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Background: Emphysema is a major contributor to lung disease progression 
and is associated with significant health risks, including exacerbations, mortality, 
and lung cancer. While environmental exposures, such as brominated flame 
retardants (BFRs), have been suggested as risk factors, their role in emphysema 
prediction has been largely overlooked. This study aimed to develop a machine 
learning (ML) model to predict emphysema risk incorporating BFRs exposure 
data and demographic characteristics.

Methods: Using data from the NHANES (2005–2016) dataset, 8,205 participants 
were included in the study. The participants were divided into a training set 
(70%) and a testing set (30%). Eight machine learning algorithms, including 
lightGBM, MLP, DT, KNN, RF, SVM, Enet, and XGBoost, were applied to build and 
evaluate the model. Demographic data and BFRs exposure levels were used 
as predictors. SHAP and Partial Dependence Plots (PDP) were used for model 
interpretability analysis.

Results: The MLP model showed the best performance with an AUC of 0.83. 
Age and PBB153 were identified as the most influential predictors. SHAP analysis 
revealed that higher exposure to BFRs, particularly PBB153, was strongly 
associated with increased emphysema risk. The WQS model further confirmed 
the positive relationship between BFRs exposure and emphysema.

Conclusion: This study demonstrates the significant predictive value of BFR 
exposure in emphysema risk assessment and highlights the importance of 
incorporating environmental factors into disease prediction models. The 
findings provide new insights for integrating BFRs into personalized health risk 
assessments and public health interventions.
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1 Introduction

Emphysema, a chronic respiratory disorder defined by alveolar 
destruction, is a significant phenotype of COPD (1). Patients 
exhibiting more severe emphysema experience accelerated decline in 
lung function, body mass index, and fat-free mass index, accompanied 
by increased exacerbations, hospitalizations, and mortality rates (2). 
The efficacy of current treatment regimens is diminished in patients 
with emphysema associated with COPD (1). Emphysema serves as a 
substantial predictor of lung cancer risk and overall health outcomes. 
Studies have demonstrated that individuals with radiographic 
emphysema exhibit nearly double the incidence of lung cancer 
compared to those without (3). Given the elevated risk of 
exacerbations, mortality, and lung cancer associated with emphysema 
(4), its early identification through screening and advanced prediction 
methods could significantly improve patient outcomes and guide 
preventive interventions.

In previous studies, scholars employed blood-based emphysema 
predictive models that exhibited two notable limitations. Firstly, these 
models had relatively small sample sizes, which can compromise their 
ability to accurately predict outcomes. Secondly, they were limited in 
their scope, as they only tested one “omic” modality at a time (5–7). 
Other studies have used transcriptomic and proteomic features in 
combination with clinical features to evaluate the role of multiomics 
modeling in predicting emphysema. Ultimately, the best-performing 
predictive model (clinical + CBC + protein model) included 
predictors of clinical variables (age, sex, ethnicity, BMI, smoking), 
CBC (proportion of neutrophils, lymphocytes, platelets, monocytes, 
and eosinophils), and protein. In the clinical + CBC + gene + protein 
model, the top 10 predictors were ranked by absolute β coefficient, 
including BMI, sRAGE, PSMP protein and MIR124-1HG gene (8). 
There are also CT image-based models for predicting the progression 
of emphysema (9). However, none of them paid attention to the 
influence of environmental factors on the disease of emphysema.

Brominated flame retardants (BFRs) are utilized extensively in 
various industrial sectors, including plastics, textiles, electronics, and 
building materials, with the primary objective of mitigating the risk of 
fire hazards (10, 11). However, as additive compounds, some BFRs, 
including PBDEs and TBBPA, are prone to environmental release 
during production and use. The presence of these chemicals has been 
detected in various environmental media, including water, soil, dust, 
and even human biological fluids such as blood and breast milk (11, 
12). BFRs are persistent in the environment and can accumulate in 
living organisms over time.

As has been demonstrated in prior studies, BFRs and their 
metabolites has the potential to induce a number of deleterious 
effects on bodily functions, including nephrotoxicity, 
hepatotoxicity, reproductive and developmental toxicity, 
neurotoxicity, and carcinogenic effects, which can ultimately result 
in severe adverse health consequences (13). In more detail, the 
presence of BFRs has been detected in the respiratory tracts of both 
animals and humans. In these locations, BFRs have been shown to 
affect bronchial epithelial cells by means of inhibiting cell viability, 
activating apoptosis, inducing DNA damage, and promoting 
inflammatory and oxidative stress responses (14–17). These 
changes in the respiratory tract are significant, as they are known 
to play a key role in the development of emphysema (18, 19). 
Therefore, this study combined BFRs with demographic 

characteristics to construct a machine learning prediction model 
and determined the predictive value of BFRs exposure 
for emphysema.

2 Methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is a comprehensive interdisciplinary research initiative 
spearheaded by the Centers for Disease Control and Prevention 
(CDC). The primary objective of NHANES is the collection, analysis, 
and publication of data concerning health, nutrition, and 
environmental exposures in the United States. Since its inception in 
the 1960s, it has been conducted on an annual basis and encompasses 
all age groups within the United  States. In the present study, the 
participants from the NHANES from 2005 to 2016 with available data 
on BFRs were included. Participants with missing BFRs data, a 
diagnosis of emphysema, and covariates were excluded from the study. 
The inclusion and exclusion criteria utilized in this study are illustrated 
in Figure 1. To evaluate the potential impact of selection bias due to 
missing BFR data, we compared the weighted baseline characteristics 
between included and excluded participants.

