for Epidemiological Studies Depression-10; TICS, The Telephone Interview for Cognitive 
Status.

FIGURE 1

Model of health ecology theory.
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TABLE 2  Predictive factors about SA.

Dimensions* Variable name Variable type Concept and assignment

Personal characteristics Age Continuous variable Age was calculated by time of interview and birth time.

Gender Categorical variable Male = 1; female = 2.

Self-rated health Categorical variable Good = 1; general = 2; bad = 3.

Life satisfaction Categorical variable Very satisfied = 1; satisfied = 2; very dissatisfied = 3.

Hypertension Categorical variable Yes = 1; no = 0.

Dyslipidemia Categorical variable Yes = 1; no = 0. (dyslipidemia including high or low lipids)

Diabetes or elevated blood sugar Categorical variable Yes = 1; no = 0. (diabetes or elevated blood sugar including impaired glucose tolerance and elevated fasting blood sugar)

Malignant tumours Categorical variable Yes = 1; no = 0. (malignant tumours such as cancer excluding mild skin cancer)

Chronic lung diseases Categorical variable Yes = 1; no = 0. (chronic lung diseases such as chronic bronchitis or emphysema, cor pulmonale, excluding tumours or 

cancers)

Liver diseases Categorical variable Yes = 1; no = 0. (liver diseases excluding fatty liver, tumour or cancer)

Heart disease Categorical variable Yes = 1; no = 0. (heart disease such as myocardial infarction, coronary heart disease, angina, congestive heart failure and 

other heart diseases)

Stroke Categorical variable Yes = 1; no = 0.

Kidney diseases Categorical variable Yes = 1; no = 0. (kidney diseases excluding tumors or cancers)

Digestive diseases Categorical variable Yes = 1; no = 0. (diseases of the stomach or digestive system excluding tumours or cancers)

Emotional and mental problems Categorical variable Yes = 1; no = 0.

Diseases related to memory Categorical variable Yes = 1; no = 0. (diseases related to memory such as Alzheimer’s disease, brain atrophy)

Parkinson’s Disease Categorical variable Yes = 1; no = 0.

Arthritis or rheumatism Categorical variable Yes = 1; no = 0.

Asthma Categorical variable Yes = 1; no = 0.

Behavioral lifestyles Smoke Categorical variable Yes = 1; no = 0.

Drink Categorical variable Yes = 1; no = 0.

Night sleep time Categorical variable The duration of respondents’ sleep at night. 6–8 h = 1; < 6 h = 2; ≥ 8 h = 3.

Physical activity Categorical variable The respondents’ exercise in the past month. Yes = 1; no = 0.

Interpersonal networks Marital status Categorical variable Have spouse = 1; no spouse = 0.

Satisfaction with child Categorical variable Very satisfied = 1; satisfied = 2; very dissatisfied = 3.

Individual income Categorical variable All types of income for respondents in a single year. According to the quartile, it is divided into high = 1, medium 

high = 2, medium low = 3 and low = 4.

Living alone Categorical variable Yes = 1; no = 0.

(Continued)

https://doi.org/10.3389/fpubh.2025.1595540
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2025.1595540

Frontiers in Public Health 05 frontiersin.org

performance in predicting SA among older individuals in 
the community.

2.4.1 Model construction

2.4.1.1 Logistic regression
Logistic Regression (LR), a type of general linear model, assumes 

that the outcomes adhere to a Bernoulli distribution, parameterized 
by p, which represents the likelihood of a positive outcome. In our 
study the positive outcome is the likelihood of SA among community-
dwelling older adults. It is noteworthy that logistic regression imposes 
stringent requirements on the ratio of features to samples, necessitating 
a balance that ensures model generalizability across diverse 
populations. The parameters utilized in our study for logistic 
regression are set to their default values (29).

2.4.1.2 Random forest
Random Forest (RF), an ensemble method based on the Bagging 

principle, constructs multiple decision trees to enhance classification 
performance. Each tree draws a random subset of samples and features. 
The final classification is determined by a majority vote among the 
trees. The study used 1,000 trees with default settings to evaluate the 
model’s ability to predict successful aging. The RF algorithm’s 
effectiveness is attributed to its bagging technique, which reduces 
variance and improves accuracy by aggregating predictions (30, 31).

