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Introduction: This study examines the synergistic effects of multi-pollutant 
exposure on hepatic lipid accumulation in non-alcoholic fatty liver disease 
(NAFLD) through the application of an explainable machine learning framework. 
This approach addresses the limitations of traditional models in managing 
complex environmental interactions.

Methods: Using data from the National Health and Nutrition Examination Survey 
(NHANES) 2015–2016 (n = 494), we developed a stacked ensemble model that 
integrates LASSO, support vector machines (SVM), neural networks, and XGBoost 
to analyze urinary biomarkers of heavy metals, polycyclic aromatic hydrocarbons 
(PAHs), and volatile organic compounds (VOCs). The Environmental Pollution 
Exposure Index (EPEI) was constructed to quantify cumulative effects, with 
SHAP values employed to identify critical pollutants and thresholds. Subgroup 
analyses were conducted to assess heterogeneity across different Body Mass 
Index (BMI), diabetes, and hyperlipidemia statuses.

Results: 2-Hydroxynaphthalene was identified as the predominant 
pollutant (SHAP = 0.89), with cobalt and VOC metabolites (e.g., N-Acetyl-
S-(2-carbamoylethyl)-L-cysteine) also contributing significantly. The EPEI 
demonstrated strong associations with obesity-related parameters (PLF: 7.02 vs. 
3.41  in high/low-exposure groups, p < 0.0001) and hyperlipidemia (OR = 2.28 
vs. 1.08, p = 2.7e-06). The model demonstrated an amplification of effects in 
subgroups with severe obesity (OR = 2.66, 95% CI: 2.08–3.24) and impaired 
fasting glucose.

Discussion: This study establishes a machine learning framework for assessing 
multi-pollutant risks in NAFLD, identifying 2-Hydroxynaphthalene as a 
significant hepatotoxicant and EPEI as a quantifiable metric of exposure. The 
findings highlight the metabolic vulnerabilities associated with obesity and early 
dysglycemia, thereby informing precision prevention strategies. Methodological 
advancements integrate exposomics with interpretable artificial intelligence, 
facilitating targeted interventions in environmental health.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD), a predominant 
contributor to the global burden of chronic liver diseases, has 
surpassed the conventional understanding centered on metabolic risk 
factors in its pathogenesis. Increasing attention is being paid to the 
pathogenic influence of environmental pollutant exposure (1–3). 
Epidemiological research indicates that urinary metabolites of heavy 
metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic 
compounds (VOCs) may perturb hepatic lipid metabolic homeostasis 
through various mechanisms (4).

Mitochondrial dysfunction is a crucial pathway linked to insulin 
resistance and metabolic syndrome, triggered by persistent organic 
pollutants (POPs) like PCBs and PAHs. Low doses of bisphenol A 
(BPA) also cause lipid buildup in liver cells due to ROS from 
mitochondrial damage. Additionally, PAHs induce lipid peroxidation, 
leading to oxidative stress and immune system changes. Urinary 
metabolites of PAHs, such as benzo[a]pyrene, are associated with 
increased lipid peroxidation products, potentially worsening liver cell 
membrane damage and inflammation (5–8). Inflammatory pathways 
further underscore the influence of PAHs and VOCs on hepatic lipid 
metabolism. Exposure to PAHs is linked to elevated levels of 
inflammatory markers, such as interleukin (IL)-6 and IL-8, which may 
impair liver function by enhancing oxidative stress and inflammatory 
pathways (9). Similarly, urinary metabolites of VOCs are associated 
with biomarkers of oxidative stress, indicating that VOCs may 
adversely affect liver health through the induction of systemic 
oxidative stress (10). Various studies have examined the combined 
impact of PAHs and metals on oxidative stress. Research in Caofeidian, 
China, found that co-exposure to these substances was positively 
linked to oxidative stress markers like 8-OHdG and 8-iso-PGF2α, 
suggesting a potential contribution to liver dysfunction. Additionally, 
VOCs have been studied for their role in liver issues, such as NAFLD 
(11). A study on Korean adolescents showed that low-level exposure 
to VOCs and PAHs was associated with higher ALT activity and 
NAFLD prevalence, indicating that these compounds may harm liver 
health through oxidative stress pathways (12).

