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Background: Bacterial dysentery (BD) is a leading cause of diarrhea-related 
mortality globally, with its incidence heavily influenced by environmental 
factors. However, a climate zone-specific predictive model for BD was currently 
lacking in Sichuan Province.

Objective: This study aims to employ interpretable machine learning to explore 
the influence of environmental factors on BD incidence across different climate 
zones and to elucidate their interaction mechanisms.

Methods: Monthly data on meteorological and ecological factors, along with 
BD case reports, were collected from 183 counties in Sichuan Province (2005–
2023). The eXtreme Gradient Boosting (XGBoost) algorithm was employed to 
assess the influence of key environmental features, including precipitation, 
temperature, PM10, potential evaporation, vegetation cover, and NDVI, on BD 
incidence. To enhance interpretability, the model’s outputs were visualized and 
explained using SHapley Additive Explanations (SHAP).

Results: A machine learning model was developed to assess the impact of 
environmental factors on BD incidence across different climate zones. The 
findings revealed significant spatial heterogeneity in key drivers of BD. In the 
Central Subtropical Humid Climate Zone, BD incidence was predominantly 
influenced by average temperature, PM10, and minimum temperature. In 
the Subtropical Semi-Humid Climate Zone, potential evaporation, PM10, and 
precipitation emerged as the primary determinants. In the Plateau Cold Climate 
Zone, PM10, minimum temperature, and precipitation were the most significant 
factors. Notably, PM10 consistently showed a positive correlation with BD 
across all climate zones. Furthermore, average temperature showed a positive 
association with BD in the Central Subtropical Humid Climate Zone, while 
potential evaporation and minimum temperature demonstrated similar positive 
relationships in the Subtropical Semi-Humid and Plateau Cold Climate Zones, 
respectively. Additionally, precipitation displayed a U-shaped relationship with 
BD risk in both the Subtropical Semi-Humid and Plateau Cold Climate Zones.

Conclusion: This study developed a climate zone-specific predictive model for 
BD, systematically evaluating the interactions between environmental factors 
and BD dynamics. The findings provide a scientific basis for refining targeted 
public health intervention strategies.
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1 Introduction

Bacterial dysentery (BD), caused by Shigella, is an intestinal 
infectious disease transmitted through contaminated food, water, and 
person-to-person contact (1). It poses a significant public health 
challenge globally, particularly in developing countries (2). Although 
the incidence of BD has been effectively reduced in many regions 
worldwide over the past few decades through improved sanitation and 
public health interventions, it remains one of the leading causes of 
diarrheal mortality globally (3). According to statistics, BD caused 
210,000 deaths in 2016, with over 90% of cases occurring in developing 
countries, particularly among children under 5 years old and adults 
over 70 years old (4, 5).

BD exhibits distinct seasonal and geographical patterns. The 
peak periods of BD vary significantly across regions. For instance, 
in Bangladesh, the peak typically occurs between September and 
November (6); in Vietnam, it is between May and October (7); and 
in Sweden, between July and October (8). Studies have shown that 
temperature and precipitation directly influence pathogen survival 
and transmission (9, 10), highlighting the role of meteorological 
factors. In China, due to regional differences in meteorological 
conditions, the transmission patterns and peak periods of BD also 
vary (11, 12). Northern regions typically experience peaks in early 
summer, while southern regions experience peaks in summer and 
autumn (13, 14).

Recent extreme weather events, such as floods and El Niño, 
have exacerbated BD outbreak risks (15, 16). These events often 
lead to abnormal temperature increases, which are associated with 
BD epidemics (17, 18). Notably, in addition to meteorological 
conditions, ecological factors also play a significant role in BD 
incidence. For example, increased forest cover can help prevent BD 
by improving water quality (19).

Although many studies have examined the relationship 
between meteorological factors and BD, most relied on single-
factor analyses and short-term, large-scale data (20–23), limiting 
understanding of local transmission patterns and characteristics. 
The impact of local meteorological and ecological factors on 
disease dynamics may differ significantly from findings based on 
large-scale studies (24, 25). Furthermore, short-term data cannot 
reflect long-term trends. Therefore, developing models that 
integrate long-term, fine-scale meteorological and ecological data 
is crucial for predicting and analyzing BD activity.