2.4.1.3 Light gradient boosting machine
Light Gradient Boosting Machine (LGBM) is a gradient boosting 

framework that leverages tree-based learning algorithms. It highlights 
two key techniques: Gradient-based One-Side Sampling (GOSS), 
which improves efficiency by focusing on data with substantial 
gradients during training, and Exclusive Feature Bundling (EFB), 
which simplifies the feature space by bundling exclusive features. 
These methods are crucial for enhancing the model’s ability to handle 
large-scale data and maintain accuracy (32).

2.4.1.4 Gradient boosting decision tree
Gradient Boosting Decision Tree (GBDT) begins with a single 

decision tree and iteratively adds trees to correct the errors of previous 
ones. The model uses a gradient-based approach to maximize loss 
reduction at each split point. Regularization techniques are employed 
to prevent overfitting, and the model’s complexity is managed through 
parameters that control the number and depth of tree leaves. The 
predictions from individual trees are aggregated for a final prediction, 
leveraging the ensemble’s collective wisdom to reduce variance and 
improve accuracy. Hyperparameter tuning, using grid search cross-
validation, is crucial for achieving optimal GBT model performance 
by balancing bias and variance (33).

2.4.1.5 K-nearest neighbors
K-Nearest Neighbors (KNN) is a supervised learning technique 

used for classification tasks. The KNN algorithm determines the class of 
an unlabeled data point by finding the ‘K’ nearest labeled neighbors in 
the feature space and then assigning the class label based on the majority 
vote of these neighbors. The process hinges on three key aspects: a set of 
labeled training data, a distance metric to measure the proximity 
between data points, and the selection of the ‘K’ value. This method is 
particularly useful in biomedicine for tasks such as pattern recognition T
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and classification, where understanding the proximity of data points can 
provide insights into complex relationships within the data (34).

2.4.1.6 Extreme gradient boosting
Extreme gradient boosting (XGBoost) is a gradient boosting 

framework known for its efficiency and scalability in machine 
learning. XGBoost was first proposed in 2011, optimizes prediction 
models by reducing the loss function through gradient descent. It 
stands out for its ability to integrate multiple weak models into a high-
performance model, a process that enhances prediction accuracy and 
generalizes well across different datasets. The algorithm’s regularization 
features also help in preventing overfitting (35).

To enhance the classification performance of our XGBoost model, 
we implemented an 80% cross-validation strategy for hyperparameter 
optimization. This process focused on fine-tuning key 
hyperparameters. Through an iterative approach, we identified the 

most effective parameter combinations, which were subsequently 
integrated into our refined model.

2.4.2 Model evaluation
We had a rigorous evaluation of the proposed models, utilizing a 

suite of metrics to assess performance. The metrics encompass 
accuracy, precision, sensitivity, specificity, and the F1-measure. The 
formulas for calculating these metrics are delineated in Table  1. 
Additionally, we incorporated the area under the receiver operating 
characteristic curve (AUC-ROC) as a pivotal metric, quantifying the 
model’s ability to distinguish between different classes. The eightfold 
cross-validation approach was employed to ascertain the robustness 
of our algorithms.

To enhance the evaluative rigor of our model’s predictive 
capabilities, we incorporated decision curve analysis (DCA) (36). This 
method allowed us to scrutinize the model’s discriminatory power and 

FIGURE 2

Technical roadmap for model development.
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diagnostic precision across a spectrum of subgroups, thereby enabling 
a nuanced comparison and targeted optimization of performance 
metrics. In parallel, we plotted a calibration curve to meticulously 
align predicted probabilities with actual outcomes. This visual 
representation is pivotal for a thorough evaluation of our model’s 
consistency and accuracy, ensuring that our predictive analytics not 
only perform well in theory but also align with empirical data 
in practice.

2.4.3 Model interpretation
The SHAP method serves as a technique for explaining 

individual predictions and providing global interpretation (37). By 
calculating the contribution of each feature, it indicates the model’s 
decision-making process, ultimately yielding meaningful 
interpretation results. The SHAP summary plot and dependence plot 
offer visualization that illustrate how diverse features impact 
prediction outcomes. In this study, the SHAP algorithm was 
employed to indicate the importance of features within the 
prediction model. SHAP values were computed to delineate the 
relationship between input factors and the output, specifically 
revealing the contribution of various feature factors to the prediction 
of successful aging among community-dwelling older adults.

