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Objective: The Moving Epidemic Method (MEM) has been widely used to assess

seasonal influenza epidemics in temperate and subtropical regions. This is the

first study to validate the use of MEM in a subtropical plateau environment.

Methods: This study applied the Moving Epidemic Method (MEM) to establish

influenza epidemic thresholds in Kunming, China, using virological surveillance

data from 2011–2012 to 2023–2024.

Results: The MEM model demonstrated high sensitivity (93%) and specificity

(67%), with no detection lag for the 2023–2024 season. Epidemic thresholds

(8%), which were notably lower than those in other subtropical regions, may

potentially be attributed to Kunming’s plateau monsoon climate.

Conclusion: This study underscored MEM’s adaptability in subtropical plateau

settings and provided actionable thresholds for early outbreak response.
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1 Introduction

Influenza A and B are major causes of seasonal epidemics (1), contributing to a

significant global health burden (2). Every year, influenza leads to 3–5 million cases and

∼400,000 deaths globally (3) in addition to over 5 million hospitalizations. The disease

burden of influenza is particularly severe during epidemic seasons, especially among

vulnerable populations, such as older adults (4), young children (5), and individuals with

underlying health conditions (6). In China (7), the morbidity rate of influenza in 2023 was

906.56 cases per 100,000 people, making it the most prevalent of the 41 diseases reported

nationally. The estimated mortality rates due to influenza were 14.33 per 100,000 across all

age groups and 122.79 per 100,000 among those aged 65 and older (8).

Four primary strains of the influenza virus—A(H1N1)pdm09, A(H3N2), B/Victoria,

and B/Yamagata—have been circulating in human populations for decades (9). However,

B/Yamagata has been rarely detected since March 2020 (10). Meanwhile, genetic diversity

in H1N1pdm09 and B/Victoria has been increasing since April 2021, whereas H3N2

diversity has declined more gradually (10). Despite these genetic variations, the seasonal

patterns of each influenza virus remain insufficiently explored (11, 12). In temperate

regions, influenza typically peaks in winter, whereas subtropical and tropical regions

exhibit less pronounced seasonality (13, 14). For example, northern China experiences a

single seasonal influenza peak, whereas southern China often sees both amajor and aminor

peak (15). These regional variations are influenced by the distribution and characteristics of

circulating viruses (16), making predicting epidemic timing and intensity challenging (17).
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Therefore, determining the onset of an influenza epidemic

is crucial for implementing effective public health interventions.

Since 2004, China has implemented the China Infectious

Disease Automated-Alert and Response System (CIDARS) to

monitor influenza epidemics (18). Although climate change and

mutations introduce uncertainties, seasonal influenza still exhibits

repeatability and structural characteristics, and key patterns can

be identified based on historical data. Various approaches (18, 19)

have been proposed to detect influenza epidemics, including the

cumulative sum (CUSUM), serial regression, andMoving Epidemic

Method (MEM), among others. The MEM initially proposed by

Vega et al. (20) has been widely recognized as an effective tool

for defining epidemic and non-epidemic periods based on routine

surveillance data. MEM has been well-documented in temperate

(21–23) and subtropical regions (24, 25). Similarly, the results

showed that the prediction error from the actual epidemic week was

only ±1 week in Respiratory Syncytial Virus (RSV) (26) verifying

the robustness of MEM in different diseases and data sources.

To date, the potential application of MEM in detecting

influenza epidemics in subtropical plateau regions remains

underexplored. This study is the first to validate MEM in a

subtropical plateau city.

2 Materials and methods

2.1 Study area and data sources

Kunming, located in Southwestern China, is the capital city of

Yunnan Province with a resident population of 8.69 million as of

the end of 2024. Administratively, Kunming consists of 14 county-

level divisions, including 7 districts, 6 counties, and 1 county-

level city. The four sentinel surveillance sites were established in

response to the 2003 following Severe Acute Respiratory Syndrome

(SARS) outbreak, based on two considerations: (1) multiple

administrative levels of hospitals, including provincial, municipal,

and county-level facilities, and (2) key hospital types: general

hospitals, children’s hospitals, and infectious disease specialty

hospitals. By the end of 2024, four national sentinel hospitals

remained unchanged from their establishment. They were actively

conducting influenza surveillance: the First Affiliated Hospital of

Kunming Medical University (102key ho 25 county the Third

People’s Hospital of Kunming(102he Thi 25nming(1 the Children’s

Hospital of Kunming(102en’s H 24nming(1 and the First People’s

Hospital of Anning (102 the F 2402 the (Figure 1). Each sentinel

hospital collected a minimum of 20 respiratory specimens per

week from individuals presenting with influenza-like illness (ILI).