2.2 Assessment of BFR

In the NHANES database, concentrations of polybrominated 
diphenylethers (PBDEs) in serum were assessed employing a 
two-phase protocol encompassing automated liquid–liquid 
extraction and subsequent sample purification (NHANES, 2019). 
Serum concentrations of BFRs were measured as parent compounds. 
Metabolites were not included unless specifically reported in the 
dataset, and we  restricted our analysis to parent compounds to 
ensure consistency. However, in this study, we exclusively focused 
on PBB-153 and nine PBDEs with a detection rate greater than 50% 
(20). Specifically, these include 2,4,4′-tribromodiphenyl ether 
(BDE-28), 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), 2,2′,3,4,4′- 
pentabromodiphenyl ether (BDE-85), 2,2′,4,4′, 5-pentabromodiphenyl 
ether (BDE-99), 2,2′,4,4′,6-pentabromodiphenyl ether (BDE-100), 
2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE-153), 2, 2′,4,4′,5,6′- 
hexabromodiphenyl ether (BDE-154), 2,2′,3,4,4′,5′,6-heptabro-
modiphenyl ether (BDE-183), decabromodiphenyl ether (BDE-209), 
and 2,2′,4,4′,5,5′-hexabromobiphenyl (PBB-153). For values below the 
limit of quantification (LOQ), NHANES substitutes these with LOQ 
divided by the square root of 2 (LOQ/√2), in line with standard 
imputation practices. We applied this substitution consistently across 
all BFR congeners to maintain comparability and avoid data loss.

2.3 Definition of emphysema

The emphysema status of the participants was determined 
according to the variable MCQ160G in the questionnaire data of 
NHANES 2005–2016. Individuals who responded in the affirmative 
to the question “Ever told you had emphysema” were classified as 
patients with emphysema.
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2.4 Covariates

The present study took into consideration a number of 
sociodemographic characteristics, as previously established in 
preceding research. The characteristics in question encompassed age, 
gender, race, educational level, poverty income ratio (PIR), smoking 
and drinking status, and body mass index (BMI) (21, 22). Race was 
categorized as Mexican American, Other Hispanic, Non-Hispanic 
White, Non-Hispanic Black, Other Race – Including Multi-Racial. 
Education level was less than high school, high school, or college or 
above. PIR measured socioeconomic status as the ratio of household 
income to poverty line. Drinking status was coded as never, mild/
moderate, heavy or former drinker categories. Smoking status 
included never, former and now smoker.

2.5 Statistical analysis

Baseline characteristics were first compared between the training 
and test datasets in the NHANES. Then, within both the training and 
test datasets, we compared the baseline characteristics between the 
emphysema and non-emphysema groups. Continuous variables were 
presented as median (IQR) or mean (SD), and categorical variables as 
absolute numbers with associated percentages. The demographic 
characteristics of subjects with different emphysema statuses were 
evaluated using the chi-square test and t-test. Serum BFRs were Ln 
transformed to ensure the attainment of a near-normal distribution 
(continuous variables) or segmented into four quartiles (Q1, Q2, Q3, 
and Q4) to form categorical variables. To justify this transformation, 
we have included histograms comparing the distributions of BFR 
variables before and after Ln transformation in the 

Supplementary Figure 1. In order to ascertain the relationships among 
the concentrations of the ten BFRs, Pearson’s correlation was 
implemented as a statistical analysis tool. Principal component 
analysis (PCA) was employed to elucidate the disparities in subject 
composition among varying concentrations and to ascertain the 
underlying structure of subject variance. The Mann–Whitney U test 
was further used to compare the scores of the two groups on PC1 to 
see if there were significant differences in PC1 between different 
disease states.

To assess the correlation between BFRs and the incidence of 
emphysema, we  employed univariate and multivariate logistic 
regression models. Odds ratios (OR) and the corresponding 95% 
confidence intervals (CI) were employed to identify trends in the 
correlations. The regression models were structured as follows: model 
1 was not adjusted for any variable, while model 2 was adjusted for 
age, gender, race, education level, PIR, smoking status, drinking status, 
and BMI. To address the risk of false positives from testing 10 BFRs 
across two models and four quartiles, we applied False Discovery Rate 
(FDR) correction. To evaluate the potential impact of unmeasured 
confounders on the relationship between BFRs exposure and 
emphysema risk, we calculated the E-value through an online website1 
(23, 24). The E-value offers a quantitative assessment of the strength 
of association that an unobserved confounder would need to have in 
order to fully nullify the observed relationship (25). As part of the 
sensitivity analyses, we excluded participants who had been diagnosed 
with emphysema within 2 years prior to the NHANES survey 
interview. This exclusion was applied to both logistic regression and 

1 www.evalue-calculator.com

FIGURE 1

Flow chart for model development and validation.
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machine learning models to minimize reverse causality and assess the 
robustness of the observed associations between BFR exposure and 
emphysema risk.

We performed a Weighted Quantile Sum (WQS) analysis to 
evaluate both the collective and individual effects of BFRs on the 
prevalence of emphysema by calculating a weighted linear index and 
assigning appropriate weights. Bootstrapping with 1,000 iterations was 
applied to construct WQS indices in both positive and negative 
directions. When the WQS index showed statistical significance, the 
corresponding weights were analyzed to determine the relative 
contribution of each BFR within the index to emphysema prevalence. 
The dataset was randomly partitioned, with 40% allocated to the 
training set and the remaining 60% designated as the validation set.

2.6 Model development and comparison

All model development procedures were conducted within the 
tidymodels framework in R. The dataset was first randomly split into 
training (70%) and testing (30%) sets. To reduce the adverse impact 
of high-dimensional data on model performance, feature selection 
was performed on the training set using the Boruta algorithm. This 
random forest–based wrapper method identifies important predictors 
through iterative comparison with shadow features and is considered 
more stable than conventional filtering techniques (26). Although 
drinking and smoking were not selected by Boruta, they were retained 
in the model due to their well-established association with 
emphysema, as reported in previous studies (27, 28). Sensitivity 
analyses excluding these two variables were also conducted to test the 
robustness of findings.