2.5 Model development

Descriptive statistical analysis was conducted for all variables in 
the study. Continuous variables were summarized using the median 
with interquartile range (IQR) or the mean with standard deviation 
(SD), depending on their distribution. Categorical variables were 
described by their proportion within each category.

Kruskal-Walli’s rank sum test and Chi-square test were used to 
compare the continuity variables of non-normal distribution and 
categorical variables, respectively. p < 0.05 was considered statistically 
significant. In this study, Python scripting language (v3.9.13) and R 
(v4.3.1) were used for analysis.

3 Results

3.1 Characteristics of the sample

Following the data processing phase of our retrospective study, a 
total of 4,324 medical records were amassed, comprising 614 
individuals with SA and 3,710 without SA. The demographic 
distribution included 2,207 males (51.00%) and 2,207 females 
(49.00%), with a median age of the participants being 67.6 years, as 
delineated by interquartile ranges A–B. The chi-square test was 
employed to ascertain the key factors significantly associated with SA, 
with the outcomes detailed in Table 3. Subsequently, variables that 
demonstrated a p-value of less than 0.05 in the univariant regression 
analysis were identified and are also presented in Table 3.

3.2 Feature selection for SA

In our study, patients were randomly allocated to the training 
and test sets in a 2: 1 ratio to ensure a robust evaluation framework. 

The training set encompassed 32 distinct features, which were 
subjected to calculate SHAP values to quantify their individual 
contributions to the model’s predictive accuracy. Each feature’s 
contribution was ranked, and this ranking process was iterated 
300 times to ascertain the consistency and reliability of the results. 
We then tallied the frequency with which each feature appeared 
in the top  30 across these iterations. The resulting feature 
rankings, which are depicted in Figure  3A, reveal the most 
influential variables in our model (due to space limitations, only 
the top  30 features are displayed here). We  also elucidate the 
distributional impact of each feature’s influence on the model 
output in Figure 3B. Prominent among these were life satisfaction, 
living area, medical insurance, self-rated health (SRH), smoke, 
education level, dyslipidemia, drank, residence, gender, night 
sleep duration, individual income, age, physical activity, and 
marital status, all of which demonstrate significant importance 
across all assessments.

3.3 Performance comparison of different 
models

To optimize the predictive capabilities of our model, 
we employed six machine learning models for model development. 
A comparative analysis of their performance metrics revealed that 
the KNN model performed the least effectively. In contrast, the 
XGBoost model demonstrated superior performance compared to 
the other methods, achieving an accuracy of 82.82% and the area 
under the receiver operating characteristic (AUROC) of 78.60%. 
Detailed overview of the performance for each ML model is showed 
in Figure 4.

3.4 Discrimination and consistency

After comparing of various machine learning models, 
we selected the XGBoost model to construct a prediction model 
for SA among community-dwelling older adults. Furthermore, this 
model was subjected to evaluate its discrimination ability 
and consistency.

Discrimination ability, a pivotal metric for gauging the 
model’s predictive prowess, pertains to its capacity to differentiate 
between individuals exhibiting successful aging within the 
community. We evaluated the model’s discriminative ability and 
consistency through AUROC and discriminant slope, which are 
critical benchmarks for assessing the reliability of our 
predictive outcomes.

Consistency denotes the alignment between the model’s 
predictive probabilities and the actual occurrence probabilities, 
visualized through a violin diagram. Meanwhile, we utilized the 
Brier score and calibration plots to conduct an exhaustive analysis 
of the model’s consistency. To bolster the study’s objectivity and 
applicability, we  performed an in-depth evaluation of 
discrimination and consistency using models built with RF, LR, 
and XGBoost.

Figure  5A illustrates the model’s AUROC, demonstrating 
superior performance of the XGBoost model compared to RF and 
LR. Our model achieved a discriminant slope of 0.140. The violin 
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TABLE 3  Characteristics of the study population in the training set.