An influenza-like illness (ILI) case was defined as a fever (body

temperature ≥ 38◦C) accompanied by either a cough or a sore

throat. The collected specimens were sent to reference laboratories

for influenza virus analysis, where reverse transcription polymerase

chain reaction (RT-PCR) was conducted to determine influenza

virus subtypes within the same week of sample collection. The

laboratory results were electronically submitted to the web-based

National Influenza Surveillance Information System (NISIS). The

confirmed influenza case data, sourced from China’s infectious

disease surveillance system (CIDS), and demographic data come

from the official website of the National Bureau of Statistics.

Based on historical seasonal epidemic patterns in Kunming,

influenza is most prevalent during the winter and spring months.

To optimize the MEM analysis by focusing on epidemiologically

meaningful data, we defined the monitoring period from the 40th

week of the current year to the 30th week of the following year,

covering a total of 43 weeks per influenza season. This period

encompasses the entire phase of substantial influenza transmission

in Kunming, excluding weeks 31–39, during which there was

minimal activity. In addition to the overall influenza positivity

proportion (PR), the weekly PRs of A(H1N1)pdm09, A(H3N2),

B/Victoria lineage, and B/Yamagata lineage were also calculated

separately. This study included 10 influenza seasons from 2011–

2012 to 2019–2020, as well as the 2023–2024 season, for analysis

using the MEM.

2.2 Cross-correlation analysis

A spatiotemporal analysis was conducted to examine the

geographic and temporal distribution of influenza incidence in

Kunming from 2010 to 2020. To assess the temporal relationship

between PR and incidence rate, a cross-correlation function (CCF)

analysis was conducted using weekly data from 2010 to 2024.

Pearson correlation coefficients were calculated at lags from −5

to +5 weeks to determine whether PR could serve as a leading

indicator of incidence rate. The analysis was performed across

four periods: the full dataset (2010–2024), the pre-pandemic years

(2010–2019), the post-pandemic years (2023–2024), and a filtered

set excluding 2020–2022.

2.3 Moving epidemic method

The Moving Epidemic Method (MEM) is a three-step process

used to define the start, length, and end of each influenza

epidemic season.

Step 1: Determining the Epidemic Period.

The epidemic period is defined as the time when the cumulative

monitoring index first drops below a predefined threshold δ,

expressed as a percentage of the total cumulative monitoring

index for the season. The length of the epidemic period is

determined using the Maximum Accumulated Percentage (MAP),

which identifies the minimum number of consecutive weeks

that account for the highest cumulative percentage of influenza

cases, as described by Vega et al. (20), each influenza season is

divided into three distinct periods: the pre-epidemic period, the

epidemic period, and the post-epidemic period. In this study, MAP

represents the maximum value of the cumulative percentage of

PR over a specific period within a flu season, relative to the total

cumulative positivity rate for the entire season. The particular

calculation formulas are as follows:

trj=
max

k=1,. . .,S− r+1

{

k+r−1
∑

i=k

ti,j

}

,∀r=1,. . .,S (1)

tsj=
S

∑

i=k

ti,j (2)

Prj=
trj
tsj

(3)
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FIGURE 1

Distribution of 14 counties/districts and 4 sentinel hospitals in Kunming.

The MAP curve draws the maximum cumulative rate for a

period of a given length r, expressed as a percentage of the total

rate of Prj of the total rate of the j season. The trj is the highest

accumulated rate among j epidemic in r period. The tsj is the

accumulate rate in the j season. The ti,j is the i rate of the j season,

and S is the monitoring weeks in each season. The k is the number

of start weeks of consecutive r weeks.

