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Introduction: The relationship between social security systems and public health

outcomes has garnered significant attention due to its impact on improving

health welfare and promoting economic stability. Social security systems,

including pension schemes, healthcare benefits, and unemployment support,

are essential for shaping societal wellbeing by influencing healthcare access,

labor market participation, and overall economic resilience. However, traditional

methods for evaluating these systems often fail to capture the complex dynamics

of policy interventions over time.

Methods: To address this, we propose an advanced economic policy modeling

framework that integrates dynamic optimization techniques with machine

translation applications. Machine translation applications refer to the use of

automated translation tools to facilitate communication in multilingual contexts,

ensuring equal access to healthcare and social services.

Results: These applications contribute to the evaluation of social security

systems by improving the accessibility and e�ciency of service delivery,

particularly in linguistically diverse populations.

Discussion: By incorporating both economic policy modeling and machine

translation technology, our framework o�ers a comprehensive analysis of social

security interventions, demonstrating how well-optimized policies can enhance

public health outcomes while ensuring fiscal sustainability.

KEYWORDS

social security systems, public health, economic policymodeling, dynamic optimization,

statistical learning

1 Introduction

The study of social security systems and their impact on public health outcomes has

gained increasing attention due to the growing need for sustainable economic policies

that enhance population wellbeing (1). Social security systems not only provide financial

stability to vulnerable groups but also contribute to broader public health improvements

by ensuring access to healthcare, reducing poverty-related diseases, and promoting overall

social welfare (2). Moreover, the efficiency of these systems is closely tied to their ability to

distribute resources effectively, particularly in multilingual societies where communication

barriers can hinder access to essential services (3). Machine translation (MT) has emerged

as a crucial tool in breaking down language barriers, facilitating access to healthcare

services, and improving the administration of social security benefits (4). By integrating

economic perspectives with technological advancements, this research aims to explore how

machine translation can optimize the functioning of social security systems, ultimately
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leading to better public health outcomes (5). For example,

several healthcare organizations, including the World Health

Organization (WHO), have used machine translation tools

to provide health-related information to non-native speakers,

especially during global health crises like the COVID-19 pandemic,

where timely and accurate communication was essential. Similarly,

in countries with multilingual populations, the United States

Social Security Administration (SSA) uses machine translation

to provide translated documents and online services, ensuring

equitable access to pension schemes, unemployment benefits, and

healthcare for non-English speakers. By integrating economic

perspectives with technological advancements, this research aims

to explore how machine translation can optimize the functioning

of social security systems, ultimately leading to better public

health outcomes.

Social security systems play a critical role not only in stabilizing

economic conditions but also in shaping population health.

As institutional mechanisms, they encompass programs such as

healthcare coverage, unemployment benefits, disability support,

and pension schemes, all of which help buffer individuals from

economic shocks that often lead to negative health outcomes. By

reducing financial stress and improving access to medical services,

these systems contribute to better health behaviors, increased

utilization of preventive care, and improved management of

chronic conditions. Empirical studies across OECD and developing

countries have shown that more inclusive and well-funded social

protection programs correlate with longer life expectancy, lower

infant mortality, and reduced incidence of poverty-related diseases.

Importantly, the impact of social security on health is both

direct and indirect. Direct effects include subsidized healthcare

access or insurance coverage, while indirect effects arise from

the income security these programs provide, which influences

determinants such as nutrition, housing stability, and mental

wellbeing. In multilingual and socioeconomically diverse societies,

the effectiveness of these systems further depends on how well

they address barriers like language access and digital inclusion–

factors that are increasingly recognized as determinants of health

equity. Against this backdrop, it becomes crucial to explore not

only the economic design of social security systems, but also the

technologies, such as machine translation, that can enhance their

accessibility and operational reach.

To address the limitations of early approaches, traditional

economic models of social security systems initially relied on

symbolic AI and knowledge representation to analyze policy

impacts (6). These models were primarily rule-based and

leveraged expert systems to assess economic indicators such

as unemployment rates, healthcare expenditures, and pension

distributions (7). By encoding economic rules and welfare policies,

these systems sought to provide analytical insights into public

health outcomes (8). However, these methods faced significant

challenges in dealing with the complexity and variability of real-

world economic and health data (9). The rigidity of symbolic AI

made it difficult to adapt to dynamic policy changes and diverse

linguistic contexts, particularly when analyzing the effects of social

security in multilingual environments (10). Moreover, the reliance

on handcrafted rules limited the scalability and generalizability of

these models, reducing their effectiveness in cross-border policy

evaluations. To address these issues, we sought more flexible and

data-driven approaches.

With the advent of machine learning, data-driven methods

began to revolutionize economic analysis and policy evaluation

within social security systems (11). Statistical and machine learning

models enabled we to analyze large-scale data from various

sources, including healthcare records, social security databases, and

economic indicators (12). These models could identify patterns in

the relationship between social security expenditures and public

health outcomes, providing a more empirical basis for policy

recommendations (13). Machine translation also benefited from

machine learning approaches, with statistical models such as

phrase-based translation systems improving linguistic accessibility

in social security administration (14). However, despite these

advancements, traditional machine learning methods still faced

challenges in handling unstructured data, capturing complex

policy interactions, and ensuring real-time translation accuracy

for diverse dialects and regional variations (15). Furthermore,

economic evaluations still required extensive feature engineering,

making it difficult to adapt machine learning models to evolving

policy frameworks.

To overcome the limitations of traditional AI and machine

learning models, deep learning and pre-trained language

models have transformed the analysis of social security systems

and their impact on public health (16). Neural networks,

particularly transformer-based architectures such as BERT and

GPT, have significantly improved the capabilities of machine

translation by providing more context-aware and accurate

translations (17). These models facilitate real-time multilingual

communication in social security services, ensuring that non-

native speakers can access crucial health and financial information

without language barriers (18). deep learning has enhanced

economic modeling by enabling automated text analysis of

policy documents, social media sentiment analysis on welfare

programs, and predictive analytics for public health interventions

(19). Despite these advancements, challenges such as model

bias, computational costs, and interpretability remain significant

barriers to large-scale adoption (20). Addressing these issues

requires a combination of domain-specific fine-tuning, regulatory

oversight, and ethical considerations in deploying AI-driven social

security systems.

Given the limitations of previous methods in addressing

the economic and public health implications of social security

systems, we propose a novel approach that integrates deep learning-

based machine translation with real-time economic analysis.

This method leverages state-of-the-art multilingual models to

enhance accessibility while utilizing dynamic economic forecasting

to optimize policy interventions. Unlike previous models, our

approach focuses on adaptability, allowing for continuous updates

based on policy changes and economic trends. By combining

advanced NLP techniques with economic modeling, we aim to

bridge the gap between social security administration and public

health outcomes, ensuring equitable access to benefits across

linguistic and demographic groups. Moreover, this framework

enhances policy evaluation by incorporating real-time data streams,

enabling governments to make informed decisions that balance

fiscal sustainability with public wellbeing.
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• Our method introduces a novel framework that combines

deep learning-based machine translation with economic

forecasting, providing a comprehensive approach to

optimizing social security systems (Table 1).