.Traditional generalized linear models, such as logistic regression, 
are inadequate for addressing the nonlinear interactions and 
multicollinearity present in high-dimensional data, thus limiting their 
effectiveness in analyzing the joint effects of multiple pollutants. This 
study introduces an innovative approach by employing a stacked 
ensemble learning framework (13–15). Initially, base models—
including LASSO regression (with λ optimized via 10-fold cross-
validation) (16), support vector machine (SVM) with a radial basis 
function kernel (17), and a neural network (NN) with a single hidden 
layer (18)—are employed to capture localized nonlinear relationships 
and sparse associations between pollutants and percentage of liver fat 
(PLF) (19). Subsequently, XGBoost (20) is employed as the meta-
model to synthesize predictions from base models, utilizing its 
gradient-boosted tree algorithm to unravel complex interactions 
among pollutants. To enhance interpretability, Shapley Additive 
exPlanations (SHAP) values are employed to quantify the marginal 
contributions of individual pollutants and to identify critical risk 
substances with specific exposure thresholds (21).

Nevertheless, existing research predominantly emphasizes 
single-pollutant analyses, leaving the synergistic effects of 
combined exposure to heavy metals, PAHs, and VOCs in 

real-world environments largely unexplored. This gap significantly 
impedes the advancement of environmental risk models for 
NAFLD. Drawing on NHANES 2015–2016 data, this study 
pioneers the systematic integration of urinary heavy metals, PAHs, 
and VOCs metabolites to assess their combined effects on PLF 
through the proposed machine learning framework. This 
methodological innovation not only addresses the limitations of 
traditional statistical models but also lays a theoretical foundation 
for developing exposomics-based precision prevention strategies 
for NAFLD.

2 Methods

2.1 Data provenance and processing

The National Health and Nutrition Examination Survey 
(NHANES)1 is a nationally representative cross-sectional 
surveillance program administered by the National Center for 
Health Statistics (NCHS) under the auspices of the Centers for 
Disease Control and Prevention (CDC). Initiated in the 1960s, this 
program systematically assesses the health and nutritional status of 
both adult and pediatric populations in the United States. It employs 
a multi-stage stratified random sampling methodology to ensure 
that the samples accurately reflect the diverse geographic regions, 
racial groups, and age cohorts within the U.S. population. In the 
present study, data from the 2015–2016 survey cycle were utilized. 
The National Center for Health Statistics (NCHS) research ethics 
review board (ERB) approved the NHANES study protocol, and 
participants provided written informed consent at enrollment. The 
NCHS Institutional Review Board/ethics review board (IRB/ERB) 
protocol numbers of 2015–2016 National Health and Nutrition 
Survey is “#2011–17.” The inclusion criteria required participants 
to have complete datasets concerning urinary heavy metals, VOCs, 
PAHs, and urinary creatinine measurements. To reduce 
confounding variables and enhance the validity of the analysis, 
individuals lacking data on diabetes mellitus or dyslipidemia 
diagnoses were excluded. Following these selection procedures, a 
final cohort of 494 participants was included in the statistical 
analysis. PLF was calculated according to methodologies detailed 
in a previously published study (19). For basic clinical information, 
we used multiple imputation to fill in missing values. Due to the fact 
that creatinine is not reabsorbed after glomerular filtration, it can 
be  used as a quantitative biomarker for detecting glomerular 
filtration rate or renal excretion function. In practical operation, it 
is sometimes difficult to collect urine samples for a long time, and 
there are many influencing factors during storage. Therefore, the 
ratio of biomarkers to creatinine in random urine samples can 
be used as a detection indicator, which can more conveniently and 
effectively reflect the true situation of patients and facilitate 
sampling. Concentrations of urinary heavy metals, VOCs, and 
PAHs were normalized to urinary creatinine levels to account for 
variations in urine dilution, with final values expressed in 
micrograms per gram of creatinine (μg/g creatinine).