Step 2: Calculation of Epidemic Thresholds

The epidemic thresholds are calculated based on PR from both

the pre-epidemic and post-epidemic periods. The top n-values

(where n = 30/N) with the highest PR in both the pre-epidemic

and post-epidemic periods are selected for analysis. The 95% one-

sided confidence interval (CI) upper limit of the arithmetic mean

of these 30 values is used to define the Pre-epidemic and post-

epidemic thresholds.

Step 3: Classification of Epidemic Intensity

The epidemic intensity is categorized based on PR values

observed during the epidemic period. The top n-values (where n

= 30/N) with the highest positivity rates in each epidemic period

are selected for analysis. The 40, 90, and 95% one-sided confidence

intervals (CIs) upper limits for the geometric mean of these 30

values are used to define the thresholds for: moderate intensity,

high intensity, and very high intensity.

2.4 Model evaluation

The MEM model can be used to classify each season into

three periods, namely, pre-epidemic, epidemic, and post-epidemic

periods. The rates in the pre-epidemic period were expected to

be lower than the pre-epidemic threshold rate, whereas rates

during the epidemic period were expected to be higher. Rates

in the post-epidemic period were expected to be lower than

the post-epidemic threshold rate. For the 2023–2024 season, the

epidemic threshold and intensity levels (moderate, high, and

very high) were determined based on historical pre-epidemic,

post-epidemic, and epidemic values from the 2011–2012 to

2019–2020 seasons.

The MEM model was implemented using RStudio 4.2.1, and

its performance was assessed through calculations of sensitivity,

specificity, and timeliness. A true positive week is defined as a

week within the epidemic period when the PR exceeds both the

start- and post-threshold. A true negative week is a week within the

pre- or post-epidemic period where the PR is below the threshold.

Sensitivity is calculated as the number of true positive weeks

divided by the total number of weeks in the epidemic period.

Specificity is the number of true negative weeks divided by the total

number of weeks in the non-epidemic period. Youden’s index is the
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FIGURE 2

Time series of influenza incidence rate in Kunming, 2010–2024.

sum of sensitivity and specificity minus one. Timeliness was defined

as the number of weeks between the first occurrence of a positive

proportion exceeding the established epidemic threshold and the

first week of the MEM-defined epidemic period. The threshold

parameter δ was iteratively adjusted, with an initial value of 1.0, a

final value of 3.0, and a step size of 0.1. The optimal value of δ was

selected based on its performance in terms of sensitivity, specificity,

and Youden’s Index.

The optimized MEM model was subsequently employed to

determine the epidemic threshold and intensity thresholds, which

were then applied to assess the epidemic intensity of the 2023–

2024 winter-spring influenza season in Kunming. For a target

type of influenza virus, an epidemic threshold was calculated

using the seasons when the proportion of the target strain

exceeded 25%.

2.5 Cross-validation analysis

The cross-validation procedure was employed to evaluate the

performance of MEM. Each influenza season is treated individually

as the target season, while other seasons serve as a historical

baseline for comparison. The MEM model’s first and second steps

are applied to calculate the epidemic start- and post-thresholds

for the target season. The actual weekly PR during the season

was compared with the pre-epidemic, epidemic, and post-epidemic

periods, as well as the start and post-thresholds determined by

the MEM model. Sensitivity, specificity, and Youden’s index are

then calculated.

3 Results

3.1 Seasonal influenza activity in Kunming

The annual and seasonal analysis of influenza incidence

rate across 14 districts and counties of Kunming from 2010

to 2024 revealed substantial heterogeneity in both intensity

and distribution over time. Time–series plot (Figure 2) shows a

clear seasonal pattern, with influenza incidence typically peaking

during the winter and early spring months (January to March).

From 2010 to 2018, morbidity levels in most regions remained

relatively low and stable, with peak values generally below 500

cases per 100,000 population. However, a sharp increase in

incidence was observed after 2018, particularly in peripheral

districts–countries, Fuming, Shilin, Dongchuan, and Jingning. The

decline in morbidity between 2020 and 2022 is notable across

all districts, aligning with the period of coronavirus disease 2019

(COVID-19) control measures, which likely reduced the spread

of influenza. However, this was followed by an unprecedented

resurgence in 2023–2024, with many peripheral districts reporting

incidence levels exceeding 3,000–9,000 per 100,000, far above

pre-pandemic norms. Spatial distribution maps (Figure 3) further
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FIGURE 3

Spatial distribution of influenza incidence rate in Kunming, 2010–2024.

highlight this post-pandemic intensification and concentration.