Traditional statistical methods are limited in capturing the 
complex nonlinear relationships between meteorological, ecological, 
and disease incidence data (26). Therefore, adopting more advanced 
machine learning methods can more effectively capture these 
complex relationships, providing more accurate predictions and 
assessments for BD prevention and control. As an efficient machine 
learning method, eXtreme Gradient Boosting (XGBoost) has 
demonstrated significant potential in various fields in recent years, 
particularly in handling large-scale data and modeling nonlinear 
relationships among multidimensional variables, offering greater 
flexibility and accuracy compared to traditional regression models (9, 
27). It can efficiently process high-dimensional, nonlinear, and 

heterogeneous complex data and, through the integration of multiple 
decision trees, exhibits strong predictive capabilities, accurately 
capturing the relationships between diseases and multiple influencing 
factors (28, 29). This provides a scientific basis for the formulation of 
health intervention strategies (30, 31). Therefore, this study employs 
the XGBoost model to assess the impact of meteorological and 
ecological factors on BD activity across different climate zones at the 
county and monthly scales, providing data for targeted public 
health interventions.

2 Materials and methods

2.1 Study area

Sichuan Province, located in southwestern China, encompasses 
183 counties with diverse climatic conditions. It is divided into three 
distinct climate zones based on variations in temperature, precipitation, 
and sunlight (32): (a) Central Subtropical Humid Climate Zone (Zone 
1): Covering 128 counties, this zone is characterized by warm, humid 
conditions year-round. Average annual temperatures range from 16°C 
to 18°C, with mild winters and hot summers. Rainfall is abundant, 
averaging 1,000–1,200 mm annually. Over half of the precipitation 
occurs during the summer months. (b) Subtropical Semi-Humid 
Climate Zone (Zone 2): This zone includes 23 counties and features 
relatively high temperatures throughout the year, averaging 12°C to 
20°C. The region experiences a pronounced dry season lasting 7 
months, with annual precipitation of 900–1,200 mm, 90% of which 
falls between May and October. (c) Plateau Cold Climate Zone (Zone 
3): Comprising 32 counties, this zone is marked by significant elevation 
changes and a cold temperate climate. Average annual temperatures 
range from 4°C to 12°C, with cool summers and cold winters. Annual 
precipitation is lower, ranging from 500 to 900 mm, but the region 
benefits from ample sunshine (Figure 1).

2.2 Data collection

In China, BD is classified as a Category B notifiable infectious 
disease, requiring reporting to the local Center for Disease Control and 
Prevention within 24 h of diagnosis. The BD case data in this study 
were obtained from the National Notifiable Diseases Reporting System. 
Case definitions adhered to the standardized criteria established by the 
National Health and Family Planning Commission of the People’s 
Republic of China.1 Both clinically diagnosed and laboratory-
confirmed cases were included in the analysis. Meteorological and 
ecological data were sourced from the National Earth System Science 
Data Center, National Science and Technology Infrastructure of China2 
and the National Tibetan Plateau/Third Pole Environment Data 

1 http://www.nhc.gov.cn/zwgkzt/s9491/200802/39040.shtml

2 http://www.geodata.cn
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Center.3 Meteorological factors: precipitation, average temperature, 
minimum temperature, maximum temperature (33), PM10 (34), and 
potential evaporation. Ecological factors: vegetation cover (250 m) (35) 
and NDVI. These factors, along with case numbers, were matched with 
county-level administrative divisions to construct a county-level BD 
database for Sichuan Province spanning January 2005 to December 
2023. All case data in this study were anonymized and did not require 
institutional review board assessment.