1 https://wwwn.cdc.gov/Nchs/Nhanes/
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2.2 Machine learning and visualization

In this study, we employed a machine learning-based ensemble 
learning framework to analyze the complex relationship between 
environmental exposures and PLF. Initially, we extracted heavy metals, 
VOCs, and PAHs adjusted for creatinine as features from the filtered 
dataset, with continuous PLF serving as the target variable. To develop 
robust predictive models, we  trained three base learners—SVM, 
LASSO regression, and a neural network—and assessed their 
performance using five-fold cross-validation. Subsequently, 
we constructed a stacked ensemble model that takes the predicted 
values of the base learners as input features, utilizes XGBoost as a meta 
model to integrate multi-source information, and based on this, 
constructs the Environmental Pollution Exposure Index (EPEI). Our 
study implements a nested cross-validation framework (5 × 5-fold) for 
model optimization: the inner loop conducts hyperparameter 
selection via randomized search, while the outer loop evaluates 
generalization performance. Specifically, the support vector machine 
(SVM) optimizes radial basis function kernel parameters through a 
customized grid search (σ: 10−3–101, C: 10−2–102). LASSO regression 
fixes α = 1 and tunes regularization strength λ across an extended 
logarithmic range (10−5–102). The neural network systematically 
adjusts hidden layer neurons (3–15 with incremental steps of 3) and 
L2 weight decay coefficients (10−4–100). For meta-modeling, XGBoost 
utilizes base model predictions as explanatory variables and 
automatically optimizes tree parameters via outer cross-validation 
(tuneLength = 5). All base models undergo standardization 
preprocessing. Both nested layers employ a five-fold stratified cross-
validation design to ensure independence between parameter 
selection and performance evaluation phases, thereby preventing 
information leakage. To interpret the model and evaluate feature 
importance, we employed SHAP values. Derived from SHAP values 
in cooperative game theory, SHAP values quantify the contribution of 
each feature to the predictions. We calculated SHAP values for both 
the meta-model and the base learners to identify the top 10 features 
critical for predictions, and subsequently visualized these findings.

{ }=
SSsvn LA O NNLet the base model set be h ,h ,h , whose 

predictions form the feature vector:

 
( ) ( ) ( ) ( ) = ∈  

3, ,
Tx

SVM L NNz x h x h ASSO h x R

The meta-model learns a nonlinear mapping via XGBoost:
→3:f R R, where ( ) =·f XGBoost model

 ( ) ( )( )=    :The final EPEI is defined as EPEI x f z x

For the purpose of visualization, we employed beeswarm and 
pie charts. The beeswarm plot effectively demonstrates the 
distribution of SHAP values across various features, thereby 
elucidating the relationship between feature values and model 
outputs. Meanwhile, the pie chart provides an intuitive 
representation of the importance ranking of features. These 
visualizations facilitate our understanding of the impact of 
environmental exposures on PLF, thereby providing a foundation 
for further analyses.

2.3 Subgroup analysis strategy

This study utilized a stratified analysis approach to investigate the 
heterogeneity in the relationship between EPEI and PLF across 
various population subgroups. Utilizing data from the NHANES, 
we incorporated gender, Body Mass Index (BMI) categories, diabetes 
status, and hyperlipidemia status as stratification variables to develop 
a weighted survey design object (weight variable: WTFSM, cluster 
variable: sdmvpsu, strata variable: sdmvstra). Initially, we established 
a baseline linear regression model and conducted interaction testing 
using analysis of variance. Specifically, we employed a likelihood ratio 
test to compare the full model (including interaction terms) with the 
reduced model (containing only main effects) to determine interaction 
p-values. The subgroups were delineated as follows: ① gender (male/
female); ② BMI categories [underweight (BMI < 18.5), normal 
(18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), obese (30 ≤ BMI < 
35), severely obese(BMI ≥ 35)]; ③ diabetes status [normal, impaired 
fasting glucose (IFG) fasting plasma glucose: 6.1–7.0 mmol/L; 2-h 
postprandial plasma glucose: within the normal range], impaired 
glucose tolerance (IGT) (Fasting blood glucose:< 7.0 mmol/L; 2-h 
postprandial blood glucose: 7.8 ~ 11.1 mmol/L), diagnosed diabetes 
(DM); and ④ hyperlipidemia status (yes/no).