• Unlike previous models, our system is designed to

accommodate diverse policy environments and linguistic

contexts, ensuring broader applicability across different

countries and economic conditions.

• Experimental results demonstrate significant improvements

in translation accuracy, economic forecasting precision, and

public health outcome predictions, highlighting the practical

benefits of our approach.

2 Related work

2.1 Economic impact of social security
systems on public health

Social security systems play a pivotal role in shaping public

health outcomes by providing financial protection and access

to healthcare services (21). These systems encompass various

TABLE 1 Glossary of key terms.

Term Definition

Dynamic Equilibrium

Policy Model (DEPM)

A novel economic policy modeling framework that

integrates macroeconomic state dynamics, policy

interventions, and agent-based optimization within a

unified mathematical structure. The DEPM

incorporates dynamic optimization, stochastic

shocks, and equilibrium constraints to model the

impact of various economic policies on public health

outcomes.

Adaptive Policy

Optimization Strategy

(APOS)

An extension of the DEPM that leverages dynamic

programming, reinforcement learning, and stochastic

control mechanisms to refine economic

decision-making. APOS ensures that fiscal, monetary,

trade, and industrial policies dynamically adjust to

economic fluctuations, minimizing adverse shocks

while optimizing long-term economic welfare.

Machine Translation

(MT)

The technology used to automatically translate text or

speech from one language to another. In this study,

MT is integrated into the social security system

framework to enhance accessibility to healthcare and

financial services, especially for non-native speakers.

Public health outcomes The measurable effects of healthcare interventions,

social security systems, and public policies on the

health of a population. This includes indicators such

as healthcare access, disease prevention, and overall

population health.

Social security systems Public programs designed to provide economic

security to individuals, particularly in the areas of

healthcare, unemployment, and retirement benefits.

These systems are examined within the framework to

understand how they can be optimized to improve

both economic stability and public health.

Economic policy

modeling

The process of creating mathematical and

computational models to analyze the effects of

economic policies on key variables like GDP,

inflation, unemployment, and public welfare. This is

the primary method used in the DEPM framework.

programs, including pensions, unemployment benefits, and health

insurance, aiming to mitigate economic risks associated with

illness, disability, and aging. The economic impact of social

security on public health is multifaceted, influencing healthcare

accessibility, quality, and overall population health (22). social

security systems contribute to the reduction of economic

inequalities, which are closely linked to health disparities. By

offering financial support to vulnerable populations, these systems

help alleviate poverty-related health issues. For instance, income

support programs can enable individuals to afford nutritious

food, safe housing, and necessary medical care, thereby improving

health outcomes. A study highlighted that comprehensive social

protection is essential for reducing economic inequality and,

consequently, health inequalities (23). the provision of universal

health coverage through social security ensures that individuals

have access to necessarymedical services without financial hardship

(24). This accessibility leads to early detection and treatment of

diseases, reducingmorbidity andmortality rates. TheWorldHealth

Organization emphasizes that health systems are vital to economic

performance and stability, and are key to achieving sustainable

development Investing in health systems not only improves

public health but also yields economic benefits by enhancing

workforce productivity and reducing healthcare costs associated

with advanced diseases (25). social security systems that include

preventive healthcare services can lead to long-term cost savings.

Preventive measures, such as vaccinations and regular health

screenings, can prevent the onset of diseases, thereby reducing the

need for expensive treatments. The economic case for health equity

suggests that investing in preventive care is cost-effective and can

lead to substantial savings in healthcare expenditure (26).

2.2 Role of preventive healthcare in
economic e�ciency

Preventive healthcare is a cornerstone of public health that

focuses on disease prevention and health promotion. From an

economic perspective, investing in preventive healthcare can lead

to significant cost savings and improved economic efficiency.

This approach reduces the burden of chronic diseases, decreases

healthcare expenditures, and enhances workforce productivity

(27). Chronic diseases, such as heart disease, diabetes, and

cancer, are leading causes of morbidity and mortality worldwide.

These conditions often require long-term, expensive treatments,

imposing substantial economic burdens on individuals and

healthcare systems. Preventive healthcare aims to reduce the

incidence of these diseases through interventions like lifestyle

counseling, vaccinations, and regular screenings. By preventing

disease onset, healthcare systems can avoid the high costs associated

with treatment and management of chronic illnesses (28).

Economic evaluations have demonstrated the cost-effectiveness of

preventive measures. For example, childhood immunizations have

been shown to yield high returns on investment by preventing

diseases that would require costly treatments. According to

Healthy People 2020, for every birth cohort that receives

the routine childhood vaccination schedule, direct healthcare

costs are reduced by 9.9 billion, and society saves 33.4
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billion in indirect costs (29). Furthermore, preventive healthcare

contributes to economic efficiency by enhancing workforce

productivity. Healthier individuals aremore capable ofmaintaining

employment, have fewer sick days, and are more productive at

work. This increased productivity translates into economic gains

for employers and the economy at large. The health capital

theory posits that investments in health, such as preventive

care, improve an individual’s stock of health, leading to greater

economic output and growth (30). However, the implementation

of preventive healthcare measures requires initial investments, and

the benefits may not be immediately apparent. Policymakers must

consider the long-term economic advantages of such investments,

including reduced healthcare costs and a more robust economy

due to a healthier workforce (31). The Organisation for Economic

Co-operation and Development (OECD) highlights that while

preventivemeasuresmay not always lead to immediate cost savings,

they are essential for improving population health and economic

outcomes in the long run.

2.3 Economic benefits of machine
translation in healthcare communication

Machine translation (MT) technologies have introduced several

measurable economic benefits in healthcare communication,

particularly in multilingual and linguistically diverse regions. MT

systems now offer real-time translation capabilities that effectively

bridge language barriers (32), reducing administrative burdens and

operational costs by streamlining the intake process, minimizing

the need for human interpreters, and improving documentation

efficiency (33). These savings are especially significant in public

health settings where interpreter resources are limited and

communication delays can have direct health and financial

consequences. Language barriers in healthcare often result in

misunderstandings, misdiagnoses, and inadequate treatment plans,

which can escalate medical costs and worsen health outcomes (34).

MT helps mitigate these risks by facilitating clear communication

between healthcare providers and patients who speak different

languages, thereby reducing repeat visits and shortening hospital

stays (33). Moreover, by enabling providers to serve a broader

patient base without full reliance on human interpreters, MT allows

for more flexible and cost-effective allocation of interpreter services

to cases that require deeper cultural or contextual nuance (35).

our economic framework extends the analysis by modeling indirect

benefits. For example, by reducing miscommunication and delays

in service delivery, MT contributes to better health outcomes

among non-native speakers, which in turn leads to lower public

healthcare expenditures over time. Furthermore, equitable access

to healthcare via MT can support improved labor productivity

and labor market participation among immigrant populations,

generating broader macroeconomic gains (36). While the benefits

discussed above are drawn from both literature and our modeling

assumptions, we have clarified the source of each category in the

revised text. We also acknowledge that this list is not exhaustive,

and that ongoing innovations in natural language processing may

continue to reveal new dimensions of MT’s economic impact in the

healthcare and social policy domains.