Variable All (N = 4,324) Normal aging 
(N = 3,710)

Successful aging 
(N = 614)

p-value

Age 67.6 ± 5.87 67.9 ± 5.98 66.4 ± 4.98 <0.001

Gender 0.096

 � Male 2,207 (51.0%) 1874 (50.5%) 333 (54.2%)

 � Female 2,117 (49.0%) 1836 (49.5%) 281 (45.8%)

Self-rated health <0.001

 � Good 1,120 (25.9%) 864 (23.3%) 256 (41.7%)

 � General 2,240 (51.8%) 1911 (51.5%) 329 (53.6%)

 � Bad 964 (22.3%) 935 (25.2%) 29 (4.72%)

Life satisfaction <0.001

 � Very satisfied 1,699 (39.3%) 1,442 (38.9%) 257 (41.9%)

 � Satisfied 2,268 (52.5%) 1914 (51.6%) 354 (57.7%)

 � Very dissatisfied 357 (8.26%) 354 (9.54%) 3 (0.49%)

Hypertension 0.030

 � Yes 324 (11.5%) 288 (12.1%) 36 (8.33%)

 � No 2,489 (88.5%) 2093 (87.9%) 396 (91.7%)

Dyslipidemia 0.014

 � Yes 346 (9.53%) 314 (10.0%) 32 (6.43%)

 � No 3,286 (90.5%) 2,820 (90.0%) 466 (93.6%)

Diabetes or elevated blood sugar <0.001

 � Yes 301 (7.18%) 301 (8.42%) 0 (0.00%)

 � No 3,889 (92.8%) 3,275 (91.6%) 614 (100%)

Malignant tumours 0.002

 � Yes 63 (1.46%) 63 (1.70%) 0 (0.00%)

 � No 4,247 (98.5%) 3,633 (98.3%) 614 (100%)

Chronic lung diseases <0.001

 � Yes 286 (6.85%) 286 (8.02%) 0 (0.00%)

 � No 3,892 (93.2%) 3,278 (92.0%) 614 (100%)

Liver diseases 0.223

 � Yes 97 (2.34%) 88 (2.47%) 9 (1.55%)

 � No 4,040 (97.7%) 3,468 (97.5%) 572 (98.5%)

Heart disease <0.001

 � Yes 380 (9.31%) 380 (11.0%) 0 (0.00%)

 � No 3,702 (90.7%) 3,088 (89.0%) 614 (100%)

Stroke <0.001

 � Yes 161 (3.79%) 161 (4.43%) 0 (0.00%)

 � No 4,089 (96.2%) 3,475 (95.6%) 614 (100%)

Kidney diseases 0.002

 � Yes 163 (4.05%) 154 (4.46%) 9 (1.57%)

 � No 3,863 (96.0%) 3,298 (95.5%) 565 (98.4%)

Digestive diseases 0.066

 � Yes 219 (6.75%) 196 (7.11%) 23 (4.72%)

 � No 3,024 (93.2%) 2,560 (92.9%) 464 (95.3%)

Emotional and mental problems 0.074

 � Yes 37 (0.87%) 36 (0.99%) 1 (0.16%)

(Continued)
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TABLE 3  (Continued)

Variable All (N = 4,324) Normal aging 
(N = 3,710)

Successful aging 
(N = 614)

p-value

 � No 4,220 (99.1%) 3,612 (99.0%) 608 (99.8%)

Diseases related to memory <0.001

 � Yes 173 (4.00%) 165 (4.45%) 8 (1.30%)

 � No 4,151 (96.0%) 3,545 (95.6%) 606 (98.7%)

Parkinson’s Disease 0.027

 � Yes 48 (1.11%) 47 (1.27%) 1 (0.16%)

 � No 4,275 (98.9%) 3,662 (98.7%) 613 (99.8%)

Arthritis or rheumatism 0.089

 � Yes 257 (9.39%) 224 (9.84%) 33 (7.17%)

 � No 2,480 (90.6%) 2053 (90.2%) 427 (92.8%)

Asthma 0.029

 � Yes 67 (1.59%) 64 (1.78%) 3 (0.49%)

 � No 4,135 (98.4%) 3,526 (98.2%) 609 (99.5%)

Smoke 0.019

 � Still smoking 1,152 (26.6%) 965 (26.0%) 187 (30.5%)

 � Quit 598 (13.8%) 505 (13.6%) 93 (15.1%)

 � Never 2,574 (59.5%) 2,240 (60.4%) 334 (54.4%)

Drink <0.001

 � Drink more than once a month 1,187 (27.5%) 958 (25.8%) 229 (37.3%)