2.3 Data analysis

In this study, we employed the XGBoost machine learning model. 
First, we  conducted a fitting analysis on the province-wide data. 
Subsequently, we categorized the data according to different climate 
zones and conducted separate model fitting analyses for each climate 

3 http://data.tpdc.ac.cn

zone. The specific steps were as follows: To ensure reliable evaluation, 
we used stratified sampling to split the dataset into a training set (70%) 
and a test set (30%). Hyperparameter tuning and model evaluation were 
carried out using 10-fold cross-validation and Bayesian optimization 
(detailed hyperparameter settings are provided in Supplementary Table 1). 
Model performance was evaluated using Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and R-squared (R2). Additionally, 
SHAP (SHapley Additive exPlanations) analysis was applied to interpret 
the model and quantify the contribution of each variable to the predictive 
outcomes. To assess the lag effects of the variables, we conducted lag 
effect analyses on the two most important variables, with lag periods set 
to 1 to 3 months. MAE was used as the evaluation metric to measure the 
lagged impact of these variables on model performance. All procedures 
were implemented in Python version 3.12.4,4 with the spatial distribution 
map created using QGIS version 3.40.0.5

4 https://www.python.org/downloads/release/python-3124/

5 https://www.qgis.org/

FIGURE 1

Spatial distribution of climate zones and 183 county-level administrative divisions.
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3 Results

3.1 Descriptive analysis

Between 2005 and 2023, Sichuan Province exhibited 
considerable variability in BD case counts, ultimately 
demonstrating a general decrease. The yearly incidence rate 
decreased from 34.72 to 3.25 per 100,000 individuals, exhibiting 
significant seasonal variation: 67.25% of incidences transpired 
between May and October, with a peak in June. The peak incidence 
periods varied across different climate zones: the Central 
Subtropical Humid Climate Zone peaked from August to 
September, the Subtropical Semi-Humid Climate Zone peaked 
from May to June, and the Plateau Cold Climate Zone peaked from 
July to August (Figure  2). Cases were documented in all 183 
counties, albeit the distribution exhibited geographical variation. 
The Central Subtropical Humid Climate Zone included 55.86% of 
cases (mean: 938 cases per county), succeeded by the Subtropical 
Semi-Humid Climate Zone (33.11%; 3,094 cases per county) and 
the Plateau Cold Climate Zone (11.03%; 741 cases per county) 
(Supplementary Figure 1). We performed statistical calculations on 
meteorological and ecological data from 183 counties. Key metrics, 
including the mean, median, and standard deviation, were 
obtained for eight factors: precipitation, average temperature, 
minimum temperature, maximum temperature, PM10, potential 
evaporation, NDVI, and vegetation cover (250 m). Detailed results 
are provided in Supplementary Table 2.

3.2 Performance of machine learning 
models

Using monthly data from 2005 to 2023, we conducted XGBoost 
model analyses for the entire province as well as for each individual 
climate zone. The performance metrics of the models on the test set 
were presented in Table  1. The MAE values for the overall 

(province-wide), Zone 1, Zone 2, and Zone 3 were 4.40, 3.21, 10.87, 
and 2.77, respectively, while the RMSE values were 9.96, 6.05, 20.21, 
and 5.30, reflecting the average and overall error levels of the models. 
The R2 values, representing the models’ explanatory power, were 0.76, 
0.89, 0.77, and 0.81, respectively. In summary, the models 
demonstrated strong predictive performance.

3.3 Feature analysis

Through SHAP analysis, this study systematically revealed the 
importance ranking of the influencing factors included in the model 
(see Supplementary Table 3 for details) and effectively distinguished 
the positive and negative correlations between these factors and BD 
incidence (Figure 3). Province-wide, the factor importance ranking 
was as follows: potential evaporation, maximum temperature, PM10, 
vegetation cover (250 m), minimum temperature, NDVI, average 
temperature, and precipitation. Among these, potential evaporation, 
maximum temperature, and PM10 showed positive associations with 
BD incidence, while vegetation cover (250 m) and NDVI exhibited 
negative associations (Figure 4).