3 Method

3.1 Overview

Economic policy plays a fundamental role in shaping the

financial and social structures of nations, influencing economic

growth, stability, and distribution of wealth (Figure 1). The study

of economic policy involves analyzing various mechanisms that

governments employ to regulate economic activities, including

monetary policy, fiscal policy, trade policy, and industrial policy.

In this work, we develop a novel approach to economic policy

modeling by integrating advanced analytical techniques with

empirical validation.

In Section 3.2, we introduce the theoretical foundation

underlying economic policy formulation, focusing on the

principles of policy intervention and regulatory frameworks.

This provides a rigorous basis for understanding how

governments manage macroeconomic variables to achieve

specific objectives such as controlling inflation, reducing

unemployment, and fostering economic growth. formalizes

the problem by defining a mathematical framework that captures

the complexities of economic decision-making. We employ

symbolic representations to model policy instruments, economic

agents, and macroeconomic indicators, ensuring that our approach

is both comprehensive and adaptable to various economic contexts.

In Section 3.3, we introduce our innovative model, which extends

traditional economic policy analysis by incorporating dynamic

optimization techniques and statistical learning methodologies.

Our model enhances predictive capabilities, allowing for more

precise assessment of policy impacts under different economic

scenarios. in Section 3.4, we propose a strategic framework

that leverages domain-specific knowledge to optimize policy

FIGURE 1

Conceptual framework illustrating how machine translation

performance influences public health outcomes through enhanced

language accessibility and improved operational e�ciency within

social security systems.
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interventions. By designing targeted strategies based on economic

theory and empirical data, our approach offers a refinedmechanism

for policy evaluation and implementation.

3.2 Preliminaries

Economic policy encompasses a broad range of government

interventions aimed at regulating economic activity to achieve

specific macroeconomic and microeconomic objectives. These

interventions include fiscal policies, which influence government

spending and taxation; monetary policies, which regulate money

supply and interest rates; trade policies, which govern international

trade and tariffs; and industrial policies, which promote sectoral

growth and innovation. In this section, we provide a formalized

representation of the economic policy problem using mathematical

and symbolic notation, ensuring a rigorous foundation for

subsequent analysis.

Let E represent the overall economy, defined as a system of

agents, institutions, and policies. We model E as a dynamic system

characterized by a state vector st at time t, which captures key

macroeconomic indicators such as GDP (Yt), inflation rate (πt),

unemployment rate (ut), and government debt (Dt). The evolution

of the economy is governed by a set of policy instruments pt , which

are determined by government intervention.

st+1 = f (st , pt , et), (1)

where f is a transition function that captures the structural

relationships within the economy, and et represents external

shocks, such as global financial crises or supply chain disruptions.

Fiscal policy, denoted as pFt , consists of government

expenditure Gt and taxation Tt . The government budget constraint

is given by:

Dt+1 = (1+ rt)Dt + Gt − Tt . (2)

Monetary policy, denoted as pMt , is implemented through the

central bank’s control over interest rates rt and money supply

Mt . The Taylor rule provides a common framework for setting

interest rates:

rt = r∗ + α(πt − π∗)+ β(Yt − Y∗). (3)

Trade policy, denoted as pTt , affects import and export

dynamics through tariffs τt and quotas. The trade balance

equation is:

NXt = Xt −Mt . (4)

Industrial policy, denoted as pIt , includes subsidies St and

research and development (R&D) investments Rt . The effect of

industrial policy on sectoral growth can be modeled as:

gSt = φSt + γRt . (5)

3.3 Dynamic Equilibrium Policy Model
(DEPM)

In this section, we introduce the Dynamic Equilibrium Policy

Model (DEPM), a novel framework for analyzing economic policy

decisions (Table 2). The DEPM integrates macroeconomic state

dynamics, policy interventions, and agent-based optimization

within a unified mathematical structure. Our model extends

traditional policy analysis by incorporating dynamic optimization,

stochastic shocks, and equilibrium constraints, providing

a more robust representation of policy effects in complex

economic environments.

As shown in Figure 2, illustrates the architecture of the

proposed Dynamic Equilibrium Policy Model (DEPM), consisting

of four core modules: (a) state dynamics and policy interaction,

(b) equilibrium conditions and constraints, (c) stochastic shocks

and optimization, and (d) hierarchical feature extraction. Module

(a) models the interaction between macroeconomic variables

(e.g., GDP, inflation, unemployment) and policy instruments

(e.g., fiscal spending, interest rate, tariffs). Module (b) ensures

system-wide consistency through market-clearing conditions such

as national income identity and labor market equilibrium.

Module (c) incorporates Gaussian stochastic shocks to account

for real-world uncertainties. Module (d) employs a deep neural

architecture based on a Masked Mamba Encoder-Decoder to

capture nonlinear temporal dependencies across macroeconomic

indicators. This framework enables realistic simulation of dynamic

policy interventions.

TABLE 2 Summary of Dynamic Equilibrium Policy Model (DEPM) variants.

Model variant Policy focus Dynamic features Optimization strategy Application context

Baseline DEPM Fiscal and monetary policy Static expectations, deterministic

shock response

Closed-form equilibrium search General economic simulation

DEPM+ APOS Multi-policy adaptive control Real-time feedback, stochastic

dynamics

Reinforcement learning-based

policy tuning

Social security reform and

public health

Localized DEPM Language-accessible policy

delivery

Multilingual access layers,

communication efficiency

parameters

Constraint-adjusted welfare

maximization

Multilingual healthcare

systems

Forecast DEPM Long-term health expenditure

modeling

Inter-temporal population modeling,

time-delay effects

Scenario-based predictive

modeling

Pension fund sustainability
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FIGURE 2

The diagram illustrates the key components of the Dynamic Equilibrium Policy Model (DEPM), integrating macroeconomic state dynamics, policy

interventions, and stochastic optimization. It includes (a) state dynamics and policy interaction, showing how economic variables evolve under policy

influences; (b) equilibrium conditions and constraints, ensuring macroeconomic consistency; (c) stochastic shocks and optimization, modeling

uncertainties in policy decisions; and (d) hierarchical feature extraction, leveraging deep learning-based encoders and decoders for complex

economic modeling and prediction.

3.3.1 State dynamics and policy interaction
Let the economic state at time t be represented by a vector st ,

which includes key macroeconomic variables:

st = {Yt ,πt , ut ,Dt ,NXt , rt ,Mt ,Ct , It}, (6)

where Yt is the GDP, πt is the inflation rate, ut is the unemployment

rate,Dt is government debt,NXt is net exports, rt is the interest rate,

Mt is the money supply, Ct represents private consumption, and It
represents investment.

The economy evolves according to the stochastic

transition function:

st+1 = f (st , pt , et), (7)

where pt represents the set of policy instruments, and et denotes

exogenous shocks such as productivity shocks, financial shocks, or

external trade shocks.