 � Drink less than once a month 375 (8.67%) 310 (8.36%) 65 (10.6%)

 � Never 2,762 (63.9%) 2,442 (65.8%) 320 (52.1%)

Night sleep time <0.001

 � 6–8 h 734 (17.0%) 584 (15.7%) 150 (24.4%)

 � < 6 h 2,599 (60.1%) 2,270 (61.2%) 329 (53.6%)

 � ≥ 8 h 991 (22.9%) 856 (23.1%) 135 (22.0%)

Physical activity <0.001

 � Yes 369 (8.53%) 348 (9.38%) 21 (3.42%)

 � No 3,955 (91.5%) 3,362 (90.6%) 593 (96.6%)

Marital status <0.001

 � Have spouse 3,312 (76.6%) 2,803 (75.6%) 509 (82.9%)

 � No spouse 1,012 (23.4%) 907 (24.4%) 105 (17.1%)

Satisfaction with child <0.001

 � Very satisfied 2,341 (54.1%) 2011 (54.2%) 330 (53.7%)

 � Satisfied 1786 (41.3%) 1,508 (40.6%) 278 (45.3%)

 � Very dissatisfied 197 (4.56%) 191 (5.15%) 6 (0.98%)

Individual income <0.001

 � High 1,082 (25.0%) 1,006 (27.1%) 76 (12.4%)

 � Medium high 1,069 (24.7%) 953 (25.7%) 116 (18.9%)

 � Medium low 1,082 (25.0%) 933 (25.1%) 149 (24.3%)

 � Low 1,091 (25.2%) 818 (22.0%) 273 (44.5%)

Living alone 0.170

 � Yes 3,435 (79.4%) 2,934 (79.1%) 501 (81.6%)

 � No 889 (20.6%) 776 (20.9%) 113 (18.4%)

Living areas <0.001

(Continued)
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diagram indicates the model’s proficiency in accurately predicting 
true negatives while sustaining the risk distribution stability of 
true positives in Figure 5B. The calibration plot reveals a strong 
concordance between our model’s predictions and actual 
outcomes in Figure 5C. With a Brier score of 0.124, below the 
threshold of 0.25, our model demonstrates high predictive 
accuracy within the dataset.

3.5 Decision curve analysis

To assess the model’s performance in a manner that is aligned with 
clinical decision-making, we employed Decision Curve Analysis (DCA) 
to evaluate the “net benefit” of our model across a range of clinical 
scenarios. The concept of “net benefit” encompasses both the advantages 
and disadvantages associated with false positive and false 
negative outcomes.

DCA’s fundamental principle is to measure the prediction 
model’s utility at a specific clinical decision threshold. The 
prediction model in our study demonstrates an outstanding 
clinical net benefit in Figure 6.

3.6 Subgroup analysis

The model demonstrated varying performance across 
demographic subgroups in Table 4. Minimal disparity was observed, 
with nearly identical F1-scores (male: 0.484; female: 0.485). 
Performance declined in older adults (Age ≥70: F1 = 0.418, 
recall = 0.457) compared to younger counterparts (Age <70: 
F1 = 0.521, recall = 0.624), indicating higher false-negative rates. 
Significant income-based differences emerged, with the highest-
income group achieving superior performance (F1 = 0.529) versus the 
lowest-income group (F1 = 0.318), which exhibited high false positives 
(precision = 0.182). Rural populations showed robust results 
(F1 = 0.597), while urban residents had notably lower recall (0.436), 
suggesting underdetection of positive cases.

4 Discussion

In our study, we employed the representative cross-sectional data 
from the CHARLS 2020 to identify predictive factors of SA within 
Chinese community-dwelling older populations. By employing SHAP 

TABLE 3  (Continued)

Variable All (N = 4,324) Normal aging 
(N = 3,710)

Successful aging 
(N = 614)

p-value

 � Eastern region 1,335 (30.9%) 1,105 (29.8%) 230 (37.5%)

 � Central region 1,240 (28.7%) 1,044 (28.1%) 196 (31.9%)

 � Western region 1,527 (35.3%) 1,367 (36.8%) 160 (26.1%)

 � Northeastern region 222 (5.13%) 194 (5.23%) 28 (4.56%)

Residence <0.001

 � Urban 1,424 (32.9%) 1,110 (29.9%) 314 (51.1%)