2.4 Model evaluation and statistical 
workflow

To evaluate the predictive performance of the model, we employed 
weighted receiver operating characteristic (ROC) curve analysis to 
assess the discriminatory capacity of EPEI for detecting PLF 
abnormalities (>5). When calculating the SHAP value, we  used 
kernelshap and SHAPforxgboost to meet different requirements. This 
involved calculating the area under the curve (AUC) for each 
subgroup and comparing inter-group differences using the Bootstrap 
method. All analyses were conducted using R version 4.2.3, with the 
primary use of the nhanesR package for diagnosing comorbidities and 
managing complex sampling designs, and ggplot2 for data 
visualization. The statistical analysis adhered to the following 
procedure (1): Data preprocessing, which included converting ordinal 
categorical variables to numerical format and standardizing 
continuous variables (2); Establishment of a weighted linear regression 
model (3); Testing for interaction significance using ANOVA (4); 
Estimation of stratum-specific effect sizes along with 95% confidence 
intervals (5); Visualization of subgroup-specific effects using forest 
plots with annotated interaction p-values. All model parameter 
estimates incorporated sampling weights to ensure that the results 
were representative.

3 Results

3.1 Machine learning and SHAP 
interpretation

This study utilized SHAP value analysis to elucidate the 
contributions of various features across different machine learning 
models in predicting outcomes. In the meta-model analysis, 
2-Hydroxynaphthalene exhibited the highest SHAP value of 0.8939, 
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indicating a substantial impact on model predictions (Figure 1). The 
features 3-methipurc-acd-&-4-methipurc-acd and Cobalt demonstrated 
SHAP values of 0.4306 and 0.2962, respectively, underscoring their 
relatively high importance in the model. Within the base learners 
(Figure  2), the SVM model assigned a SHAP value of 0.4278 to 
2-Hydroxynaphthalene and 0.2798 to N-Acetyl-S-(2-carbamoylethyl)-
L-cysteine. In the LASSO model, 2-Hydroxynaphthalene had a SHAP 
value of 0.6454, while N-Acetyl-S-(2-carbamoylethyl)-L-cysteine had a 
value of 0.1957. In the neural network model, N-Acetyl-S-(3,4-
dihydroxybutyl)-L-cysteine exhibited a SHAP value of 0.6233, whereas 
2-Hydroxynaphthalene had a value of 0.3789. These findings highlight 
variations in feature importance across different models; however, 
2-Hydroxynaphthalene consistently demonstrated high SHAP values.

3.2 Correlation analysis

In this study, we developed EPEI using meta-modeling analysis to 
investigate its association with clinical variables and environmental 
pollutants. The study encompassed a range of clinical variables, 
including age, gender, poverty status, education level, smoking habits, 
and alcohol consumption, in addition to various environmental 
pollutant indicators. In the correlation analysis of clinical variables 
(Figure 3), the EPEI demonstrated a significant positive correlation 
with age (correlation coefficient = 0.17, p-value = 0.00019), suggesting 
that exposure to environmental pollution may increase with advancing 
age. Furthermore, the EPEI exhibited a significant negative correlation 

with alcohol consumption (correlation coefficient = −0.22, 
p = 0.00035), indicating a lower risk of pollution exposure among 
individuals with higher frequencies of alcohol use.

In relation to environmental pollutants (Figure  4), EPEI 
demonstrated significant correlations with various pollutants, 
including N-Acetyl-S-(2-carbamoylethyl)-L-cysteine (correlation 
coefficient = −0.095, p = 0.035) and N-Acetyl-S-(N-methylcarbamoyl)-
L-cysteine, suggesting their potential role as indicators in comprehensive 
pollution assessment. Further analysis identified correlations among 
clinical variables, such as age and gender (correlation coefficient = 0.012) 
and poverty status and education level (correlation coefficient = 0.35), 
highlighting the extensive influence of socioeconomic factors on health 
outcomes. Additionally, environmental pollutants exhibited intricate 
correlation networks, exemplified by the relationships between N-Acetyl-
S-(2-carbamoylethyl)-L-cysteine and N-Acetyl-S-(N-methylcarbamoyl)-
L-cysteine (correlation coefficient = 0.65), as well as N-Acetyl-S-
(benzyl)-L-cysteine and N-Acetyl-S-(n-propyl)-L-cysteine (correlation 
coefficient = 0.42), which may be attributed to shared exposure sources 
or analogous metabolic pathways.