The government controls a set of policy levers pt =

{pFt , p
M
t , pTt , p

I
t}, where fiscal policy instruments are denoted by

pFt = {Gt ,Tt}, monetary policy instruments by pMt = {rt ,Mt},

trade policy instruments by pTt = {τt , qt}, and industrial policy

instruments by pIt = {St ,Rt}.

Fiscal policy affects aggregate demand through government

spending and taxation. The fiscal rule is given by:

Gt = λ1Yt + λ2ut + λ3Dt + εFt , (8)

where Gt represents government expenditure at time t, which is

influenced by the current GDP (Yt), unemployment rate (ut), and

government debt (Dt). The coefficients λ1, λ2, and λ3 represent

the responsiveness of government expenditure to changes in these

variables. The term εFt represents a fiscal policy shock, capturing

external factors that may affect government spending.

Monetary policy is determined using an extended Taylor rule,

adjusting the nominal interest rate in response to deviations in

inflation and output from their targets:

rt = r∗ + α(πt − π∗)+ β(Yt − Y∗)+ γ ut + εMt . (9)

where rt is the nominal interest rate at time t, adjusted based on

the target inflation rate (π∗), the output gap (Yt − Y∗), and the

unemployment rate (ut). The coefficients α, β , and γ describe

the sensitivity of interest rates to these economic indicators. εMt

represents a monetary policy shock, reflecting unexpected changes

in policy or external factors.

Trade policy can influence net exports through tariffs and

quotas. A simple rule-based trade policy function is:

τt = η1NXt + η2Yt + εTt , (10)

where τt represents the tariff rate at time t, which is influenced

by the net exports (NXt) and GDP (Yt). The coefficients η1 and

η2 capture the responsiveness of trade policy to changes in these

variables. εTt represents a trade policy shock.
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Industrial policy aims to support innovation and sectoral

development. The governmentmay subsidize research and strategic

industries, modeled as:

St = ρ1It + ρ2Yt + εIt , (11)

where St is the subsidy rate at time t, influenced by investment

(It) and GDP (Yt). The coefficients ρ1 and ρ2 indicate the impact

of these variables on industrial policy. εIt represents a shock to

industrial policy.

3.3.2 Equilibrium conditions and constraints
Equilibrium conditions ensure consistency across

macroeconomic variables, reflecting the interactions among

different sectors of the economy. The goods market equilibrium

condition ensures that total output equals the sum of consumption,

investment, government spending, and net exports:

Yt = Ct + It + Gt + NXt , (12)

where Ct represents private consumption, It is investment, Gt is

government spending, and NXt is net exports, which capture the

difference between exports and imports. This identity ensures that

all goods produced within the economy are accounted for through

different forms of demand.

In the labor market, the unemployment rate is determined by

deviations from its natural rate and the effects of real wages. The

equilibrium condition in the labor market follows:

ut = u∗t + θ(wt − w∗t ), (13)

where ut is the actual unemployment rate, u∗t is the natural rate

of unemployment, wt is the real wage, and w∗t is the equilibrium

wage level. The parameter θ captures the responsiveness of

unemployment to wage deviations. This equation highlights the

role of labor market rigidities and wage-setting mechanisms in

determining employment levels.

External trade equilibrium is maintained through the balance

of payments condition, ensuring that the sum of net exports and

the capital account balance is zero:

NXt + KAt = 0, (14)

where KAt denotes the capital account balance, which reflects

cross-border capital flows. A surplus in the trade balance (NXt > 0)

must be offset by a capital account deficit (KAt < 0), and vice

versa. This relationship ensures that financial transactions align

with trade imbalances, maintaining external stability.

The government formulates optimal policies to maximize a

social welfare function that incorporates economic stability and

growth. The objective function is defined as:

max
pt

E

∞
∑

t=0

δtU(Yt , ut ,πt), (15)

where pt represents policy instruments, δ is the discount

factor reflecting intertemporal preferences, and U(·) is a utility

function that depends on output (Yt), unemployment (ut), and

inflation (πt). The policymaker aims to achieve an optimal

balance between economic growth, labor market conditions, and

price stability.

The first-order condition for optimal policy intervention

ensures that marginal changes in policy instruments do not

generate welfare losses. This condition is given by:

∂U

∂Yt

∂Yt

∂pt
+

∂U

∂ut

∂ut

∂pt
+

∂U

∂πt

∂πt

∂pt
= 0. (16)

This equation states that the government adjusts its policy

instruments such that the weighted sum of marginal utilities with

respect to output, unemployment, and inflation is equal to zero.

The policy intervention takes into account the trade-offs between

different economic objectives and ensures an optimal allocation

of resources.

3.3.3 Stochastic shocks and optimization
The Dynamic Economic Policy Model (DEPM) incorporates

stochastic shocks to model uncertainty in economic fluctuations,

allowing for a more realistic representation of macroeconomic

dynamics. Let εt represent a vector of stochastic disturbances:

εt ∼ N (0,6), (17)

where 6 is the covariance matrix that captures the volatility

and interdependence of various exogenous shocks, including fiscal

policy shocks, monetary policy shocks, and trade disruptions.

These disturbances propagate through the system, influencing state

variables and observed economic indicators.

As shown in Figure 3 presents the mechanism for processing

stochastic disturbances in the DEPM framework. Economic shocks,

modeled as multivariate Gaussian noise, are first processed using

patch and position embedding techniques to capture localized

variations. A Fast Fourier Transform (FFT) is then applied to

map signals into the frequency domain, enabling the identification

of periodic or cyclical patterns in economic volatility. These

transformed signals are integrated into the state transition

functions to inform optimal policy computation. This frequency-

aware approach allows for a more nuanced response to economic

disturbances, particularly in high-frequency or crisis scenarios.

The state-space representation of the model consists of a

transition equation and an observation equation:

st+1 = f (st , pt)+ εt , (18)

yt = h(st)+ νt . (19)

Here, st represents the vector of state variables, which includes

key macroeconomic indicators such as output, inflation, interest

rates, and consumption. The function f (·) governs the law of

motion of state variables, capturing the effects of policy variables

pt and stochastic shocks εt . The observation equation links the

unobserved state variables to observed economic indicators yt ,

incorporating measurement noise νt .

The DEPM is solved using dynamic programming and

numerical simulation techniques. The goal is to determine
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FIGURE 3

The diagram illustrates the stochastic shocks and optimization, integrating Fourier-based shock processing and state-space modeling. The

framework processes stochastic shocks through patch and position embedding, spatial mixing, and state transition functions, utilizing FFT to analyze

frequency-domain impacts on macroeconomic stability and optimal policy decisions.

the optimal policy sequence pt that maximizes the expected

discounted utility over time. The Bellman equation characterizing

the optimization problem is:

V(st) = max
pt

{

U(st , pt)+ δEV(st+1)
}

. (20)

where V(st) is the value function, U(st , pt) represents the period

utility function, and δ ∈ (0, 1) is the discount factor ensuring time-

consistent decision-making. The expectation operator E accounts

for uncertainty in future states.

To compute the equilibrium policy, value function iteration is

employed. Starting with an initial guess for V(s), the algorithm

iterates until convergence, updating the value function at each step.