After variable selection, the Synthetic Minority Oversampling 
Technique (SMOTE) was applied to the training data to address class 
imbalance between emphysema and non-emphysema participants. 
We then trained eight machine learning algorithms: Light Gradient 
Boosting Machine (LightGBM), Multi-Layer Perceptron (MLP), 
Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest 
(RF), Support Vector Machine (SVM), Elastic Net (ENet), and 
Extreme Gradient Boosting (XGBoost). Each model underwent 
hyperparameter tuning through ten-fold cross-validation within the 
training set to optimize performance. The full grid search space and 
final selected hyperparameters are detailed in eMethods. The Area 
Under the Receiver Operating Characteristic Curve (AUROC) was 
used to assess the predictive accuracy of the models during validation, 
with the goal of comparing the models based on their best 
performance. AUROC values range from 0.5 to 1.0, with higher values 
indicating better predictive capability. In addition to AUROC, several 
other performance metrics, including F1 score, precision, accuracy, 
recall, sensitivity, specificity, and the Matthews correlation coefficient 
(MCC), were also calculated to provide a comprehensive assessment 
of model effectiveness. To formally compare model discrimination, 
pairwise DeLong tests were conducted across classifiers, with False 
Discovery Rate (FDR) correction applied to account for multiple 
comparisons. To address potential optimism introduced by internal 
SMOTE application, we  performed 100 bootstrap resampling 
iterations on the training dataset. Apparent AUCs, optimism 
estimates, and bias-corrected AUCs were calculated across iterations 
to provide a more realistic assessment of model performance. Model 
calibration was evaluated using the Brier score, calibration intercept, 

and calibration slope. To improve the reliability of predicted 
probabilities, Platt scaling was applied, and calibration metrics were 
compared before and after adjustment. Performance variability and 
calibration quality were visualized using bootstrap AUC distribution 
plots and calibration curves, enabling a comprehensive assessment of 
both discrimination and probability estimation.

2.7 Model interpretation

Interpretability is defined as the process of elucidating how 
machine learning (ML) models produce results. The opacity intrinsic 
to machine learning (ML) models frequently hinders their effective 
utilization in clinical contexts, prompting comprehensive investigation 
into enhancing their interpretability (29, 30). In this study, we sought 
to integrate an interpretable method to ascertain the importance of 
features and the relationships between bronchodilator-related (BFR) 
variables and the risk of emphysema. An in-depth evaluation was 
conducted to ascertain the key features that exert a substantial 
influence on the risk of emphysema development. This evaluation 
utilized two approaches: shapley additive explanations (SHAP) and 
partial dependence plot (PDP) (31, 32). The present study analyses 
non-linear relationships with PDPs, thereby enabling the identification 
of relationships between emphysema and its associated predictors. 
Specifically, one-way PDPs have the capacity to elucidate the 
relationship between emphysema and a specific variable (33).

In this study, we  adhered to the guidelines set forth in the 
Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) to maintain 
transparency and methodological rigor throughout the development 
and validation of our predictive model. No weighted data were 
applied, as demographic factors were adjusted for in the analysis (34). 
All statistical analyses were performed using R statistical software 
version 4.4.3. and Python 3.11. p < 0.05 was considered 
statistically significant.

3 Results

3.1 Population characteristics

In the NHNAES database from 2005 to 2016, a total of 60,936 
participants were initially included. Those with missing data on 
BFRs (n = 48,563), emphysema (n = 2,504), or covariate data 
(n = 1,664) were excluded from the study. Finally, our study 
included 8,205 participants, as shown in Figure 1. Table 1 presented 
the demographic features of the training and test datasets. Most 
features showed no significant differences between the training and 
test sets, indicating a relatively balanced distribution of data. 
However, the distribution of emphysema demonstrated a 
statistically significant difference (p = 0.015), with a slightly higher 
prevalence of emphysema observed in the test set compared to the 
training set. Table  2 presents the differences in baseline 
characteristics between the emphysema and non-emphysema 
groups within the training and test datasets. In the training dataset, 
there were 100 cases of emphysema, accounting for 1.75% of the 
total; in the test dataset, there were 63 cases of emphysema, 
accounting for 2.56%. Significant differences were observed 
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between the emphysema and control groups in terms of age, race, 
education level, PIR, drinking status, and smoking status (all 
p < 0.05). In terms of BFRs, LBCBB1 and LBCBR9 in the training 
set showed significant differences between the emphysema and 

non-emphysema groups (p = 0.003 and p < 0.001), while in the test 
set, LBCBB1 and LBCBR2 exhibited statistically significant 
differences (p = 0.023 and p = 0.016). Pearson correlation analysis 
identified significant positive correlations among several BFRs 

TABLE 1 Baseline characteristics of study in the training and test cohorts.

Participant characteristics N (%) or Mean (SD) P-value

Overall Train data Test data

N 8,205 5,743 2,462

Age (years) 49.14 (17.77) 49.20 (17.79) 49.00 (17.74) 0.645

Gender 0.52

  Male 4,017 (48.96) 2,825 (49.19) 1,192 (48.42)

  Female 4,188 (51.04) 2,918 (50.81) 1,270 (51.58)

Race or ethnicity 0.982

  Mexican American 1,285 (15.66) 901 (15.69) 384 (15.60)

  Other Hispanic 781 (9.52) 547 (9.52) 234 (9.50)

  Non-Hispanic White 3,677 (44.81) 2,583 (44.98) 1,094 (44.44)

  Non-Hispanic Black 1704 (20.77) 1,187 (20.67) 517 (21.00)

  Other Race – Including Multi-Racial 758 (9.24) 525 (9.14) 233 (9.46)

Education level 0.711

  Less than high school 2004 (24.42) 1,416 (24.66) 588 (23.88)

  High School or Equivalent 1869 (22.78) 1,310 (22.81) 559 (22.71)

  College or above 4,332 (52.80) 3,017 (52.53) 1,315 (53.41)

PIR 2.55 (1.63) 2.55 (1.63) 2.55 (1.63) 0.924

BMI (kg/m2) 29.13 (6.78) 29.13 (6.83) 29.14 (6.67) 0.91

Drinking status 0.578

  Never 1,171 (14.27) 818 (14.24) 353 (14.34)

  Mild, moderate 3,881 (47.30) 2,739 (47.69) 1,142 (46.39)

  Heavy 1,674 (20.40) 1,150 (20.02) 524 (21.28)

  Former 1,479 (18.03) 1,036 (18.04) 443 (17.99)

Smoking status 0.72

  Never 4,480 (54.60) 3,136 (54.61) 1,344 (54.59)

  Former 2060 (25.11) 1,453 (25.30) 607 (24.65)

  Now 1,665 (20.29) 1,154 (20.09) 511 (20.76)