Prior to 2018, the majority of the regions exhibited modest

rates (<300/100,000), with minimal spatial disparity. In contrast,

by 2023, regions such as Dongchuan, Fuming, Luquan, Shilin,

and Yiliang formed a clear belt of high-morbidity clusters,

particularly in the northeast and southeast of Kunming. Central

urban districts, such as Wuhua, Panlong, and Guandu, maintained

relatively lower incidence levels throughout the study period

(Table 1).

Regarding the virological data, the peak PR ranged from

24.63 to 71.62%. The weekly PR exhibited seasonal trends,

typically peaking either at the beginning or the end of the

year. The peak timing varied between seasons (Figure 4) and

predominantly followed a unimodal distribution, except for the

2017–2018 and 2018–2019 seasons, which showed a clear bimodal

pattern. The dominant influenza strains also varied from one

season to another. A(H1N1)pdm09 was the predominant strain

in the majority of the seasons, particularly in 2012–2013, 2013–

2014, 2017–2018, 2018–2019, and 2019–2020, with positivity rates

exceeding 45%. A(H3N2) was prevalent in the seasons 2014–

2015, 2016–2017, 2019–2020, and 2023–2024, with a positivity

rate exceeding 45% in each of these seasons. B/Victoria was

the dominant strain in the 2011–2012 season, accounting for

72.6% of positive cases. B/Yamagata was most prevalent in

the 2023–2024 season, making up 45.58% of positive cases

(Table 2).

3.2 Cross-correlation analysis

The cross-correlation analysis demonstrated that PR

consistently showed a statistically significant positive correlation

with incidence rate, often with a one-week lead. During the whole

study period from 2010 to 2024, the strongest correlation (r= 0.54)

was observed at a lag of −1 week. When the COVID-19 pandemic

years (2020–2022) were excluded, the correlation increased slightly

(r= 0.57), still at a lag of−1 week. In the pre-COVID-19 pandemic

period (2010–2019), the peak correlation (r = 0.59) occurred at a

zero lag, indicating a contemporaneous relationship. In contrast,

the post-COVID-19 pandemic period (2023–2024) showed a

robust correlation (r = 0.90) at a lag of −1 week, suggesting that

PR became a highly reliable early indicator of morbidity trends in

the aftermath of the COVID-19 pandemic (Figure 5).

3.3 Parameter selection

Under different δ values, the sensitivity ranges from 0.29

to 0.74, the specificity ranges from 0.87 to 0.98, the Positive

Predictive Value (PPV) ranges from 0.75 to 0.89, the Negative

Predictive Value (NPV) ranges from 0.71 to 0.86, and the Youden

index (YI) ranges from 0.26 to 0.61. The parameter δ = 1.1

yields the best performance with the highest sensitivity, NPV, and
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TABLE 1 Annual influenza incidence rate per 100,000 population in 14 districts of Kunming, 2010–2025.

City 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Fuming 19.24 15.65 81.88 50.00 47.71 136.36 186.26 138.66 396.58 870.44 518.37 136.42 283.83 9,405.64 4,672.57

Shilin 11.37 9.27 48.61 29.53 28.52 81.40 111.37 82.60 237.59 520.30 321.81 86.26 179.84 6,018.03 3,018.65

Dongchuan 10.30 8.39 44.36 27.08 26.16 74.73 102.55 76.68 220.77 485.61 297.23 79.81 166.86 5,595.71 2,813.51

Jinning 9.87 8.07 41.92 25.51 24.58 70.00 95.61 70.82 202.78 439.78 223.82 59.33 123.28 4,100.86 2,043.33

Luquan 7.06 5.76 30.35 18.52 17.89 51.09 70.07 52.39 151.27 333.74 204.55 54.76 114.54 3,834.62 1,925.11

Yiliang 6.68 5.44 28.64 17.48 16.90 48.39 66.38 49.34 141.57 309.76 201.36 53.81 112.57 3,765.22 1,888.86