 � Rural 2,900 (67.1%) 2,600 (70.1%) 300 (48.9%)

Education <0.001

 � Below primary school 1,178 (27.2%) 1,107 (29.8%) 71 (11.6%)

 � Primary school 998 (23.1%) 869 (23.4%) 129 (21.0%)

 � Middle school 946 (21.9%) 803 (21.6%) 143 (23.3%)

 � High school 757 (17.5%) 607 (16.4%) 150 (24.4%)

 � High school above 445 (10.3%) 324 (8.73%) 121 (19.7%)

Medical insurance <0.001

 � None 169 (3.91%) 158 (4.26%) 11 (1.79%)

 � Urban employee medical 

insurance = 1

637 (14.7%) 465 (12.5%) 172 (28.0%)

 � Government medical insurance = 2 416 (9.62%) 369 (9.95%) 47 (7.65%)

 � Private medical insurance = 3 170 (3.93%) 125 (3.37%) 45 (7.33%)

 � Urban and rural resident medical 

insurance = 4

2,814 (65.1%) 2,507 (67.6%) 307 (50.0%)

 � Other medical insurance = 5 118 (2.73%) 86 (2.32%) 32 (5.21%)

Pension 0.017

 � Have 3,847 (89.0%) 3,283 (88.5%) 564 (91.9%)

 � None 477 (11.0%) 427 (11.5%) 50 (8.14%)

The continuous variable of normal distribution is expressed as mean ± standard deviation, and the categorical variable is expressed as sample size (ratio %). p<0.05 are bolded.
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values and variables from Chinese community health records, 
we selected the predictive factors. Subsequently, we engaged six different 
machine learning models to construct a prediction model. We assessed 
the differentiation, consistency, and clinical value of the model. Our 
efforts culminated in the development of a SA prediction model that not 
only possesses strong interpretability, but also promises ease of 
application and broad utility within community settings. Finally, a 
prediction model of SA among Chinese community-dwelling older 
population was constructed with strong interpretation, easy application 
and promotion.

Firstly, we employed Rowe and Kahn’s widely recognized model of 
SA, encompassing physiological, psychological, cognitive, and social 
dimensions. Previous research has utilized various machine learning 
models to construct SA prediction models, yet the lack of a unified 
definition of SA, leading to model heterogeneity and limited 
comparability (38, 39). Our approach aims to address this by leveraging 
a comprehensive dataset to enhance model generalizability 
and applicability.

Asghari Varzaneh et al. (38) utilized single-factor regression on 
Iranian older population cross-sectional data to identify characteristic 

FIGURE 3

Integrated analysis of feature importance and impact distributions. (A), The prominence of top 30 features based on SHAP importance rankings. (B), 
The distribution of the impacts of each feature on the model output.

FIGURE 4

The performance comparison of different machine learning models.
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variables, ultimately developing a KNN-based ensemble model with a 
93% accuracy and 96.10% AUC, demonstrating robust performance 
and discrimination. Similarly, Yazdani et  al. (39) conducted a 
retrospective analysis on Iranian older individuals, employing principal 
component analysis to extract features, and developed an ANFIS model 
based on fuzzy C-means, integrating neural networks and fuzzy 
reasoning systems, which showed promising capabilities. However, both 
studies omitted the psychological dimension of SA, and their single-
center, retrospective nature limits the assessment of model predictive 
performance in community-dwelling older populations.

In addition, Cai et al. (40) developed four SA prediction models 
based on physical fitness tests using 3-year follow-up data from 3,657 
older individuals in Nanchang, with the deep learning model 
exhibiting the best predictive performance (AUC 90.0%). However, 
the reliance on physical fitness tests presents practical challenges for 
using in community, given the resource-intensive nature of 
such assessments.

Through literature review, this study pioneers the use of a 
representative and high-confidence Chinese database to construct an 
SA prediction model for community-dwelling older populations, 
offering a valuable tool for health assessment in Chinese communities. 
Our focus on community application aligns with previous suggestions 
that ML models can directly serve clinical practice, with the potential 
to provide SA prediction services, which are crucial for proactively 
addressing population aging. By embedding prediction models within 
electronic medical records and extending their reach to mobile 
applications, we enhance their utility in community settings (41).