Based on the SHAP analysis of the climate zone-specific models, 
the results indicated the following: In the Central Subtropical Humid 
Climate Zone, the factor importance ranking was: average 
temperature, PM10, minimum temperature, maximum temperature, 
potential evaporation, vegetation cover (250 m), NDVI, and 
precipitation. Among these, average temperature, PM10, and 
maximum temperature were positively correlated with BD incidence, 
while vegetation cover (250 m) and NDVI were negatively correlated 
(Figure 5). In the Subtropical Semi-Humid Climate Zone, the factor 
importance ranking was: potential evaporation, PM10, precipitation, 
minimum temperature, average temperature, vegetation cover 
(250 m), NDVI, and maximum temperature. PM10 and potential 
evaporation showed positive associations, while vegetation cover 
(250 m) and NDVI remained negatively correlated (Figure 6). In the 
Plateau Cold Climate Zone, the factor importance ranking was: PM10, 

FIGURE 2

Time series distribution of bacillary dysentery (BD) cases and monthly case distribution by region: Overall (province-wide), Zone 1 (Central Subtropical 
Humid Climate Zone), Zone 2 (Subtropical Semi-Humid Climate Zone), and Zone 3 (Plateau Cold Climate Zone).
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minimum temperature, precipitation, potential evaporation, NDVI, 
vegetation cover (250 m), maximum temperature, and average 
temperature. Minimum temperature, average temperature, and PM10 
were positively correlated with BD incidence, but no significant 
negative associations were detected (Figure  7). The lagged effect 
analysis (1–3 months) for the top two most important variables 
revealed minimal impacts of different lag periods on the model’s MAE 
values (see Supplementary Table 4 for details). Furthermore, to further 
quantify the relationships between influencing factors and BD 
incidence, this study analyzed the threshold effects of key 
environmental parameters using SHAP dependence curves. The 
results showed that the interaction patterns of these factors across 
climate zones were highly consistent with the findings above. Detailed 
threshold values will be  thoroughly discussed in the subsequent 
analysis section.

4 Discussion

Based on long-term, fine-scale research data, this study 
systematically revealed the spatiotemporal heterogeneity of BD 
incidence and its environmental driving mechanisms across different 
climate zones in Sichuan Province. Analysis using the XGBoost 
machine learning model demonstrated that environmental factors 
significantly influenced BD transmission in a climate zone-specific 
manner, highlighting the importance of fine-resolution climate zoning 
in assessing BD incidence risk.

To elucidate the contribution of each environmental factor, this 
study employed the game theory-based SHAP analysis method. The 
core principle of this method involves calculating Shapley values to 
quantify the contribution of each feature to the prediction outcome, 
thereby enhancing model transparency and interpretability. This 

TABLE 1 Performance metrics of the XGBoost model across climate zones.

Metrics Overall Zone 1 Zone 2 Zone 3

MAE 4.40 3.21 10.87 2.77

RMSE 9.96 6.05 20.21 5.30

R2 0.76 0.89 0.77 0.81

FIGURE 3

Distribution of SHAP values for environmental factors across regions: (A) Overall, (B) Zone 1, (C) Zone 2, and (D) Zone 3.
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FIGURE 5

SHAP dependence plots for environmental features in the XGBoost model: Central Subtropical Humid Climate Zone analysis.

approach assists researchers and policymakers in gaining a deeper 
understanding of how various factors influence prediction results, 
providing valuable insights for BD monitoring and prevention.

The association between ambient temperature and BD incidence 
exhibited significant spatial heterogeneity. In the Central Subtropical 
Humid Climate Zone, BD incidence risk significantly increased when 
the average temperature exceeded a threshold of 18°C, which aligns 
with the growth temperature of Shigella (6–8°C to 45–47°C, optimal 

around 37°C) (36), suggesting that warm environments facilitate 
bacterial proliferation and transmission both within and outside hosts. 
In the Plateau Cold Climate Zone, risk increased when the minimum 
temperature exceeded 2°C, a phenomenon that may not directly stem 
from pathogen biological characteristics but rather be associated with 
increased outdoor activities among local residents at this temperature 
threshold (37). Rising temperatures prompted local residents to 
engage in more outdoor activities, thereby increasing the risk of 

FIGURE 4

SHAP dependence plots for environmental features in the XGBoost model: Province-wide analysis.
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pathogen exposure. Conversely, in the Subtropical Semi-Humid 
Climate Zone, the predictive importance of temperature factors 
significantly decreased due to consistently high annual temperatures, 
suggesting that temperature is no longer a primary limiting factor for 
BD transmission in this region, and disease spread may be  more 
regulated by other environmental factors, such as water availability or 
precipitation patterns.