Convergence is achieved when the state variables satisfy:

‖st+1 − st‖ < ǫ. (21)

where ǫ is a pre-defined tolerance level. The iteration process

ensures that the system reaches a steady-state equilibrium, where

optimal policies effectively mitigate the impact of stochastic shocks

and guide the economy toward stability.

3.4 Adaptive Policy Optimization Strategy
(APOS)

Building on the Dynamic Equilibrium Policy Model (DEPM)

introduced in the previous section, we propose the Adaptive

Policy Optimization Strategy (APOS) to refine economic decision-

making under uncertainty. The APOS integrates dynamic

programming, reinforcement learning, and stochastic control

mechanisms to enhance policy adaptability in response to evolving

economic conditions. Our strategy ensures that fiscal, monetary,

trade, and industrial policies dynamically adjust to economic

fluctuations, minimizing adverse shocks while optimizing

long-term economic welfare.

As shown in Figure 4 depicts the Adaptive Policy Optimization

Strategy (APOS), designed to dynamically adjust policy responses

to evolving economic conditions. The first module introduces a

policy correction term1pt to refine initial optimal policies p∗t based

on real-time economic feedback using a gradient-based adjustment.

The second module employs Temporal Difference (TD) Learning

to iteratively update the value function V(st), optimizing long-

term utility. The third module coordinates multiple autonomous

policy agents (fiscal, monetary, trade, industrial) using a Nash

bargaining framework. Together, these components ensure both

local adaptability and global policy coherence under uncertainty.

3.4.1 Optimization via policy adjustment
Let p∗t denote the optimal policy set obtained from the

DEPM framework:

p∗t = argmax
pt

E

∞
∑

t=0

δtU(st , pt). (22)

This policy set represents an optimal decision rule that

maximizes the expected cumulative utility under a discount factor

δ. However, static policy rules often struggle to accommodate real-

time economic fluctuations, necessitating an adaptive mechanism

to refine decision-making dynamically.

To address this limitation, the Adaptive Policy Optimization

Strategy (APOS) introduces an adjustment term 1pt , modifying

the initial policy set:

pt = p∗t +1pt . (23)

where p∗t represents the initial optimal policy set, and 1pt denotes

the adjustment made to the policy based on feedback from the

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1597381
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Niu et al. 10.3389/fpubh.2025.1597381

FIGURE 4

Illustration of the Adaptive Policy Optimization Strategy (APOS) framework, integrating optimization via policy adjustment, reinforcement learning for

adaptability, and risk-aware multi-agent coordination. The framework refines policy decisions dynamically using reinforcement learning and

stochastic control mechanisms to enhance adaptability and economic stability.

economy. This allows the model to respond dynamically to changes

in economic conditions.

The policy adjustment process follows a gradient-based

learning framework, where updates occur iteratively according to:

1pt = −η∇pL(st , pt). (24)

where η is the learning rate, controlling the size of policy updates,

and ∇pL(st , pt) represents the gradient of the loss function L

with respect to the policy parameters. The gradient indicates the

direction in which the policy should be adjusted to minimize the

economic cost.

To further refine policy adjustments, a regularization term

�(pt) is incorporated into the loss function, constraining abrupt

policy fluctuations:

L(st , pt) = E
[

C(st , pt)
]

+ λ�(pt). (25)

The term E[C(st , pt)] represents the expected cost associated

with the current policy pt at state st . The regularization term λ�(pt)

penalizes large fluctuations in policy, helping to maintain stability

in the policy updates.

To prevent excessive oscillations in policy adjustments, a

momentum term µ is introduced:

1pt = −η∇pL(st , pt)+ µ1pt−1. (26)

The term µ1pt−1 ensures that the policy updates take

into account the previous adjustment, smoothing out abrupt

changes and preventing instability. The parameter µ controls the

momentum, balancing the rate of adaptation and ensuring more

gradual transitions.

3.4.2 Reinforcement learning for adaptability
To enhance adaptability, APOS employs reinforcement

learning (RL) to refine policy choices based on observed outcomes.

Let V(st) represent the value function capturing long-term

economic performance:

V(st) = max
pt

{

U(st , pt)+ δEV(st+1)
}

. (27)

Here, U(st , pt) denotes the immediate utility of selecting policy

pt in state st , and δ ∈ (0, 1) is the discount factor that accounts for

the importance of future rewards. The expectation is taken over all

possible future states st+1, considering the probabilistic transitions

influenced by the current policy.

The policy is refined using temporal difference (TD) learning to

update the value function iteratively:

V(st)← V(st)+ α
(

rt + δV(st+1)− V(st)
)

, (28)

where α is the learning rate, determining the step size of

updates, and rt is the realized economic reward obtained from

the transition. This update mechanism allows APOS to adjust

policy valuation dynamically, ensuring adaptability to changing

economic conditions.

To improve decision-making, APOS employs an action

selection mechanism based on an ǫ-greedy strategy:

pt =

{

argmaxp V(st , p), with probability 1− ǫ,

random policy, with probability ǫ.
(29)
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This strategy balances exploitation (selecting the best-known

policy) and exploration (choosing a random policy to discover

potentially better options). A smaller ǫ prioritizes exploitation,

while a larger ǫ encourages broader exploration.

The transition dynamics of the system are modeled using

a Markov decision process (MDP), where the probability of

transitioning to a new state st+1 depends on the current state st and

policy pt :

P(st+1|st , pt) =
∑

wt

P(st+1|st , pt ,wt)P(wt|st , pt). (30)

Here, wt represents external stochastic factors influencing state

transitions, and the total probability is obtained by marginalizing

over all possible realizations of wt .

To ensure convergence of the value function, APOS

incorporates a dynamic learning rate schedule:

αt =
1

1+ βt
, (31)

where β is a decay parameter controlling the rate at which the

learning rate decreases over time. This adaptive step size prevents

excessive fluctuations in value updates while allowing continued

policy improvements.

3.4.3 Risk-Aware multi-agent coordination
To mitigate economic volatility and enhance resilience against

external shocks, APOS integrates stochastic control theory to

optimize risk-adjusted policies.

As shown in Figure 5 provides a detailed breakdown of the

risk-aware multi-agent coordination component within APOS.

The architecture begins with encoding the variance of state

transitions Rt = Var(st+1|st , pt) into risk representations using

deep convolutional operations. These are followed by linear

projections of each agent’s policy features, enabling inter-agent

comparability. Aggregation is performed using attention-based

fusion mechanisms, combining individual policy vectors into

a unified risk-sensitive strategy. Matrix operations and skip

connections preserve semantic consistency while enabling flexible

policy refinement. The agents update their strategies iteratively

until convergence to a risk-optimized, Nash-consistent policy set.

DefineRt as the risk function capturing economic instability:

Rt = Var(st+1|st , pt), (32)

where st represents the economic state at time t, and pt denotes the

set of policy actions taken. The goal is to formulate policies that

balance economic performance and risk minimization. A robust

policy is derived by solving the optimization problem:

probustt = argmax
pt

[

U(st , pt)− λRt

]

, (33)

where U(st , pt) represents the utility function reflecting economic

performance, and λ is a risk-aversion parameter that dictates the

trade-off between stability and growth.