Songming 9.75 7.96 41.92 25.42 24.25 67.52 91.11 65.98 183.82 387.68 188.60 50.12 104.47 3,328.62 1,638.14

Xundian 6.13 5.00 26.35 16.13 15.63 44.87 61.69 45.96 131.89 289.78 168.21 44.59 92.91 3,095.99 1,545.02

Anning 8.20 6.69 34.76 21.01 20.17 57.22 77.89 57.47 164.57 355.78 160.21 42.39 87.51 2,829.29 1,392.45

Chenggong 9.01 7.26 37.89 23.01 22.12 63.25 86.23 63.69 177.57 372.95 119.32 30.97 61.90 2,022.40 982.07

Xishan 3.71 3.02 15.86 9.72 9.42 26.96 36.99 27.50 79.10 173.54 80.67 21.33 43.94 1,459.97 724.49

Wuhua 18.94 1.04 15.02 28.97 7.74 5.75 12.60 8.00 19.93 120.45 77.51 37.55 42.20 926.38 582.37

Kunming 2.52 1.06 7.15 8.28 3.67 7.65 12.69 7.99 25.43 82.19 55.11 24.06 37.45 804.86 567.40

Panlong 0.99 0.25 1.22 3.65 1.09 3.01 9.59 4.66 22.92 137.00 104.86 56.21 53.42 895.95 563.89

Guandu 3.28 2.67 14.09 8.62 8.35 23.81 32.67 24.15 68.61 146.63 48.37 12.79 26.49 880.82 438.00
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FIGURE 4

Weekly influenza positivity rates (PR) and MEM-defined epidemic periods in Kunming, from 2011–2012 to 2023–2024. Curves from bottom to top:

All types, A(H3N2), A(H1N1)pdm09, B/Yamagata, and B/Victoria.

TABLE 2 Virological characteristics of influenza in Kunming from 2011–2012 to 2023–2024 seasons.

Seasons PR peak Percentage of Positive specimens (%)

Week Value (%) A(H1N1)pdm09 A(H3N2) B/Yamagata-lineage B/Victoria-lineage

2011–2012 13 34.09 0.63 20.89 4.43 74.05

2012–2013 15 31.03 81.60 12.80 5.60 0.00

2013–2014 5 27.23 45.26 29.93 24.82 0.00

2014–2015 50 31.76 1.39 86.11 12.50 0.00

2015–2016 6 24.63 35.96 20.18 34.21 9.65

2016–2017 22 24.74 16.96 75.45 7.14 0.45

2017–2018 2 43.64 69.15 14.54 11.70 4.61

2018–2019 2 63.28 54.45 19.28 25.82 0.45

2019–2020 4 50.82 8.43 66.01 25.56 0.00

2023–2024 49 71.62 9.34 45.08 45.58 0.00

YI (Table 3). The sensitivity, specificity, PPV, NPV, and Youden

index are 0.74, 0.87, 0.76, 0.86, and 0.61, respectively. Therefore,

δ = 1.1 was selected as the optimal parameter and applied in

subsequent analyses.

3.4 Cross-validation of MEM

For the 2023–2024 season, the sensitivity, specificity, and YI

were 0.93, 0.67, and 0.6, respectively. By the cross-validation

process, the 2014–2015 season has the lowest sensitivity and YI.

After excluding the data from the 2014–2015 epidemic season, the

MEM models of each epidemic season performed well (Table 4).

The data from 9 epidemic seasons (except 2014–2015) were

finally included.

3.5 MEM for influenza seasons in Kunming

The onset of the epidemic varied across seasons, ranging from

week 40 to week 52, while the epidemic duration ranged from

11 to 29 weeks. The pre-epidemic threshold values were relatively

stable, fluctuating between 5.49 and 8.10%. However, the thresholds

for medium, high, and very high intensity exhibited noticeable

variation across seasons. The majority of the seasons recorded

medium or low intensity levels, except for 2018–2019, which was
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FIGURE 5

Temporal trends of influenza incidence rate and PR in Kunming, 2010–2025.

classified as high intensity, and 2023–2024, which reached a very

high intensity level (Table 5, Figure 6).