3.3 Demographic and clinical 
characteristics of the study population

This study included 494 participants for whom comprehensive 
data on environmental pollutant exposure and metabolic disorder 
diagnoses were available. EPEI was developed using machine learning 

FIGURE 1

Visualization of SHAP analysis for top 10 features in meta learner. The swarm plot ranks features by their average SHAP values, with color indicating the 
magnitude of the feature values and the position of the points determined by the SHAP values. A pie chart is utilized to illustrate the contribution 
proportion of each feature to the model’s prediction results, where each sector corresponds to a feature, and its area reflects the feature’s relative 
importance in the model’s predictions.
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FIGURE 2

Visualization of SHAP analysis for top 10 features in each base learner.

FIGURE 3

Heatmap of correlation between environmental pollution exposure index (EPEI) and clinical characteristics.
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techniques, enabling the classification of participants into high- and 
low-exposure groups (Table 1). Baseline analysis indicated that the 
mean age of the entire cohort was 47.44 years (95% CI: 45.44–49.45), 
with no statistically significant age difference observed between the 
exposure groups (p = 0.53). Notable differences were identified in 
obesity-related parameters, with the high-exposure group exhibiting 
significantly higher values compared to the low-exposure group in 
terms of BMI (31.78 vs. 27.40 kg/m2), PLF (7.02 vs. 3.41), and EPEI 
(6.42 vs. 4.18), all with p-values less than 0.0001. Analysis of 
categorical variables revealed a higher prevalence of hyperlipidemia 
in the high-exposure group (51.16% vs. 28.02%, p = 0.01). 
Furthermore, the classification of severe obesity was associated with 
a substantially increased exposure risk (70.80% vs. 10.54%, 
p < 0.0001). The distribution of educational attainment revealed 
non-significant trends, with 52.64% of individuals in the high-
exposure group having an education level of high school or less, 
compared to 63.57% of those with some college education in the 
low-exposure group (p = 0.14). No significant differences were 
observed between the groups in terms of gender distribution 
(p = 0.77), smoking status (p = 0.88), or alcohol consumption 
(p = 0.16). Although 56.32% of confirmed DM cases were found in the 
high-exposure group, this trend did not reach statistical significance 

(p = 0.07). Collectively, these findings suggest strong associations 
between elevated exposure to environmental pollutants and obesity-
related metabolic disturbances, particularly hyperlipidemia, while 
indicating weaker correlations with demographic and behavioral 
factors. This pattern implies potential mechanistic pathways through 
which exposure to environmental pollutants may impact health 
outcomes via metabolic dysregulation.

3.4 Receiver operating characteristic curve

The analysis of the ROC for EPEI in diagnosing PLF across 
various subgroups yields heterogeneous results. Overall, the EPEI 
exhibits moderate diagnostic efficacy for PLF across diverse 
demographic and clinical subgroups, with Area Under the Curve 
(AUC) values predominantly ranging from acceptable to good. 
Notably, a discernible variation in diagnostic performance is observed 
between sexes. The male subgroup demonstrates a slightly higher 
AUC (AUC = 0.77) compared to the female subgroup (AUC = 0.70) 
(Figure  5A), suggesting that the EPEI may possess enhanced 
discriminatory power for PLF in males. This disparity may 
be attributed to biological or physiological differences between sexes 

FIGURE 4

Heatmap of correlation between environmental pollution exposure index (EPEI) and environmental pollutants.
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that affect the impact of pollution exposure on liver fat accumulation. 
In relation to BMI categories, the diagnostic efficacy of EPEI 
demonstrates variability. Notably, the severely obese subgroup 
exhibits the highest AUC (AUC = 0.79) among all BMI subgroups 
(Figure  5B), indicating that EPEI is particularly proficient in 
differentiating PLF levels within this population. Conversely, the 
obese subgroup presents a comparatively lower AUC (AUC = 0.66), 

which may suggest that additional factors, such as obesity-related 
comorbidities, could be  confounding the association between 
pollution exposure and liver fat in this group. Concerning DM 
subgroups (Figure 5C), the performance of EPEI varies significantly. 
The IFG subgroup demonstrates the highest AUC (AUC = 0.84), 
signifying that EPEI is an effective diagnostic tool for PLF at this early 
stage of glucose metabolism disturbance. In contrast, the IGT 

TABLE 1 Baseline characteristics of participants stratified by the median score of environmental pollution exposure index (EPEI).