PBB153 (pg/g) 31.15 (62.41) 31.40 (65.16) 30.57 (55.47) 0.557

BDE209 (pg/g) 19.87 (29.35) 19.59 (25.87) 20.53 (36.19) 0.242

BDE28 (pg/g) 9.10 (6.64) 9.17 (6.74) 8.94 (6.41) 0.143

BDE47 (pg/g) 174.14 (168.77) 176.24 (174.10) 169.23 (155.53) 0.071

BDE85 (pg/g) 3.88 (4.76) 3.93 (4.99) 3.77 (4.17) 0.139

BDE99 (pg/g) 38.76 (49.70) 39.32 (51.11) 37.45 (46.25) 0.103

BDE100 (pg/g) 36.07 (36.08) 36.37 (37.11) 35.47 (33.55) 0.307

BDE153 (pg/g) 72.59 (65.20) 72.48 (64.60) 72.86 (66.60) 0.814

BDE154 (pg/g) 3.52 (3.97) 3.57 (4.16) 3.40 (3.47) 0.054

BDE183 (pg/g) 2.03 (3.38) 2.02 (3.26) 2.04 (3.64) 0.79

Emphysema 0.015

  No 8,042 (98.01) 5,643 (98.26) 2,399 (97.44)

  Yes 163 (1.99) 100 (1.74) 63 (2.56)

Data are n (%), mean (SD). PIR, poverty to income ratio; BMI, body mass index.
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(Supplementary Figure  2). Specifically, BDE28, BDE47, BDE85, 
BDE99, BDE100, and BDE154 demonstrated strong 
intercorrelations. These results indicate the possibility of shared 
exposure sources or similar environmental behaviors among 

PBDEs, potentially amplifying their cumulative effect on 
emphysema risk. PCA revealed the relationships between individual 
exposome factors and emphysema, focusing on the first two 
principal components (Supplementary Figure  3). The 

TABLE 2 Baseline characteristics of participants by emphysema status within the training and test datasets.

Participant 
characteristics

N (%) or Mean (SD)

Train data P-value Test data P-value

Emphysema 
(N = 100)

Non-
emphysema 
(N = 5,643)

Emphysema 
(N = 63)

Non-
emphysema 
(N = 2,399)

Age (years) 65.42 (12.03) 48.91 (17.74) <0.001 64.06 (13.39) 48.61 (17.67) <0.001

Gender 0.0755 0.097

  Male 58 (58.00) 2,767 (49.03) 37 (58.73) 1,155 (48.15)

  Female 42 (42.00) 2,876 (50.97) 26 (41.27) 1,244 (51.85)

Race or ethnicity <0.001 0.002

  Mexican American 5 (5.00) 896 (15.88) 3.00 (4.76) 381.00 (15.88)

  Other Hispanic 6 (6.00) 541 (9.59) 8.00 (12.70) 226.00 (9.42)

  Non-Hispanic White 67 (67.00) 2,516 (44.59) 41.00 (65.08) 1053.00 (43.89)

  Non-Hispanic Black 16 (16.00) 1,171 (20.75) 5.00 (7.94) 512.00 (21.34)

  Other Race – Including 

Multi-Racial

6 (6.00) 519 (9.20) 6.00 (9.52) 227.00 (9.46)

Education level <0.001 0.021

  Less than high school 43 (43.00) 1,373 (24.33) 22.00 (34.92) 566.00 (23.59)

  High school or 

equivalent

25 (25.00) 1,285 (22.77) 18.00 (28.57) 541.00 (22.55)

  College or above 32 (32.00) 2,985 (52.90) 23.00 (36.51) 1292.00 (53.86)

PIR 1.73 (1.22) 2.56 (1.63) <0.001 2.190 (1.298) 2.563 (1.634) 0.025

BMI (kg/m2) 28.83 (7.40) 29.13 (6.82) 0.685 29.77 (6.83) 29.13 (6.67) 0.456

Drinking status <0.001 <0.001

  Never 9 (9.00) 809 (14.34) 4 (6.35) 349 (14.55)

  Mild, moderate 45 (45.00) 2,694 (47.74) 25 (39.68) 1,117 (46.56)

  Heavy 10 (10.00) 1,140 (20.20) 9 (14.29) 515 (21.47)

  Former 36 (36.00) 1,000 (17.72) 25 (39.68) 418 (17.42)

Smoking status <0.001 <0.001

  Never 5 (5.00) 3,131 (55.48) 7 (11.11) 1,337 (55.73)

  Former 51 (51.00) 1,402 (24.84) 33 (52.38) 574 (23.93)

  Now 44 (44.00) 1,110 (19.67) 23 (36.51) 488 (20.34)

PBB153 (pg/g) 51.53 (68.03) 31.04 (65.06) 0.003 42.06 (40.54) 30.27 (55.79) 0.023

BDE209 (pg/g) 17.50 (13.49) 19.62 (26.03) 0.126 18.21 (12.88) 20.59 (36.61) 0.181

BDE28 (pg/g) 10.31 (7.44) 9.15 (6.73) 0.119 11.16 (7.53) 8.88 (6.37) 0.016

BDE47 (pg/g) 187.88 (160.87) 176.03 (174.33) 0.464 210.52 (182.53) 168.14 (154.66) 0.066

BDE85 (pg/g) 4.25 (4.63) 3.93 (5.00) 0.486 4.78 (4.74) 3.75 (4.15) 0.085

BDE99 (pg/g) 41.49 (44.51) 39.28 (51.22) 0.622 48.19 (52.24) 37.16 (46.06) 0.095

BDE100 (pg/g) 37.25 (34.50) 36.31 (37.16) 0.785 42.47 (37.57) 35.29 (33.42) 0.131

BDE153 (pg/g) 88.70 (87.57) 72.20 (64.09) 0.06 86.75 (80.34) 72.49 (66.18) 0.16

BDE154 (pg/g) 3.57 (3.58) 3.57 (4.17) 0.996 4.28 (4.13) 3.37 (3.45) 0.082

BDE183 (pg/g) 1.66 (0.72) 2.03 (3.29) <0.001 1.98 (1.38) 2.04 (3.68) 0.713

Data are n (%), mean (SD). PIR, poverty to income ratio; BMI, body mass index.
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Mann–Whitney U test hinted significant differences of BFRs 
exposure between the emphysema and control groups (p = 0.008). 
As shown in Supplementary Table 1, participants with available BFR 
measurements differed significantly from those without in several 
characteristics. Individuals included in the BFR analysis were older 
(mean age: 47.2 vs. 34.9 years, p < 0.001), had higher education 
levels, and a greater proportion reported former or current smoking 
and alcohol consumption. They also exhibited higher BMI and PIR 
values (all p < 0.001). No significant difference was observed in 
gender distribution (p = 0.26). These differences highlight potential 
selection bias and were considered in the interpretation of 
the findings.