For the 2023–2024 influenza season, the epidemic period, as

estimated by MEM, started in week 42 of 2023 and lasted for 29

weeks. The pre- and post-epidemic thresholds were 0.08 and 0.18,

respectively (Figure 7). The timeliness of epidemic detection was

zero weeks. There was no detection lag for the 2023–2024 season.

The peak intensity was estimated at a very high level in this season.

3.6 Stratification analysis by influenza
strain

In the analysis of influenza virus types from the 2011–2012

to the 2023–2024 seasons, a total of 3,870 positive samples were

recorded. A(H1N1)pdm09 and A(H3N2) are the two dominant

influenza strains in Kunming, accounting for 74.54% of positive

samples. A(H1N1)pdm09 has the highest peak PR of 47.76% and

was prevalent across 5 seasons, making it the most consistently

dominant strain. In contrast, B/Yamagata-lineage and B/Victoria-

lineage played a smaller role, with B/Yamagata-lineage being

more prevalent, reaching a maximum peak of 38.04%. The MEM

estimates indicate that influenza outbreaks typically start in late

autumn or early winter (weeks 44–48) and last for about 16–

18 weeks. The epidemic thresholds vary, with A(H3N2) having

the highest threshold of 3% and B/Yamagata-lineage the lowest at

1.49% (Table 6).

4 Discussion

This study is the first to validate the Moving Epidemic

Method (MEM) for influenza surveillance in a subtropical plateau

setting. The MEM model exhibited robust performance, with high

sensitivity (74%) and specificity (87%) for detecting epidemics,

and no temporal lag in identifying the onset of the 2023–2024

influenza season. The epidemic threshold for the 2023–2024

season was determined at 8%, while subtype-specific thresholds

varied markedly, 1.49–3%, underscoring distinct transmission

dynamics among circulating strains. Notably, Kunming’s threshold

was substantially lower than those reported in other subtropical

and tropical regions, such as Guangdong 11.99% and Wuhan

15.42% (24, 25), and even contrasted with the World Health

Organization (WHO)-recommended baseline of 13.2% for tropical

Cambodia (27). Although the exact impact is not yet clear (28–

30), humidity, precipitation, and temperature are the primary

climatic factors influencing tropical and subtropical regions. The

spread of influenza in tropical and subtropical regions. Affected

by the Kunming quasi-stationary front (31, 32), the climate in

Kunming is sunny and dry during the winter and spring seasons.

These discrepancies validate the adaptability ofMEM in subtropical

plateau environments but also emphasize the necessity of region-

specific threshold calibration.

Spatiotemporal analysis revealed marked heterogeneity

in influenza transmission across Kunming, with peripheral

districts consistently exhibiting higher incidence rates than

urban centers. Since 2018, overall influenza morbidity has

sharply increased, culminating in a historical peak in 2023. This

pattern suggests a potential exacerbation of pre-existing spatial

inequalities in influenza burden, possibly reflecting disparities in

healthcare access, population density, socioeconomic factors, or

environmental conditions between urban core and peri-urban and

rural regions. In parallel, cross-correlation analysis demonstrated

that virological positivity rates (PR) consistently led reported

incidence by ∼1 week, particularly in the post-COVID-19 period.

These findings highlight PR as a reliable and timely indicator of

early warning indicator for influenza activity.

PR data can better reflect the real-world influenza epidemic

situation compared to syndromic indicators, such as ILI (33, 34).

Since the identification of influenza-like illness also includes other
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TABLE 3 Model fitting e�ect under di�erent parameter settings.