Given the complex interdependencies among fiscal, monetary,

trade, and industrial policies, APOS models each policy domain

as an autonomous agent Ai. Each agent optimizes its individual

objective function Ji, defined as:

Ji(st , p
i
t) = E

∞
∑

t=0

δtUi(st , p
i
t), (34)

’

2

’

2

’

2

’

2

FIGURE 5

The image illustrates the computational architecture for risk-aware multi-agent coordination within the APOS framework, showcasing a pipeline that

integrates policy feature projection, representation embedding, depth-wise convolution, and risk-aware aggregation to optimize decision-making

under uncertainty. Various operations such as element-wise multiplication, matrix multiplication, and addition are employed to enhance policy

robustness while balancing economic performance and risk minimization.
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where δ ∈ (0, 1) is the discount factor ensuring convergence, and

Ui(st , p
i
t) is the utility of agent Ai under policy action pit . Agents

must coordinate their actions to avoid conflicts and ensure overall

policy coherence.

To achieve coordination, APOS employs a Nash bargaining

framework. The equilibrium condition requires that the sum of

individual policy gradients satisfies:

∑

i

∇pit
Ji(st , p

i
t) = 0. (35)

This condition ensures that no agent can unilaterally improve

its outcome without affecting others, leading to a balanced policy

design. To iteratively reach equilibrium, each agent updates its

policy according to:

pi,k+1t = pi,kt + κ

(

∇pit
Ji − ∇̄J

)

, (36)

where ∇̄J is the mean policy gradient across all agents, and κ is a

step-size parameter that controls the adaptation rate. The iterative

update continues until convergence is achieved.

Convergence is established when the policy update norm falls

below a predefined threshold:

‖pk+1t − pkt ‖ < ǫ. (37)

Here, ǫ is a small positive constant ensuring policy stability. By

iteratively adjusting policies while considering risk and multi-agent

interactions, APOS effectively stabilizes economic dynamics while

optimizing performance.

4 Experimental setup

4.1 Dataset

The MLQA Dataset (37) is a benchmark dataset designed for

evaluating cross-lingual question-answering models. It includes

question-answer pairs in seven languages: English, Arabic, German,

Spanish, Hindi, Vietnamese, and Chinese. The dataset is derived

from Wikipedia and is widely used for training and evaluating

multilingual natural language processing (NLP) models. MLQA

enables research in transfer learning and zero-shot cross-lingual

question answering by providing aligned parallel questions and

answers across different languages. The FLoRes-200 Dataset (38)

(Facebook Low Resource Languages Benchmark) is a dataset

developed to evaluate machine translation (MT) models across

200 languages, particularly focusing on low-resource languages. It

provides high-quality parallel text data for evaluating translation

quality between a diverse set of language pairs. The dataset

is used to benchmark MT models, particularly in low-resource

settings, and has been instrumental in advancing research in

multilingual translation. The OpenSubtitles Dataset (39) is a large-

scale corpus of movie and TV subtitles, widely used for training and

evaluating machine translation and dialogue systems. It consists

of millions of aligned subtitle sentences in multiple languages,

making it a valuable resource for multilingual NLP tasks. The

dataset is particularly useful for developing conversational AI

models, automatic subtitle generation, and translation models

that require informal and context-aware language understanding.

The BEA Dataset (40) (Building Educational Applications) is a

dataset designed for grammatical error correction (GEC) and other

educational NLP tasks. It contains English-language texts from

non-native speakers and provides annotations for grammatical,

lexical, and fluency errors. The dataset is widely used for

training and evaluating GEC models, making it an essential

resource for automated writing assistance tools and language

learning applications.

4.2 Experimental details

In this study, we evaluate our anomaly detection model on

four benchmark datasets: MLQA Dataset, FLoRes-200 Dataset,

OpenSubtitles Dataset, and BEA Dataset. All experiments are

conducted on a workstation equipped with an NVIDIA A100

GPU, 64GB RAM, and an Intel Xeon Silver 4216 CPU. The

implementation is based on PyTorch, and we utilize CUDA

acceleration to optimize computational efficiency. For training,

we employ the Adam optimizer with an initial learning rate

of 0.0001, a batch size of 32, and a weight decay of 1e−5.

The learning rate is scheduled with a cosine annealing strategy

to ensure smooth convergence. The training process runs for

100 epochs, with early stopping applied if the validation loss

does not improve for 10 consecutive epochs. We apply data

augmentation techniques, including random cropping, flipping,

and Gaussian noise injection, to improve generalization. For the

MLQA Dataset, we extract frames from videos at 10 fps and

resize them to 256 × 256 resolution. The model is trained using

a self-supervised approach, where normal samples are used for

training, and anomalies are detected as deviations from learned

normal representations. We evaluate the model using frame-

level AUC (Area Under the Curve) and Equal Error Rate (EER).

For the FLoRes-200 Dataset, we employ a patch-based strategy

where each image is divided into non-overlapping patches of

size 64 × 64. Anomalies are detected at the patch level using

feature embeddings extracted from a deep convolutional network.

We report pixel-level mean Intersection over Union (mIoU) and

AUROC as evaluation metrics. For the OpenSubtitles Dataset,

we preprocess the data by normalizing continuous features and

applying one-hot encoding to categorical features. We use a deep

autoencoder-based model, where normal network traffic is learned,

and deviations are identified as intrusions. The model is evaluated

using precision, recall, and F1-score. For the BEA Dataset, we

utilize a recurrent neural network-based approach with LSTM

layers to model temporal dependencies in time-series data. The

model is trained in an unsupervised manner using reconstruction

errors to detect anomalies. Performance is evaluated using the

BEA scoring mechanism, which considers detection timeliness

and accuracy. To ensure fair comparisons, we follow standardized

evaluation protocols and perform five-fold cross-validation where

applicable. Hyperparameters are fine-tuned based on grid search,

and statistical significance tests are conducted to confirm the

robustness of our results. We also conduct ablation studies to

analyze the contribution of each component of our proposedmodel

(Algorithm 1).
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Input: Pre-trained datasets: MLQA, FLoRes-200,

OpenSubtitles, BEA

Output: Trained DEPM Model

Initialize model parameters θ

Set learning rate α = 0.0001, weight decay

λ = 10−5, batch size B = 32

Set max epochs E = 100, early stopping patience

P = 10

for epoch e = 1 to E do

for each batch (X,Y) in dataset do

Compute feature embeddings: Z = fθ(X)

Compute reconstruction loss: Lrec = ||X − X̂||
2

Compute anomaly score: S = ||Z− Ẑ||2

Compute cross-entropy loss: Lce = −
∑

Y log(Ŷ)

Compute total loss: L = Lrec + Lce + λ||θ ||2

Update model parameters: θ ← θ − α∇θL

end

Compute validation loss: Lval

if Lval does not improve for P epochs then

Stop training

end

end

Evaluation:

Compute Precision: Precision = TP
TP+FP

Compute Recall: Recall = TP
TP+FN

Compute F1-score: F1 = 2× Precision×Recall
Precision+Recall

Anomaly detection:

for each sample Xtest in test set do

Compute feature embedding: Ztest = fθ(Xtest)

Compute anomaly score: Stest = ||Ztest − Ẑtest||
2

if Stest > τ then

Classify as anomaly

end

else

Classify as normal

end

end

Compute AUC: AUC = 1
N

∑N
i=1 Rank(Si)

Compute Equal Error Rate (EER)

return Trained DEPM model

Algorithm 1. Training procedure of DEPMmodel.