3.2 BFRs exposure and emphysema risk in 
the logistic regression model

Table  3 demonstrates that the ln-transformed PBB153 was 
significantly associated with an increased prevalence of emphysema. 
In Model I, without adjusting for covariates, the OR was 1.80 (95% CI: 
1.58–2.05, p  < 0.001). Similarly, in Model II, after adjusting for 
covariates, the OR was 1.32 (95% CI: 1.09–1.60, p  = 0.005). 
Furthermore, a higher risk of emphysema was observed with 
increasing quartiles of PBB153 exposure. Specifically, individuals in 
the highest quartile (Q4) had a 4.8-fold higher risk of emphysema 
compared to those in the lowest quartile (Q1) in Model II (OR = 4.80, 
95% CI: 1.59–14.52). A significant dose–response relationship 
between PBB153 and emphysema was identified (P for trend < 0.001). 
Similarly, BDE28 exhibited a comparable trend in Model I, with a 
significant dose–response relationship (P for trend = 0.004). 
Additionally, in Model I, BDE28, BDE47, BDE85, BDE99, and 
BDE153 were significantly positively associated with emphysema 
(p  < 0.05). In the third quartile (Q3), BDE154 and BDE183 were 
associated with an increased risk of emphysema by 59 and 69%, 
respectively (BDE154: OR = 1.59, 95% CI: 1.01–2.51; BDE183: 
OR = 1.69, 95% CI: 1.05–2.72; all p  < 0.05). After applying FDR 
correction, key associations remained statistically significant. 
Specifically, LnPBB153 (overall and Q4), LnBDE28 (overall and Q4), 
and LnBDE153 (overall) were significantly associated with 
emphysema (FDR-adjusted p  < 0.05). Associations for other 
congeners, including LnBDE47 and LnBDE85, showed attenuated 
significance after correction but maintained consistent effect estimates. 
In the sensitivity analysis excluding participants diagnosed with 
emphysema within 2 years prior to the survey, the logistic regression 
results remained largely consistent with the primary analysis. Notably, 
the association between LnPBB153 (Q4) and emphysema remained 
statistically significant (OR = 4.45, 95% CI: 1.24–15.94, p = 0.022). 
Additional associations, such as those involving LnBDE153 and 
LnBDE209, showed effect estimates in the same direction as the main 
analysis (Supplementary Table 2).

3.3 BFRs exposure and emphysema risk in 
WQS model

We utilized the WQS model to evaluate the association between 
the combined effects of BFRs and the prevalence of emphysema. As 
shown in Supplementary Table 3, the WQS index demonstrated a 

positive association between BFR exposure and emphysema 
prevalence (Model I: OR = 2.28, 95% CI: 1.80–2.89, p < 0.001; Model 
II: OR = 1.51, 95% CI: 1.11–2.06, p = 0.008). Supplementary Figure 4 
illustrates that, among the BFRs, PBB153 was assigned the highest 
weight (0.62) in the positive direction, indicating its substantial 
contribution to emphysema risk after adjusting for all covariates. In 
contrast, the WQS regression in the negative direction did not reveal 
any significant association between BFR exposure and emphysema 
prevalence (Model I: OR = 0.93, 95% CI: 0.75–1.16, p = 0.522; Model 
II: OR = 0.86, 95% CI: 0.65–1.14, p = 0.291).

3.4 Model variable selection

Subsequently, this study identified 15 potentially significant 
predictor variables (highlighted as green modules in Figure 2) using 
the Boruta algorithm with shaded features. These selected variables, 
including age, gender, race, education level, PIR, BMI, PBB153, 
BDE28, BDE47, BDE85, BDE99, BDE100, BDE153, BDE154, BDE183, 
and BDE209, were utilized to train and develop the machine learning 
model. However, considering that previous studies have shown that 
smoking and alcohol consumption are important risk factors for 
emphysema, we included smoking and drinking as predictors in the 
model (27, 28).

3.5 Model development and performance 
comparison

Figure 3A presents the ROC curves for the test set across eight 
machine learning models: lightGBM, MLP, DT, KNN, RF, SVM, Enet, 
and XGBoost. Notably, the Enet and MLP models demonstrated the 
highest AUC performance (AUC = 0.83), significantly outperforming 
the other six models. Among these, the MLP model was selected for 
further analysis due to its superior performance across additional 
evaluation metrics. The Figure 3B also displays the ROC curves for 
both the training and test sets of the MLP model. Consequently, the 
interpretability analysis of the best-performing model, MLP, is 
prioritized in this study. Figure  4 illustrates the comparative 
performance of the various machine learning models on the training 
set (A) and the test set (B). Pairwise DeLong tests with FDR correction 
revealed no significant differences in AUC among RF, XGBoost, and 
LightGBM (adjusted p  > 0.28). All ensemble models showed 
significantly higher AUCs compared to the Decision Tree classifier 
(adjusted p < 0.05) (Supplementary Figure 5). To address potential 
optimism due to internal SMOTE application, 100 bootstrap iterations 
were performed. The apparent AUC was 0.938, and the bias-corrected 
AUC was 0.878, indicating an estimated optimism of 0.060. 
Calibration analysis revealed initial miscalibration, with a Brier score 
of 0.136, calibration intercept of −3.116, and slope of 1.389. After 
applying Platt scaling, calibration substantially improved: Brier score 
decreased to 0.024, intercept adjusted to 0.000, and slope to 1.000, 
indicating near-perfect calibration. These results support both the 
discriminative ability and the probability accuracy of the final 
calibrated model. Detailed calibration metrics and plots are presented 
in Supplementary Table 4 and Supplementary Figure 6.