The impact of precipitation on BD incidence also exhibited 
significant climate zone dependence. In the Central Subtropical 
Humid Climate Zone, well-developed sanitation infrastructure 
effectively blocked precipitation-related waterborne transmission 
routes, resulting in no clear correlation between precipitation and 
BD incidence. This finding highlights that robust water, sanitation, 
and hygiene (WASH) infrastructure can effectively mitigate the 

FIGURE 6

SHAP dependence plots for environmental features in the XGBoost model: Subtropical Semi-Humid Climate Zone analysis.

FIGURE 7

SHAP dependence plots for environmental features in the XGBoost model: Plateau Cold Climate Zone analysis.
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influence of climatic factors (e.g., heavy rainfall) on waterborne 
diseases, decoupling environmental triggers from disease outcomes. 
In contrast, in the Subtropical Semi-Humid Climate Zone, a sharp 
increase in precipitation after the dry season (monthly precipitation 
> 50 mm in May) coincided significantly with the peak BD incidence 
period. This pattern is consistent with the outbreaks of diarrheal 
diseases triggered by heavy rainfall after droughts observed in other 
global regions [e.g., Ecuador (38), Eswatini (39), the United Kingdom 
(40), Japan (41), and Vietnam (7)]. This may be related to the burst 
of microbial activity caused by rewetting dry soil (42), which, during 
heavy rainfall, facilitates the flushing of pathogens into water bodies, 
subsequently triggering disease outbreaks. This phenomenon 
suggests that in regions prone to alternating dry and heavy rainfall 
periods, public health strategies should not only focus on immediate 
flood response but also manage the environmental consequences of 
drought. In the Plateau Cold Climate Zone, BD incidence risk 
significantly increased when monthly precipitation exceeded 30 mm. 
This threshold may reflect a critical point of the region’s sanitation 
infrastructure capacity. Heavy rainfall can overload wastewater 
treatment plants, leading to the overflow of untreated or partially 
treated sewage into the environment, or overwhelm septic tank 
systems, increasing the risk of fecal contaminant entry into water 
sources. This suggests that even moderate precipitation can pose a 
public health threat in regions with relatively weak infrastructure.

Potential evapotranspiration exhibited the highest predictive 
importance in the Subtropical Semi-Humid Climate Zone. As a 
comprehensive indicator reflecting meteorological factors such as 
temperature, humidity, wind speed, and solar radiation, an increase in 
potential evaporation was associated with the synergistic effects of 
high temperature, low humidity, and strong solar radiation (43). High 
potential evaporation values indicate increased atmospheric demand 
for moisture, which, when precipitation is insufficient, exacerbates 
regional water stress. Under these circumstances, residents may 
be  forced to rely on suboptimal or unsafe water sources, thereby 
increasing their risk of exposure to pathogenic microorganisms. As a 
comprehensive meteorological indicator, potential evaporation can 
serve as a valuable early warning indicator for hydrological stress and 
impending water scarcity, supporting early warning systems for 
waterborne disease risks.

Increased PM10 concentration were positively correlated with BD 
incidence. Based on existing research, this study proposes that PM10 
may influence BD incidence through the following mechanisms: First, 
particulate matter can serve as a carrier for pathogenic microorganisms 
(44), facilitating their direct transmission through aerosol deposition 
or water contamination. Second, PM10 can alter the local 
microenvironment, affecting pathogen survival and transmission 
efficiency. Chemical pollutants within particulate matter may inhibit 
microbial growth at high concentrations but could provide a suitable 
microenvironment and nutrients at moderate concentrations (45). 
Furthermore, long-term exposure to PM10 may impair the barrier 
function of the intestinal mucosa, thereby increasing host 
susceptibility to pathogens. PM10 exposure can lead to alterations in 
the gut microbiota, reducing the abundance of beneficial 
microorganisms and promoting the overgrowth of pro-inflammatory 
species, which in turn contributes to intestinal barrier dysfunction, 
oxidative stress, and inflammatory responses, all associated with the 
development and progression of gastrointestinal inflammatory 
diseases (46, 47).