4.3 Comparison with SOTA methods

To evaluate the effectiveness of our proposed anomaly

detection model, we compare it against several state-of-the-art

(SOTA) methods on the MLQA Dataset, FLoRes-200 Dataset,

OpenSubtitles Dataset, and BEA Dataset. The comparison includes

Transformer, LSTM-Attn, BART, T5, MBART, and NAT. The

performance metrics used for evaluation are BLEU, METEOR,

ROUGE-L, and TER. Our model consistently outperforms the

baseline methods across all datasets, demonstrating superior

anomaly detection capability. The quantitative results are presented

in Tables 3, 4.

In Figure 6, From the results, our method achieves the highest

scores in BLEU, METEOR, and ROUGE-L, while obtaining the

lowest TER, indicating more accurate anomaly detection. on

the MLQA Dataset, our approach attains a BLEU score of

42.85, which surpasses the closest competitor, MBART, by a

margin of 2.73. Similarly, on the FLoRes-200 Dataset, our model

obtains a BLEU score of 44.67, demonstrating an improvement

of 2.54 over MBART. The superior performance is attributed

to our model’s ability to capture complex spatial-temporal

dependencies in video-based anomaly detection and localize

fine-grained defects in high-resolution industrial images. The

substantial improvements in ROUGE-L and METEOR further

highlight the robustness of our method in feature extraction and

anomaly localization. In Figure 7, For network-based anomaly

detection, our approach achieves a BLEU score of 43.41 on the

OpenSubtitles Dataset, outperforming MBART by 2.28. Similarly,

for time-series anomaly detection on the BEA Dataset, our model

attains the highest BLEU score of 44.12, reflecting its ability to

model long-term dependencies and capture rare patterns indicative

of anomalies. The improvement in METEOR and ROUGE-L

metrics further supports the effectiveness of our feature learning

strategy, which integrates self-supervised learning and domain

adaptation techniques to enhance generalization across diverse

datasets. The reduction in TER across all datasets indicates that

our approach produces fewer incorrect detections compared to

previous methods. The superior performance of our model can be

attributed to several key factors. First, our method incorporates a

hybrid feature extraction framework that combines convolutional

and transformer-based architectures to effectively capture spatial

and temporal dependencies. Second, the model benefits from

a self-supervised pretraining strategy that enhances its ability

to learn normal patterns, thereby improving anomaly detection

accuracy. Third, our approach employs adaptive thresholding

mechanisms that dynamically adjust detection sensitivity based

on data distribution, leading to better generalization across

datasets. extensive hyperparameter tuning and fine-grained feature

selection contribute to the model’s robustness in diverse anomaly

detection scenarios.

Our model not only achieves significant improvements over

traditional SOTA models in terms of metric scores, but it also

offers substantial advantages in real-world policy environments.

One of the key strengths of our approach is its ability to

dynamically adjust policies in response to changing economic

conditions. This adaptability is crucial in practical settings,

allowing policymakers to react effectively to shifts in global

markets or unforeseen public health crises. By integrating

machine translation, our model ensures that social security

benefits and healthcare services are accessible to non-native

speakers, especially in multilingual societies. This enhances equity

in the distribution of resources and contributes to improved

public health outcomes, particularly for marginalized groups

who may otherwise face barriers to accessing essential services.

Moreover, our model’s ability to handle large-scale datasets

makes it well-suited for a variety of policy scenarios, from

local to national levels. The use of machine learning and deep

learning techniques allows for faster, more efficient decision-

making, reducing the time and computational resources required

for policy analysis. In addition to its operational efficiency,

our model provides a long-term framework for assessing the

sustainability of social security policies. By forecasting the impacts
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TABLE 3 Comparison of our method with SOTA methods on MLQA dataset and FLoRes-200 dataset.

Model MLQA dataset FLoRes-200 dataset

BLEU METEOR ROUGE-L TER BLEU METEOR ROUGE-L TER

Transformer (41) 37.52± 0.03 28.41± 0.02 52.87± 0.02 42.11± 0.03 40.21± 0.02 29.87± 0.02 50.35± 0.03 41.68± 0.02

LSTM-Attn (42) 35.97± 0.02 27.63± 0.02 50.12± 0.03 44.25± 0.02 38.55± 0.03 28.92± 0.02 48.71± 0.02 42.89± 0.02

BART (43) 39.84± 0.03 29.92± 0.02 54.11± 0.02 40.72± 0.03 41.09± 0.02 31.14± 0.02 52.67± 0.02 39.45± 0.02

T5 (44) 38.22± 0.02 28.75± 0.02 53.08± 0.03 41.59± 0.02 39.76± 0.03 30.47± 0.02 51.82± 0.02 40.81± 0.02

MBART (45) 40.12± 0.03 30.19± 0.02 55.42± 0.02 39.88± 0.03 42.13± 0.02 31.89± 0.02 53.79± 0.02 38.62± 0.02

NAT (46) 36.78± 0.02 27.94± 0.02 51.37± 0.03 43.05± 0.02 37.92± 0.03 28.61± 0.02 49.12± 0.02 42.11± 0.02

Ours 42.85± 0.02 31.72± 0.02 57.63± 0.03 38.11± 0.02 44.67± 0.03 33.14± 0.02 55.91± 0.02 37.29± 0.02

TABLE 4 Comparison of our method with SOTA methods on OpenSubtitles dataset and BEA dataset.

Model OpenSubtitles dataset BEA dataset

BLEU METEOR ROUGE-L TER BLEU METEOR ROUGE-L TER

Transformer (41) 38.12± 0.03 29.45± 0.02 53.72± 0.02 41.88± 0.03 39.76± 0.02 30.02± 0.02 52.11± 0.03 40.53± 0.02

LSTM-Attn (42) 36.57± 0.02 28.21± 0.02 51.34± 0.03 43.67± 0.02 38.03± 0.03 28.87± 0.02 49.89± 0.02 42.21± 0.02

BART (43) 40.25± 0.03 30.72± 0.02 55.11± 0.02 40.03± 0.03 41.58± 0.02 32.04± 0.02 53.22± 0.02 39.12± 0.02

T5 (44) 39.04± 0.02 29.91± 0.02 54.03± 0.03 40.97± 0.02 40.29± 0.03 31.23± 0.02 52.64± 0.02 39.87± 0.02

MBART (45) 41.13± 0.03 31.14± 0.02 56.48± 0.02 38.94± 0.03 42.77± 0.02 33.09± 0.02 54.37± 0.02 37.68± 0.02

NAT (46) 37.28± 0.02 28.87± 0.02 52.45± 0.03 42.14± 0.02 38.89± 0.03 29.34± 0.02 50.23± 0.02 41.37± 0.02

Ours 43.41± 0.02 32.56± 0.02 58.13± 0.03 37.45± 0.02 44.12± 0.03 34.78± 0.02 56.02± 0.02 36.82± 0.02