In the sensitivity analysis, drinking and smoking variables 
were excluded, and models were constructed, yielding a 
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TABLE 3 Multivariate logistic regression analysis of Ln-transformed BFRs for the prevalence of emphysema.

Variable Model I Model II

OR (95%CI) P value P* value E-value (CI) OR (95%CI) P value P* value E-value (CI)

LnPBB153 1.8 (1.58–2.05) <0.001 0.01 3 (2.54) 1.32 (1.09–1.6) 0.005 0.1 1.97 (1.4)

  Q1 Reference Reference

  Q2 5.02 (1.71–14.7) 0.003 0.021 9.51 (2.81) 2.04 (0.66–6.24) 0.214 0.954 3.5 (1)

  Q3
13.06 (4.72–

36.19)
<0.001 0.01 25.61 (8.91) 3.24 (1.07–9.78) 0.037 0.463 5.93 (1.34)

  Q4
22.74 (8.34–

62.01)
<0.001 0.01 44.97 (16.16) 4.8 (1.59–14.52) 0.006 0.1 9.07 (2.56)

P for trend <0.001 <0.001

LnBDE209 0.87 (0.64–1.19) 0.397 0.473 1.56 (1) 0.84 (0.62–1.16) 0.297 0.954 1.67 (1)

  Q1 Reference Reference

  Q2 1.05 (0.66–1.69) 0.827 0.862 1.28 (1) 1.13 (0.69–1.86) 0.63 0.954 1.51 (1)

  Q3 1.49 (1–2.23) 0.053 0.126 2.34 (1) 1.42 (0.93–2.19) 0.106 0.954 2.19 (1)

  Q4 0.68 (0.41–1.12) 0.127 0.214 2.3 (1) 0.68 (0.4–1.16) 0.162 0.954 2.3 (1)

P for trend 0.525 0.497

LnBDE28 1.52 (1.19–1.93) 0.001 0.01 2.41 (1.67) 0.97 (0.74–1.28) 0.85 0.981 1.12 (1)

  Q1 Reference Reference

  Q2 1.76 (1.06–2.92) 0.028 0.085 2.92 (1.31) 1.33 (0.78–2.26) 0.292 0.954 1.99 (1)

  Q3 1.98 (1.2–3.25) 0.007 0.035 3.37 (1.69) 1.21 (0.72–2.03) 0.471 0.954 1.71 (1)

  Q4 2.1 (1.29–3.44) 0.003 0.021 3.62 (1.9) 1.03 (0.61–1.75) 0.898 0.981 1.21 (1)

P for trend 0.004 0.79

LnBDE47 1.28 (1.03–1.59) 0.024 0.085 1.88 (1.21) 1.01 (0.8–1.27) 0.962 0.981 1.11 (1)

  Q1 Reference Reference

  Q2 1.13 (0.7–1.82) 0.626 0.68 1.51 (1) 0.86 (0.52–1.42) 0.557 0.954 1.6 (1)

  Q3 1.47 (0.93–2.31) 0.097 0.187 2.3 (1) 1.11 (0.69–1.79) 0.668 0.954 1.46 (1)

  Q4 1.5 (0.96–2.36) 0.077 0.165 2.37 (1) 0.91 (0.56–1.48) 0.706 0.981 1.43 (1)

P for trend 0.041 0.981

LnBDE85 1.28 (1.05–1.55) 0.013 0.059 1.88 (1.28) 1.1 (0.9–1.36) 0.352 0.9543 1.43 (1)

  Q1 Reference Reference

  Q2 1.42 (0.88–2.3) 0.151 0.229 2.19 (1) 1.09 (0.66–1.8) 0.739 0.981 1.4 (1)

  Q3 1.53 (0.95–2.45) 0.079 0.165 2.43 (1) 1.25 (0.76–2.05) 0.377 0.954 1.85 (1)

  Q4 1.7 (1.07–2.71) 0.024 0.085 2.79 (1.34) 1.21 (0.74–1.98) 0.449 0.954 1.71 (1)

P for trend 0.027 0.386

LnBDE99 1.21 (1.01–1.46) 0.04 0.108 1.71 (1.11) 1.03 (0.84–1.25) 0.793 0.981 1.21 (1)

  Q1 Reference Reference

  Q2 0.78 (0.48–1.27) 0.319 0.983 1.88 (1) 0.69 (0.41–1.14) 0.149 0.954 2.26 (1)

  Q3 1.39 (0.9–2.13) 0.134 0.214 2.13 (1) 1.15 (0.73–1.81) 0.536 0.954 1.57 (1)

  Q4 1.24 (0.8–1.93) 0.328 0.638 1.79 (1) 0.87 (0.54–1.38) 0.544 0.954 1.56 (1)

P for trend 0.087 0.91

LnBDE100 1.16 (0.93–1.44) 0.187 0.267 1.59 (1) 1 (0.79–1.25) 0.979 0.981 1 (1)

  Q1 Reference Reference

  Q2 1 (0.62–1.59) 0.983 0.983 1 (1) 0.81 (0.5–1.31) 0.389 0.954 1.77 (1)

  Q3 1.4 (0.9–2.15) 0.132 0.214 2.15 (1) 1.25 (0.79–1.97) 0.344 0.954 1.81 (1)

  Q4 1.14 (0.72–1.79) 0.574 0.638 1.54 (1) 0.84 (0.52–1.35) 0.466 0.954 1.67 (1)

(Continued)
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TABLE 3 (Continued)

Variable Model I Model II

OR (95%CI) P value P* value E-value (CI) OR (95%CI) P value P* value E-value (CI)

P for trend 0.309 0.915

LnBDE153 1.36 (1.1–1.69) 0.005 0.028 2.06 (1.43) 1.13 (0.9–1.42) 0.283 0.954 1.51 (1)

  Q1 Reference Reference

  Q2 1.42 (0.9–2.24) 0.137 0.214 2.19 (1) 1.47 (0.9–2.38) 0.12 0.954 2.30 (1)

  Q3 1.03 (0.63–1.69) 0.899 0.917 1.21 (1) 0.94 (0.56–1.58) 0.818 0.981 1.32 (1)