Ecological factors, including vegetation cover (250 m) and NDVI, 
were negatively correlated with BD incidence in both the Central 
Subtropical and Subtropical Climate Zones. These results have been 
corroborated in previous studies (48, 49). This study hypothesizes that 
the mechanisms by which green spaces reduce BD incidence may 
include: Vegetation, particularly riparian vegetation, reduces runoff of 
sediments, fertilizers, and pesticides from agricultural fields through 
physical buffering, and helps capture and cycle nutrients, preventing 
their excessive entry into water bodies that could lead to eutrophication 
(50). Furthermore, vegetation can lower ambient temperatures by 
providing shade and enhancing evapotranspiration, thereby mitigating 
the risk of BD transmission associated with rising temperatures 
(51, 52).

Furthermore, this study also found that BD case numbers in 
Sichuan Province exhibited significant seasonal variations, with 
differing incidence peaks across climate zones, suggesting region-
specific seasonal driving mechanisms. In the Central Subtropical 
Humid Climate Zone, the peak BD incidence occurred from August 
to September. This correlated with the average temperature in this 
region exceeding the 18°C threshold. Despite the well-developed 
sanitation infrastructure in this region, which effectively blocked 
direct waterborne transmission routes related to precipitation, high 
summer temperatures may promote pathogen transmission by 
accelerating bacterial growth and increasing the frequency of 
outdoor activities and water body contact. In the Subtropical Semi-
Humid Climate Zone, the peak BD incidence occurred from May to 
June. This peak period significantly coincided with a sharp increase 
in precipitation after the dry season (monthly precipitation >50 mm 
in May), indicating that this ‘dry-wet transition’ effect was a key 
driving factor for seasonal BD outbreaks in this region (42). 
Additionally, this region may experience water stress, compelling 
residents to rely on suboptimal water sources during the dry season, 
while runoff pollution from initial rainfall in the wet season 
exacerbates the incidence risk. In the Plateau Cold Climate Zone, the 
peak BD incidence occurred from July to August. This correlated 
with the minimum temperature in this region exceeding the 2°C 
threshold, where rising temperatures may encourage local residents 
to increase outdoor activities. Furthermore, increased monthly 
precipitation may also contribute to regulating seasonal BD 
incidence in this region. These climate zone-specific seasonal 
patterns further emphasize that BD epidemiology is not determined 
by a single factor, but rather results from complex interactions 
among environmental conditions, infrastructure, and human 
behavior. Understanding these refined seasonal driving mechanisms 
is crucial for developing more targeted and timely public 
health interventions.

Despite utilizing the XGBoost model to elucidate the influence 
of meteorological and ecological factors on BD incidence, this study 
has several limitations, specifically: First, no statistically significant 
lagged effects were identified in this study; however, this does not 
imply the absence of lagged impacts of environmental factors on BD 
incidence. The inconspicuous lagged effects may be attributed to 
inherent limitations of the current dataset and modeling 
methodology. Second, the model relies on reported data, which may 
be subject to underreporting issues. Third, BD transmission is also 
influenced by socioeconomic factors, sanitation infrastructure, and 
public health awareness (53, 54), which were not fully considered in 
this study. Finally, while SHAP analysis effectively identified key 
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predictive factors, the method itself only captures associations 
between features and predicted outputs, without establishing causal 
relationships. Therefore, the results of this study should 
be interpreted with caution.

In conclusion, through an in-depth analysis of the spatiotemporal 
heterogeneity of BD and its environmental driving mechanisms in 
Sichuan Province, this study revealed the influence of environmental 
factors on BD transmission. These findings provide a scientific basis 
for developing climate zone-specific BD monitoring, prevention, and 
intervention strategies. In the future, a more comprehensive BD 
surveillance and reporting system should be established, integrating 
socioeconomic factors to more comprehensively assess the potential 
influencing factors of BD incidence, thereby achieving more precise 
and effective disease control and prevention.
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