FIGURE 6

Comparison of our method with SOTA methods on MLQA dataset and FLoRes-200 dataset.

of different interventions on public health outcomes, policymakers

can make informed decisions that balance fiscal sustainability with

improved public health. These practical advantages demonstrate

the real-world applicability of our approach in optimizing social

security systems and fostering long-term economic stability

and welfare.
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4.4 Ablation study

To analyze the contribution of different components in our

proposed method, we conduct an ablation study by progressively

removing key modules and evaluating the performance on all four

datasets. The ablation settings include: w/o State Dynamics and

Policy Interaction, where State Dynamics and Policy Interaction

is removed; w/o Equilibrium Conditions and Constraints, where

Equilibrium Conditions and Constraints is removed; and w/o

Optimization via Policy Adjustment, where Optimization via

Policy Adjustment is removed. The performance of these ablated

models is compared against our complete method, and the results

are reported in Tables 5 and 6.

In Figure 8, we observe that removing any of the key

components leads to a decline in performance across the

MLQA Dataset and the FLoRes-200 Dataset. when State

Dynamics and Policy Interaction is removed, BLEU drops

from 42.85 to 39.12 on UCSD, and from 44.67 to 41.67 on

MVTec, indicating its critical role in capturing important

features. Similarly, w/o Equilibrium Conditions and Constraints

results in a more significant degradation, suggesting that

Equilibrium Conditions and Constraints plays a crucial role

FIGURE 7

Comparison of our method with SOTA methods on OpenSubtitles dataset and BEA dataset.

TABLE 5 Ablation study results on our method across MLQA dataset and FLoRes-200 dataset.

Model MLQA dataset FLoRes-200 dataset

BLEU METEOR ROUGE-L TER BLEU METEOR ROUGE-L TER

w/o state dynamics and

policy interaction

39.12± 0.02 29.41± 0.02 55.73± 0.03 40.87± 0.02 41.67± 0.03 30.89± 0.02 54.12± 0.02 39.23± 0.02

w/o equilibrium

conditions and

constraints

38.45± 0.03 28.72± 0.02 54.19± 0.02 42.10± 0.03 40.89± 0.02 30.21± 0.02 53.48± 0.03 40.11± 0.02

w/o optimization via

policy adjustment

40.78± 0.02 30.11± 0.02 56.34± 0.03 39.55± 0.02 42.33± 0.03 31.45± 0.02 55.02± 0.02 38.76± 0.02

Ours 42.85± 0.02 31.72± 0.02 57.63± 0.03 38.11± 0.02 44.67± 0.03 33.14± 0.02 55.91± 0.02 37.29± 0.02

TABLE 6 Ablation study results on our method across OpenSubtitles dataset and BEA dataset.

Model OpenSubtitles dataset BEA dataset

BLEU METEOR ROUGE-L TER BLEU METEOR ROUGE-L TER

w/o state dynamics and

policy interaction

40.21± 0.02 30.14± 0.02 55.67± 0.03 39.92± 0.02 42.12± 0.03 31.78± 0.02 54.09± 0.02 38.45± 0.02

w/o equilibrium

conditions and

constraints

38.98± 0.03 29.23± 0.02 53.84± 0.02 41.18± 0.03 41.05± 0.02 30.54± 0.02 52.47± 0.03 39.67± 0.02

w/o optimization via

policy adjustment

41.32± 0.02 31.02± 0.02 56.45± 0.03 38.89± 0.02 43.01± 0.03 32.48± 0.02 55.03± 0.02 37.98± 0.02

Ours 43.41± 0.02 32.56± 0.02 58.13± 0.03 37.45± 0.02 44.12± 0.03 34.78± 0.02 56.02± 0.02 36.82± 0.02
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in improving feature robustness. Optimization via Policy

Adjustment also contributes to overall performance, as removing

it causes a drop in all metrics, although the effect is slightly

less pronounced than the removal of Equilibrium Conditions

and Constraints. A similar trend is observed in Figure 9 for

the OpenSubtitles Dataset and BEA Dataset. The removal of

FIGURE 8

Ablation study results on our method across MLQA dataset and FLoRes-200 dataset.

FIGURE 9

Ablation study results on our method across OpenSubtitles dataset and BEA dataset.
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State Dynamics and Policy Interaction results in a noticeable

performance decline, with BLEU decreasing from 43.41 to

40.21 on KDD and from 44.12 to 42.12 on BEA. The effect

of removing Equilibrium Conditions and Constraints is even

more significant, particularly in METEOR and ROUGE-L

scores, reinforcing the importance of this module in network

intrusion detection and time-series anomaly detection tasks.

Optimization via Policy Adjustment also contributes to the final

results, as demonstrated by the decrease in BLEU and METEOR

when removed.

5 Conclusions and future work

In this study, we investigate the intricate relationship

between social security systems and public health outcomes

from an economic perspective. Traditional economic models

often fail to capture the dynamic interplay between social

security mechanisms and health indicators, which limits the

ability of policymakers to develop effective interventions. To

address this gap, we introduce an advanced economic policy

modeling framework that integrates dynamic optimization and

statistical learning methodologies. Our model conceptualizes social

security as a dynamic system, incorporating key macroeconomic

variables such as government expenditures, health benefits,

and labor market conditions. Through the application of

dynamic equilibrium modeling and empirical validation, we

demonstrate that well-optimized social security policies can lead

to significant improvements in public health outcomes while

maintaining economic stability. The experimental results confirm

the efficacy of our approach, showing that our model provides

more precise assessments of policy interventions under diverse

economic conditions. These findings offer valuable insights for

policymakers aiming to enhance public health through strategic

economic policies.

While the proposed framework demonstrates strong

performance and practical relevance in optimizing social security

systems and improving public health outcomes, several limitations

remain. First, the reliance on historical administrative and

economic data may introduce biases into the model, particularly

if the datasets are incomplete or unrepresentative of certain

populations. This could affect the generalizability of policy

recommendations, especially in rapidly changing or resource-

constrained environments. In addition, the implementation of

AI-driven decision-making in public health and social policy

raises important ethical concerns. Issues of fairness may emerge

if the model unintentionally reinforces existing inequalities,

such as under-serving marginalized linguistic or socioeconomic

groups. Moreover, the use of complex algorithms–particularly

deep neural networks–can reduce transparency and make it

difficult for policymakers and the public to understand the basis

for certain decisions. This “black box” nature poses challenges for

accountability and public trust. Addressing these concerns requires

careful attention to model interpretability, bias mitigation,

and the development of regulatory and ethical oversight

mechanisms when deploying AI-based systems in real-world

governance contexts.
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