  Q4 1.67 (1.07–2.6) 0.024 0.08 2.73 (1.34) 1.38 (0.85–2.21) 0.19 0.954 2.10 (1)

P for trend 0.074 0.487

LnBDE154 1.18 (0.97–1.44) 0.102 0.189 1.64 (1) 0.98 (0.79–1.21) 0.832 0.981 1.16 (1)

  Q1 Reference Reference

  Q2 1.3 (0.81–2.09) 0.278 0.386 1.92 (1) 0.89 (0.55–1.47) 0.659 0.954 1.50 (1)

  Q3 1.59 (1.01–2.51) 0.044 0.11 2.56 (1.11) 1.2 (0.75–1.93) 0.45 0.954 1.69 (1)

  Q4 1.39 (0.87–2.21) 0.17 0.25 2.13 (1) 0.89 (0.54–1.47) 0.654 0.954 1.50 (1)

P for trend 0.12 0.962

LnBDE183 0.95 (0.72–1.26) 0.728 0.775 1.29 (1) 0.87 (0.64–1.19) 0.386 0.954 1.56 (1)

  Q1 Reference Reference

  Q2 1.25 (0.77–2.02) 0.375 0.457 1.81 (1) 1.16 (0.69–1.93) 0.58 0.954 1.59 (1)

  Q3 1.69 (1.05–2.72) 0.029 0.085 2.77 (1.28) 1.37 (0.83–2.26) 0.218 0.954 2.08 (1)

  Q4 1.21 (0.73–1.99) 0.466 0.541 1.71 (1) 1.09 (0.63–1.89) 0.758 0.983 1.40 (1)

P for trend 0.299 1.37 (1) 0.636 1.24 (1)

Model 1: no covariates were adjusted. Model 2: adjusted for all covariates. P* value: adjusted for false discovery rate correction. Bold values indicate p < 0.05.

FIGURE 2

Image of Boruta method for selecting ML model variables.
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maximum AUROC of 0.77 for both the Enet and KNN models. 
However, the performance of all models was inferior compared 
to those that included drinking and smoking as predictors 
(Supplementary Figure 7). By excluding participants diagnosed 
within 2 years prior to the survey, the performance of machine 
learning models remained stable. Among all classifiers, MLP 
again achieved the highest discrimination with an ROC-AUC of 
0.83 (Supplementary Figure 8), similar to that observed in the 
primary analysis.

3.6 Model interpretation

SHAP analysis was conducted to evaluate the contribution and 
importance of each variable in the MLP model’s predictions, as 
illustrated in Figures 5A,B. The analysis consistently highlighted age 

as the most significant variable, exhibiting the highest SHAP value 
and serving as a critical risk factor for emphysema. The most 
important of the BFRs components was PBB153, which ranked fifth 
after age in the importance of all variables, while it was consistent 
with the logistic regression results, and both have a harmful effect on 
emphysema. The second highest variable with a SHAP value is that 
now smoker are at greater risk of emphysema, and it is also consistent 
with the performance improvement of the model after we added the 
smoking variable.

The Figure 6 presents personalized feature attributions for 
two representative patients, one with and one without 
emphysema. The prediction begins from the base value (bias), 
which represents the average prediction across the training 
dataset (35). Each feature’s contribution is depicted as an arrow, 
indicating whether it decreases (negative value) or increases 
(positive value) the probability of the outcome. The arrows are 

FIGURE 3

ROC curves of ML models. (A) ROC curves of the test sets of 8 ML models. (B) ROC curves of the training and test sets of MLP.

FIGURE 4

Performance comparison of various machine learning models on the training (A) and test (B) sets across multiple evaluation metrics. The heatmaps 
illustrate the performance of lightGBM, MLP, DT, KNN, RF, SVM, Enet, and XGBoost models. Each cell corresponds to the value of a specific evaluation 
metric, including accuracy, balanced accuracy, F1 score, J-index, kappa, Matthews correlation coefficient (MCC), positive predictive value (PPV), 
negative predictive value (NPV), precision, recall, ROC AUC, sensitivity (sens), and specificity (spec). Higher values are represented by blue, while lower 
values are indicated by white, providing a visual representation of model performance in both training and test sets.
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sorted by their impact on the prediction, with colors representing 
positive (red) or negative (blue) contributions. The length of each 
arrow corresponds to the SHAP value for the respective feature. 
For the patient with emphysema, high levels of BDE28 (1.76), 
BDE85 (1.39), PBB153 (4.15), and now smoker were major 
contributors to the elevated risk, counteracted by high PIR (5) 
and age (48) (Figure  6A). In contrast, for the patient without 
emphysema, relatively high levels of BDE209 (1.81) and BDE47 
(3.22), along with low levels of BDE28 (0.4) and being a current 
smoker, increased the risk. However, low levels of PBB153 (0.88), 
BDE85 (0.3), and age (30) reduced the probability of emphysema 
(Figure 6B).

The PDPs provided a broader understanding of the model’s 
predictions, highlighting the relationships between emphysema 
and its predictors, as illustrated in Supplementary Figure 9. The 
PDP analysis revealed that older age and now smoking status 
were associated with an increased predicted risk of emphysema. 
Regarding BFRs, the analysis indicated an upward trend in the 
predicted probability of emphysema with higher levels of PBB153 
and BDE85.

4 Discussion

Emphysema, with its rapidly increasing prevalence, has placed a 
significant burden on individual health and well-being. 
Environmental chemicals, such as BFRs, which function as endocrine 
disruptors, have been proposed as overlooked risk factors for COPD 
(11, 36). This study aimed to investigate the associations between 
BFR exposure and emphysema and to evaluate the potential 
predictive value of BFRs for emphysema risk.

Human exposure to various environmental chemicals in the real 
world is an unavoidable reality. Previous studies have established a 
significant association between BFR exposure and COPD (36), 
offering a novel perspective on incorporating BFRs into predictive 
models for emphysema. However, despite numerous studies on 
associations, predictive modeling studies that include BFRs as key 
variables remain limited. Identifying potential environmental 
biomarkers is crucial for developing high-resolution classifiers 
for emphysema.