Parameter δ Sensitivity Specificity PPV NPV Youden index

1.0 0.52 0.90 0.75 0.77 0.43

1.1 0.74 0.87 0.76 0.86 0.61

1.2 0.70 0.89 0.78 0.84 0.59

1.3 0.67 0.90 0.79 0.83 0.57

1.4 0.68 0.90 0.79 0.83 0.58

1.5 0.68 0.90 0.79 0.83 0.58

1.6 0.68 0.90 0.79 0.83 0.58

1.7 0.67 0.91 0.80 0.83 0.58

1.8 0.64 0.91 0.81 0.82 0.55

1.9 0.63 0.93 0.83 0.82 0.56

2.0 0.52 0.94 0.83 0.78 0.46

2.1 0.48 0.94 0.83 0.76 0.43

2.2 0.48 0.94 0.83 0.76 0.42

2.3 0.42 0.96 0.85 0.75 0.38

2.4 0.42 0.96 0.85 0.74 0.38

2.5 0.37 0.97 0.88 0.73 0.34

2.6 0.34 0.98 0.89 0.72 0.32

2.7 0.34 0.98 0.89 0.72 0.32

2.8 0.31 0.97 0.85 0.71 0.28

2.9 0.31 0.97 0.85 0.71 0.28

3 0.29 0.97 0.85 0.71 0.26

YI, Youden’s Index; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

TABLE 4 Cross-validation results of influenza in Kunming before and after eliminating abnormal data from 2011–2012 to 2023–2024.

Season Incorporate all data Excluding the 2014–2015 season

Sensitivity Specificity YI Sensitivity Specificity YI

2011–2012 0.73 0.90 0.63 0.73 0.90 0.63

2012–2013 0.87 0.87 0.74 0.87 0.87 0.74

2013–2014 0.64 0.86 0.50 0.64 0.86 0.50

2014–2015 0.20 0.99 0.19 – – –

2015–2016 0.59 0.85 0.44 0.59 0.85 0.44

2016–2017 0.86 0.63 0.49 0.94 0.58 0.52

2017–2018 0.86 0.78 0.63 0.88 0.76 0.64

2018–2019 0.98 0.53 0.51 0.99 0.51 0.50

2019–2020 0.89 0.97 0.86 0.89 0.97 0.86

2023–2024 0.93 0.67 0.60 0.96 0.65 0.61

YI, Youden’s Index.

symptoms of viral infections, such as those caused by respiratory

syncytial virus (RSV) and adenovirus (35–38). Therefore, virology-

based data enhance specificity by minimizing confounding factors

from non-influenza respiratory pathogens. Affected by the novel

coronavirus, the PR has decreased in our surveillance data from

2020–2021 to 2022–2023. Our study, therefore, excluded these

seasons at the beginning of data inclusion. Moreover, after the

cross-validation process, the 2014–2015 season was removed due

to its low sensitivity of 0.2. This low sensitivity might be attributed

to poor surveillance quality, which led to false zero data occurring

during the epidemic period. After the 2014–2015 season, we

observed that the weekly PR values exhibited a more stable trend,
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TABLE 5 Influenza epidemic onset, duration, thresholds of PR, and peak intensity level determined by the MEM from 2011–2012 to 2023–2024 seasons.

Seasons Onset Duration Epidemic threshold (%)

Pre Medium High Very high Intensity

2011–2012 50 22 8.03 28.74 59.79 82.65 Medium

2012–2013 52 19 7.61 28.65 59.87 82.92 Medium

2013–2014 43 20 8.02 29.45 60.32 82.80 Low

2014–2015 48 11 8.08 30.23 58.97 79.23 Medium

2015–2016 45 26 5.49 29.98 59.93 81.39 Low

2016–2017 44 12 8.01 29.97 60.16 81.87 Low

2017–2018 40 26 7.72 27.61 57.11 78.75 Medium

2018–2019 46 29 7.92 26.82 51.87 69.42 High

2019–2020 44 16 8.10 27.29 55.48 75.93 Medium

2023–2024 42 29 7.81 26.70 50.48 66.89 Very high

FIGURE 6

Influenza epidemic onset, duration, and thresholds of intensity determined by the MEM, in the seasons from 2011–2012 to 2023–2024.

and the occurrence of zero values between epidemic periods

became less frequent. Additionally, the peak PR values showed an

upward trend, increasing from 24.63 to 71.62% after the 2015–

2016 season. In the 2023–2024 season, the influenza epidemic

entered a low-intensity phase at the 42nd week. Subsequently,

it rapidly transitioned to a high-intensity phase at the 48th

week and reached its peak at the 49th week, with a PR of

71.62%. The high-intensity influenza epidemic was also detected

in Beijing (39), and the number of infections has tripled in the

2023–2024 season.