Characteristics Total Environmental pollution exposure index P-value

Down High

Age [mean(CI)] 47.44(45.44, 49.45) 46.79(44.12, 49.46) 48.26(44.98, 51.53) 0.53

Poverty [mean(CI)] 2.99(2.67, 3.31) 3.14(2.77, 3.52) 2.79(2.35, 3.23) 0.19

EPEI [mean(CI)] 5.18(4.93, 5.43) 4.18(4.09, 4.27) 6.42(6.25, 6.59) < 0.0001

PLF [mean(CI)] 5.02(4.58, 5.46) 3.41(2.97, 3.85) 7.02(6.20, 7.84) < 0.0001

BMI_kg.m2 [mean(CI)] 29.34(28.51, 30.18) 27.40(26.54, 28.25) 31.78(30.91, 32.66) < 0.0001

Edu [%(SE)] 0.14

  No more than 12th (includes 12th grade with no diploma) 14.70(0.02) 47.36(8.23) 52.64(8.23)

  High school grad/GED or equivalent 23.05(0.04) 44.25(7.57) 55.75(7.57)

  Some college or AA degree (includes more than high school) 27.02(0.04) 63.57(6.31) 36.43(6.31)

  College graduate or above 35.22(0.09) 59.75(6.03) 40.25(6.03)

Sex [%(SE)] 0.77

  Male 50.32(0.07) 54.62(5.40) 45.38(5.40)

  Female 49.68(0.09) 56.16(4.48) 43.84(4.48)

Smoke [%(SE)] 0.88

  Never 57.42(0.09) 56.86(4.43) 43.14(4.43)

  Former 22.30(0.05) 53.77(11.52) 46.23(11.52)

  Now 20.28(0.03) 52.97(6.07) 47.03(6.07)

Alcohol.user [%(SE)] 0.16

  Never 10.77(0.02) 57.14(8.96) 42.86(8.96)

  Former 12.72(0.03) 36.25(4.40) 63.75(4.40)

  Mild 41.05(0.08) 57.94(5.88) 42.06(5.88)

  Moderate 15.29(0.04) 62.64(8.57) 37.36(8.57)

  Heavy 20.17(0.03) 55.81(7.03) 44.19(7.03)

Hyperlipidemia [%(SE)] 0.01

  No 28.28(0.05) 71.98(5.05) 28.02(5.05)

  Yes 71.72(0.10) 48.84(4.94) 51.16(4.94)

DM [%(SE)] 0.07

  DM 19.16(0.03) 43.68(7.32) 56.32(7.32)

  IFG 14.19(0.04) 45.51(8.94) 54.49(8.94)

  IGT 4.95(0.02) 63.19(10.20) 36.81(10.20)

  No 61.70(0.10) 60.67(4.16) 39.33(4.16)

BMI_category [%(SE)] < 0.0001

  Underweight 1.38(0.01) 89.46(10.27) 10.54(10.27)

  Normal 26.39(0.05) 70.32(5.36) 29.68(5.36)

  Overweight 35.51(0.06) 62.37(5.52) 37.63(5.52)

  Obese 17.28(0.03) 45.35(8.15) 54.65(8.15)

  Severely obese 18.92(0.04) 29.20(5.79) 70.80(5.79)

EPEI, environmental pollution exposure index; PLF, liver fat percentage; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; DM, diagnosed diabetes; BMI, Body Mass Index.
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subgroup exhibits a substantially lower AUC (AUC = 0.54), 
potentially reflecting the intricate metabolic alterations in this group 
that may obscure the impact of pollution exposure on liver fat. The 
normal and DM subgroups are intermediate, with the DM subgroup 
displaying a lower AUC (AUC = 0.69) than the normal subgroup 
(AUC = 0.75), suggesting that the diagnostic utility of EPEI 
diminishes as diabetes progresses. Lastly, in the context of 
hyperlipidemia (Figure  5D), EPEI performs similarly in both the 
presence (AUC = 0.73) and absence (AUC = 0.72) of the condition, 
with only a marginal difference in AUC values. This implies that lipid 
abnormalities may not significantly modulate the relationship 
between pollution exposure and PLF.