In this study, we developed a ML model using data from the 
NHANES study (2005–2016) to predict the risk of emphysema in 

FIGURE 5

SHAP diagram of MLP model. (A) SHAP value ranking of the variables in the model. (B) SHAP honeycomb diagram of the MLP model.

FIGURE 6

Force plots for 2 patients with and without emphysema.
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the U.S. population. The model incorporated basic demographic 
variables and BFR composition data as predictors. Multivariate 
logistic regression analysis identified significant associations 
between emphysema risk and several BFRs, including PBB153, 
BDE28, BDE47, BDE85, BDE99, and BDE153. Additionally, 
BDE154 and BDE183 were found to be  associated with 
emphysema risk at certain concentrations. WQS analysis further 
revealed that co-exposure to BFR mixtures significantly increased 
the risk of emphysema. Among the eight ML models evaluated, 
the MLP model demonstrated the best predictive performance, 
achieving an AUC value of 0.83 after cross-validation, indicating 
its high accuracy in predicting emphysema risk. To further 
evaluate the robustness of these associations, we  conducted a 
sensitivity analysis by excluding participants who had been 
diagnosed with emphysema within 2 years of the survey. This 
adjustment aimed to reduce potential recall bias and mitigate 
concerns regarding reverse causality. Notably, the results of both 
logistic regression and machine learning models remained 
consistent after this exclusion, reinforcing the temporal 
plausibility and stability of our primary findings. Moreover, given 
the low prevalence of emphysema and the use of SMOTE for 
internal oversampling, we  conducted optimism-corrected 
validation using bootstrap analysis. The bias-corrected AUC 
remained high, indicating strong discriminative ability. Initial 
probability calibration was poor, but substantially improved after 
Platt scaling, demonstrating the final model’s clinical applicability 
in providing reliable risk estimates. SHAP interpretability 
analysis based on the MLP model highlighted age and PBB153 as 
the most influential variables, with age contributing the most to 
the risk of developing emphysema. These findings were 
corroborated by PDP analysis. Overall, our results suggest that 
integrating basic demographic information with environmental 
BFR exposure data has significant potential for enhancing disease 
risk prediction in future applications.

Previous studies have shown that BFRs are associated with 
decreased lung function and the development of COPD (36, 37). 
At the cellular level, BFRs can induce oxidative stress, 
inflammation, and apoptosis in lung epithelial cells through 
caspase-dependent mitochondrial pathways (38). BFRs, 
particularly polybrominated diphenyl ethers (PBDEs), impair the 
integrity of airway epithelium by decreasing tight junction 
resistance, reducing zonula occludens-1 expression, and altering 
mucus production and rheology (39). These effects contribute to 
barrier dysfunction and increased inflammatory responses in the 
lungs. Additionally, BFRs have been linked to cardiovascular 
toxicity and pro-atherosclerotic mechanisms, which may 
indirectly impact respiratory health (40).

Association and mechanistic studies collectively indicate that 
the BFRs identified in this study play a significant role in 
distinguishing emphysema cases. Traditionally, previous research 
has focused on identifying novel biomarkers or imaging-based 
predictors for emphysema, often overlooking the potential 
predictive value of environmental exposures (8). To address this 
gap, we developed machine learning models to evaluate whether 
BFRs can reliably predict the risk of emphysema. Given the 
challenges in accurately understanding ML methodologies and 
visually interpreting their results, we employed SHAP and PDP 

analyses in the MLP model to enhance both interpretability and 
impact. Considering that diseases closely linked to environmental 
exposures, such as respiratory and cardiovascular diseases, 
account for approximately one-fourth of all global diseases 
according to the World Health Organization (WHO), integrating 
BFRs into predictive models is undoubtedly meaningful. This 
approach highlights the importance of environmental factors in 
advancing risk prediction and improving public health strategies.

Our findings offer a novel perspective for researchers in the 
field of environment and health, contributing to personalized and 
accurate emphysema risk predictions for individuals at high risk 
of BFR exposure. However, this study has several limitations. 
First, emphysema diagnoses were based on self-reported data 
from questionnaires, which may introduce bias due to recall 
errors, potentially affecting the accuracy of the risk prediction 
model. Although we conducted a sensitivity analysis excluding 
participants diagnosed within 2 years prior to the survey, 
emphysema could not be reliably defined based on spirometry 
data in NHANES, as physician-confirmed diagnoses derived from 
FEV1/FVC measurements were unavailable. Second, serum 
measurements of BFR concentrations may not fully capture 
cumulative exposure or tissue-specific levels, as BFRs are known 
to accumulate in various organs and tissues. Additionally, reliance 
on a single measurement of BFR levels may not accurately 
represent long-term exposure patterns. Moreover, within-person 
variability in serum BFR concentrations may further limit the 
precision of exposure estimation. Third, more than 80% of the 
original NHANES sample was excluded due to missing BFR data, 
as these chemicals were measured only in a one-third subsample. 
While this missingness was by design, our comparison of weighted 
characteristics between included and excluded participants 
revealed systematic differences, suggesting potential selection 
bias. Fourth, important confounders such as pack-years of 
smoking, occupational exposure to dust and fumes, passive smoke 
exposure, and alpha-1-antitrypsin deficiency were not available in 
the NHANES dataset. Although we calculated E-values indicating 
the robustness of our findings to potential unmeasured 
confounding, residual confounding cannot be entirely ruled out. 
Lastly, given that NHANES is a cross-sectional study, further 
validation of our prediction model in independent cohort studies 
is necessary. The lack of imaging data or genetic biomarkers in 
NHANES also limited our ability to assess whether incorporating 
BFRs enhances the predictive power of traditional models based 
on these data types.

5 Conclusion

To the best of our knowledge, this is the first study to develop a 
ML model incorporating BFR exposure data to predict emphysema 
risk. Using BFR data from NHANES, we constructed and identified 
the optimal MLP model, which was further interpreted through 
SHAP and PDP analyses. The model demonstrated excellent 
predictive accuracy, with PBB153 and age emerging as the most 
influential variables in the prediction. This study underscores the 
significant role of BFR exposure in emphysema risk and paves the 
way for novel approaches to disease prediction, emphasizing the 
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importance of environmental factors in advancing public health 
research and interventions.
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