The Moving Epidemic Method (MEM) shows superior

performance in modeling single-peak epidemics compared to

dual-peak patterns (20). In Kunming, influenza virology data

predominantly exhibited a unimodal distribution across the

majority of the seasons. When the absolute humidity (AH) is

relatively low, the survival and transmission of influenza viruses

will increase (40), which corresponds to the peak of influenza

activity observed every winter. However, during the 2017–2018

and 2018–2019 seasons, a bimodal pattern emerged, characterized

by a primary winter peak followed by a secondary spring peak.

During these two seasons, the H1N1(pdm09) was the predominant

circulating strain, accounting for over 40%, which was consistent

with similar research conducted in Wuhan and Guangdong

(24, 25). The situation has an obvious discrepancy between the

two seasons. In the 2017–2018 season, the overall positivity rate

(PR) trend was consistent with that of H1N1(pdm09). In contrast,

during the 2018–2019 season, the bimodal pattern was caused

by the trend of H1N1(pdm09) followed by that of B/Yamagata.

The antigenic shifts in circulating influenza strains, which alter

herd immunity dynamics and may prolong transmission windows

(41). Therefore, stratified research on influenza is also of great

significance. Through stratification analysis, the predominant

strain was the A-type epidemic strain, and the B/Yamagata

epidemic strain was also superimposed in some years. The

H1N1(pdm09) has persisted for more than five seasons. In these

seasons, it accounted for over 45%, and the epidemic duration
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FIGURE 7

Weekly PR, MEM, and intensity for the 2023–2024 season in Kunming.

TABLE 6 Epidemics by influenza virus strain in Kunming from 2011–2012 to 2023–2024 seasons.

Influenza strain Positive
samples (n)

Percentage
(%)

Maximum
peak (%)

Moving epidemic model
estimation

n of
seasons

Start
week

Epidemic
length
(weeks)

Epidemic
threshold

(%)

A(H1N1)pdm09 1,451 37.49 47.76 5 48 18 85

A(H3N2) 1,434 37.05 44.91 4 44 17 3

B/Yamagata-lineage 850 21.96 38.04 3 48 16 49

B/Victoria-lineage 135 59 27.27 1 44 – –

in each of these seasons exceeded 20 weeks, determined by

MEM. In contrast, when H3N2 became the predominant strain,

the epidemic duration was 11–16 weeks, which was shorter

than that of H1N1(pdm09). The B/Yamagata lineage mainly

overlapped with the H3N2 strain during the 2023–2024 epidemic

season. As for the B/Victoria lineage, it was only prevalent in

the 2011–2012 season and not considered in MEM. The higher

threshold for A(H3N2) (3%) compared to A(H1N1)pdm09

(2.85%) and B/Yamagata (1.49%) also reflects distinct

transmission dynamics.

This study has several limitations. First, the generalizability

of four sentinel sites might limit the findings to the urban

city. The four sentinel surveillance sites were all located within

Kunming’s major district and remained unchanged from their

establishment after the SARS outbreak in 2003 until 2024.

This geographic concentration may limit the representativeness

of our findings for the entire city, as the catchment areas

of these sites do not fully encompass Kunming’s diverse

urban, peri-urban, and rural populations. Second, the limited

representation of influenza B lineages precluded robust subtype-

specific analyses. Third, the study did not include meteorological

or population mobility data. Future research should integrate

these factors to refine predictive models. Nevertheless, the absence

of complementary data sources prevented us from exploring

behavioral factors.

5 Conclusion

This study validates the MEM as a robust tool for influenza

surveillance in subtropical plateau regions. By establishing localized

thresholds and characterizing strain-specific dynamics, the findings

support data-driven public health strategies aimed at mitigating the

impact of seasonal influenza. Based on the MEM’s performance,

we recommend its integration into Kunming’s routine influenza

surveillance system. Subtype-specific thresholds should guide

stratified responses, with increased vigilance during A(H3N2)-

dominant seasons. Vaccination programs could be optimized

by aligning administration with the typical onset of epidemics

and prioritizing high-risk groups. Furthermore, the variability in

B/Yamagata-lineage activity, coupled with its global decline after

2020, warrants continuous monitoring to assess potential resurgent

risks. Future studies should focus on expanding data sources and

exploring the applicability of MEM to other respiratory pathogens,

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1601781
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Gao et al. 10.3389/fpubh.2025.1601781

thereby reinforcing global health preparedness in the face of

evolving viral threats.
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