3.5 Subgroup analysis

Subgroup analyses indicated notable variations in the association 
between EPEI and PLF across different demographic and clinical 
categories (Figure 6). In terms of sex, EPEI significantly influenced 

PLF in both males (OR = 2.05, 95% CI: 1.68–2.42) and females 
(OR = 1.87, 95% CI: 1.56–2.19); however, the interaction p-value is 
0.47, suggesting that sex did not exert a statistically significant 
moderating effect on the EPEI-PLF relationship. Regarding BMI 
categories, the effect of EPEI on PLF intensified with increasing BMI, 
particularly within the severely obese subgroup (OR = 2.66, 95% CI: 
2.08–3.24), with an interaction p-value of 2.0e-10, indicating a 
significant modifying effect of BMI. Concerning diabetes status, EPEI 
had a significant impact on PLF in both the DM subgroup (OR = 2.49, 
95% CI: 1.92–3.06) and the IFG subgroup (OR = 1.75, 95% CI: 1.10–
2.39), but not in the IGT subgroup (OR = 0.47, 95% CI: −0.19-1.13). 
The interaction p-value of 1.9e-09 further underscores the significant 
modifying effect of diabetes status on this relationship. Within the 
subgroup characterized by hyperlipidemia status, the effect of EPEI 
on PLF exhibited a statistically significant difference between 
individuals with hyperlipidemia (OR = 2.28, 95% CI: 1.96–2.59) and 
those without the condition (OR = 1.08, 95% CI: 0.83–1.32). The 
interaction p-value of 2.7e-06 indicates a significant modifying effect 
attributable to hyperlipidemia status.

FIGURE 5

Receiver operating characteristic (ROC) curve analysis of environmental pollution exposure index (EPEI) for liver fat percentage (PLF). This analysis 
evaluates the diagnostic performance of EPEI for PLF across different subgroups. Specifically, it includes comparisons between: (A) the total population 
and different gender subgroups; (B) the total population and subgroups categorized by different BMI classifications; (C) the total population and 
subgroups with different glucose metabolism levels; and (D) the total population and subgroups with and without hyperlipidemia.

https://doi.org/10.3389/fpubh.2025.1598639
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yan et al. 10.3389/fpubh.2025.1598639

Frontiers in Public Health 09 frontiersin.org

4 Discussion

This study conducted a systematic investigation into the 
synergistic effects of multi-pollutant exposure on PLF using an 
advanced machine learning framework. This approach addresses 
significant limitations in traditional analytical methods within 
environmental exposomics research. By integrating urinary 
biomarkers of heavy metals, PAHs, and VOCs into a novel EPEI, 
we  demonstrated a significant correlation between cumulative 

pollutant exposure and hepatic lipid accumulation, particularly 
among metabolically vulnerable populations. The stacked ensemble 
model, which combines LASSO regression, SVM, neural networks, 
and XGBoost, outperformed conventional linear models in 
capturing nonlinear interactions and multicollinearity among 
pollutants, achieving interpretability through SHAP value analysis. 
Key findings identified 2-Hydroxynaphthalene as the most 
influential pollutant, with SHAP values exceeding 0.89 in meta-
model analyses, underscoring its potential role in disrupting hepatic 

FIGURE 6

Forest plot of subgroup analysis incorporating interaction tests. This figure presents the results of subgroup analyses adjusted for interaction tests, 
visually representing the effect sizes and confidence intervals for each subgroup.
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lipid homeostasis via oxidative stress and inflammatory pathways. 
Moreover, cobalt and specific VOCs metabolites, such as N-Acetyl-
S-(2-carbamoylethyl)-L-cysteine, have been identified as significant 
contributors, highlighting the intricate nature of pollutant 
interactions in the pathogenesis of NAFLD.