In variable selection, we prioritized clinically available variables, 
improving the model’s generalizability in community primary care. 
Community primary care physicians establish health records, assess 
the older adult’s health status and quality of life, and identify 
modifiable health factors, enabling more targeted health care and 
disease management recommendation (42, 43). Our approach to 
identifying SA predictors based on health ecology aids in 
understanding the multi-dimensional influencing factors of 
individual SA in community-dwelling older populations (44).

To bridge the gap between model development and clinical 
application, we have incorporated insights from recent studies on ML 
deployment in primary care. These works underscore critical 
challenges—data integration (e.g., interoperability between EHRs 
and predictive tools), scalability (e.g., adapting models to diverse 
clinic workflows), and clinician acceptance (e.g., addressing 
“black-box” skepticism through interpretability features)—which 
directly informed our implementation strategy. The introduction of 
the SHAP method in our study enhances model interpretability by 
assessing the importance and interrelationships of different variables, 
aligning the new model’s discriminant pathways and clinical variable 
thresholds with current community clinical practices (45, 46). Our 
DCA indicates the model’s good clinical benefits, suggesting its 
importance in primary care scenarios.

FIGURE 5

Comprehensive analysis of model performance metrics. (A), Receiver 
operating characteristic (ROC) analysis. (B), discrimination potentials 
of the prediction model in internal validation. (C), Calibration 
potentials of the prediction model in internal validation.

FIGURE 6

The decision curve analysis of the prediction model (XGBoost 
model).
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However, our study is not without limitations. The lack of a 
unified concept and measurement method for SA may introduce 
population bias due to regional and usage scenario differences. The 
database’s limitations precluded the inclusion of potential key 
variables, and as a retrospective study, data missing and input errors 
are inevitable. While our study improves model practicality through 
health ecology and initial screening of characteristic variables in 
primary care health records, potential differences in performance and 
discrimination across various primary care scenarios may exist, 
necessitating prospective validation in future research.

Our subgroup analysis revealed important disparities in model 
performance across demographic groups, with significant implications 
for clinical implementation. While demonstrating gender fairness, the 
model showed reduced accuracy among older adults (≥70 years; 
recall = 0.457), urban (recall = 0.436), and low-income populations 
(precision = 0.182), reflecting distinct error patterns with clinical 
consequences. The elevated false-positive rate in low-income groups 
risks unnecessary interventions, whereas the higher false-negative rates 
among older adults and urban residents could delay critical care - a 
particular concern given these populations’ healthcare access challenges. 
These findings underscore the necessity for subgroup-specific model 
calibration and highlight key ethical considerations for deploying 
predictive algorithms in real-world geriatric care settings, where 
equitable performance across vulnerable populations is paramount. 
Future iterations should prioritize feature engineering to address these 
identified gaps while maintaining the model’s overall predictive utility.

Future studies will track regular follow-up results from CHARLS, 
extract longitudinal data of older individuals in Chinese communities, 
further refine the SA prediction model, and deploy the model as an 
online resource, providing community physicians and geriatricians 
with a more accessible tool for older health assessment. Embedding SA 
predictions into routine health assessments (e.g., annual older 
population check-ups) via standardized application programming 
interfaces, with modifiable risk factors (e.g., smoking, physical 
inactivity) flagged for clinician review. Prospective validation will 
conduct for new patient data (e.g., third quarter of 2025), and indicators 
were adjusted according to real-world noise (for example, AUPRC for 
class imbalance). Subgroup-specific thresholds (e.g., lower probability 
cutoff for older adults) and feature engineering (e.g., neighborhood-
level variables for urban residents) will reduce bias in future 
deployments. After the release of the follow-up CHARLS data in the 
future, we will actively refer to pioneering longitudinal studies (such as 
HRS in the United  States and ELSA in the United  Kingdom) and 

compare their methods, advantages, and limitations with ours to 
improve the cross-cultural and cross regional applicability of the model.

5 Conclusion

In this study, we  developed a novel prediction model for 
successful aging in Chinese community-dwelling older adults using 
CHARLS 2020 data and various machine learning models, 
demonstrating outstanding predictive performance and clinical net 
benefits. The model is highly interpretable and generalizable, offering 
significant utility in community primary healthcare settings. It 
provides insights into the factors influencing successful aging and 
aids healthcare providers in making targeted interventions to develop 
the quality of life for the Chinese community-dwelling older adult.
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