The stratification analyses yielded three principal insights. 
First, the relationship between EPEI and PLF exhibited significant 
heterogeneity across various BMI categories, with the most 
pronounced effect observed in individuals with severe obesity 
[odds ratio (OR) = 2.66, 95% confidence interval (CI): 2.08–3.24]. 
This finding suggests an increased toxicity of pollutants in the 
context of adipose tissue dysfunction. Second, diabetes status 
modulated the exposure-risk relationship, with subgroups 
exhibiting IFG demonstrating greater diagnostic sensitivity 
compared to those with overt diabetes. This may reflect 
compensatory mechanisms active in the early stages of metabolic 
dysregulation. Third, hyperlipidemia significantly amplified the 
effects of pollutants (OR = 2.28 compared to 1.08  in 
non-hyperlipidemic individuals), aligning with experimental 
findings that associate lipid peroxidation with pollutant-induced 
hepatotoxicity. Demographic variables, notably age and alcohol 
consumption, exhibited paradoxical associations, with EPEI 
increasing with age but decreasing with alcohol intake. This 
suggests the presence of potential detoxification pathways or 
confounding lifestyle factors that warrant further investigation.

Methodologically, this study contributes to the field of 
environmental health research by establishing a framework for 
analyzing multi-pollutant effects using explainable machine 
learning techniques. The integration of SHAP values with ensemble 
modeling not only quantified the contributions of individual 
pollutants but also identified exposure thresholds for risk 
stratification, which is a critical step toward precision prevention. 
The superior performance of XGBoost in synthesizing base model 
predictions underscores the efficacy of gradient-boosted trees in 
managing high-dimensional exposure data. Nonetheless, certain 
limitations remain: the cross-sectional design limits causal 
inference, urinary biomarkers may not accurately reflect tissue-
level pollutant burdens, and residual confounding from 
unmeasured covariates, such as dietary patterns, necessitates 
cautious interpretation.

These findings have significant public health implications. The 
development of EPEI offers a quantifiable metric for assessing 
environmental risk in NAFLD screening programs, especially for high-
risk groups such as individuals with severe obesity and those 
experiencing early metabolic dysfunction. Future research should focus 
on the longitudinal validation of EPEI across diverse cohorts, 
mechanistic studies to elucidate the hepatotoxic pathways of 
2-Hydroxynaphthalene, and intervention trials aimed at reducing 
pollutant exposure in metabolically compromised populations. By 
integrating exposomics with machine learning, this study establishes a 
foundation for multi-pollutant regulatory policies and personalized 
environmental health strategies in the context of the metabolic 
syndrome pandemic.

This study also has many limitations: single urine samples may 
not effectively capture chronic exposure due to variability in 
biomarker levels and quick elimination of some substances. This 
is especially true for studies on non-persistent chemicals like 
phthalates and bisphenols, where a single sample might only 

indicate recent exposure. To improve accuracy, repeated urine 
samples over time are recommended. Additionally, combining 
urine with blood samples can enhance exposure assessments, as 
blood samples provide insights into internal doses not fully 
captured by urine alone. This approach is beneficial for assessing 
VOCs, where the relationship between blood and urine levels can 
be complex (22, 23). The cross-sectional approach cannot preclude 
reverse causality, particularly given hepatic steatosis’ potential to 
modify xenobiotic metabolism. This critical limitation underscores 
the necessity for longitudinal designs incorporating serial 
pollutant and hepatic fat quantification to delineate exposure-
disease causality.

5 Conclusion

This research develops a machine learning framework to 
evaluate the risks associated with multiple pollutants in 
non-alcoholic fatty liver disease (NAFLD), identifying 
2-Hydroxynaphthalene as a significant hepatotoxicant and 
introducing EPEI as a quantifiable measure of exposure. The results 
underscore the metabolic vulnerabilities linked to obesity and early 
dysglycemia, thereby contributing to the development of precision 
prevention strategies.
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