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Background: Chronic obstructive pulmonary disease (COPD) is a leading cause

of morbidity and mortality worldwide, with limited early detection strategies.

While previous studies have examined the relationship between per- and

polyfluoroalkyl substances (PFAS) and COPD, limited research has applied

interpretable machine learning (ML) techniques to this association.

Methods: We investigated the association between PFAS exposure and COPD

risk in 4,450 National Health and Nutrition Examination Survey (NHANES)

participants from 2013 to 2018. After excluding missing covariates and extreme

PFAS values and applying K-nearest neighbors (KNN) imputation, nine ML

models, includingCatBoost, were built and evaluated usingmetrics like accuracy,

area under the curve (AUC), sensitivity, and specificity. The best-performing

model was further analyzed using partial dependence plots (PDP) and SHapley

additive exPlanations (SHAP) analysis. To enhance clinical applicability, the final

model was deployed as a publicly accessible web-based risk calculator.

Results: CatBoost emerged as the best model, achieving an accuracy of 84%,

AUC of 0.89, sensitivity of 81%, and specificity of 84%. PDP revealed that higher

perfluorooctane sulfonic acid (PFOS) and perfluoroundecanoic acid (PFUA)

levels were associated with reduced COPD risk, whereas perfluorooctanoic

acid (PFOA) and 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH)

showed positive associations with COPD. perfluorononanoic acid (PFNA),

perfluorodecanoic acid (PFDE), and perfluorohexane sulfonic acid (PFHxS)

demonstrated mixed or non-linear e�ects. SHAP analysis provided insights

into individual predictions and overall variable contributions, clarifying the

complex PFAS-COPD relationship. The deployed web-based calculator enables

interactive prediction and risk interpretation, supporting potential public

health applications.

Conclusion: CatBoost identified PFOS and PFUA as protective factors against

COPD, while PFOA and MPAH increased risk of COPD. These findings emphasize

the need for stricter PFAS regulation and highlight the potential of machine

learning in guiding prevention strategies.
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Introduction

Global burden and trends of COPD

Chronic obstructive pulmonary disease (COPD) is

a major global health issue, affecting an estimated 328

million people worldwide (1–3). While smoking is the

leading cause, other factors such as biomass fuel exposure,

occupational hazards, and air pollution also contribute

significantly, especially in low- and middle-income countries

(2, 4). Despite its high prevalence, 70%−80% of COPD

cases remain undiagnosed due to the challenges in early

detection (5–7).

Machine learning in disease prediction

Machine learning (ML) has emerged as a transformative

tool for COPD screening and risk assessment by analyzing

complex, multi-dimensional healthcare data (8–10). For instance,

Lin et al. (11) developed a machine learning-based decision

system using gradient boosting classifiers (CatBoost, LightGBM,

and XGBoost), which achieved an area under the curve (AUC)

of 99.85% in identifying high-risk COPD groups. Similarly,

Wang et al. (12) created a COPD risk screening model using

logistic regression and generalized additive models, with an

AUC exceeding 0.8, showing strong predictive performance.

Zeng et al. (13) developed a ML model using data from over

43,000 COPD patients, achieving an AUC of 0.866 for predicting

severe exacerbations within 1 year, outperforming previous

models. These studies highlight the potential of ML to improve

COPD screening, enhance diagnostic accuracy, and support more

effective interventions.

Environmental exposures and respiratory
health

Global environmental pollution exposure is widespread,

with 91% of the world’s population living in areas exceeding

WHO safety guidelines for pollutants like PM2.5 and ozone

(14, 15). Environmental conditions are linked to 24% of

all deaths globally, with air pollution alone causing 400,000

premature deaths annually in Europe and reducing average

life expectancy by 1 year (16, 17). Niu et al. (18) found

that particulate matter exposure increased COPD exacerbation

risk, particularly in younger and severe COPD patients. Yan

et al. (19) demonstrated that higher blood cadmium and

lead levels were associated with increased COPD risk, while

anthocyanidin intake above 11.56 mg/day reduced cadmium-

related COPD risk by 27%. Madani et al. (20) showed that

volatile organic compounds from local sources significantly

increased respiratory disease-related emergency room visits,

with ethylbenzene having the greatest impact on asthma and

COPD. Environmental pollutants pose significant respiratory

health risks globally, with effects varying by pollutant type and

population vulnerability.

PFAS exposure: background and health
impacts

Per- and polyfluoroalkyl substances (PFAS) are a group of

synthetic chemicals widely used in industrial and consumer

products due to their exceptional chemical stability, water

resistance, and heat resistance (21–23). However, their persistence

in the environment and bioaccumulation in human tissues have

raised significant public health concerns (24–26). PFAS exposure

has been linked to various adverse health outcomes, including

metabolic disorders (27), liver damage (28), immune dysfunction

(29), and respiratory diseases, such as asthma (30) and reduced lung

function (31, 32). Recent studies have also explored the relationship

between PFAS and COPD. For instance, Wang et al. analyzed

data from the National Health and Nutrition Examination Survey

(NHANES) 2007–2018 and found that perfluorooctanoic acid

(PFOA) and PFNA exposure significantly increased COPD risk,

particularly in males, with a J-shaped dose-response relationship

(33, 34). Their study further identified serum albumin as amediator

in the association between PFOA and COPD, with a mediation

proportion of 17.94%, suggesting potential pathways involving

oxidative stress and chronic inflammation (34). Despite these

advancements, research on PFAS and COPD remains limited, and

limited studies have applied ML approaches to investigate this

relationship or develop predictive models.

Rationale for model interpretability in
public health

Despite emerging evidence linking PFAS exposure to COPD,

current research remains limited in both scope and methodology

(33, 34). Most existing studies rely on conventional statistical

models, which may not fully capture the complex, non-linear

relationships between PFAS and COPD risk, nor do they provide

individualized risk estimation (35, 36). Moreover, few have

explored the use of machine learning to enhance predictive

performance or model interpretability in this domain. To

address these gaps, our study aims to systematically evaluate

the relationship between PFAS exposure and COPD risk using

advanced ML approaches. By leveraging nationally representative

data from the 2013–2018NHANES, we developed interpretableML

models to predict individual COPD risk, focusing on performance

metrics such as AUC, sensitivity, and specificity.We further applied

SHAP and partial dependence analyses to uncover both global

and personalized insights into how specific PFAS contribute to

COPD risk. Finally, to support real-world application, we translated

our findings into an accessible online risk calculator, facilitating

early screening and informing prevention strategies in public

health practice.

Method

Study population

The National Health and Nutrition Examination Survey

(NHANES) is a program conducted by the CDC to study the

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1602566
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shao et al. 10.3389/fpubh.2025.1602566

FIGURE 1

Study workflow for PFAS exposure and COPD risk analysis. From 29,400 NHANES participants (2013–2018), 4,450 were included after data

preprocessing. The dataset was split into training (n = 3,560) and test (n = 890) sets. Nine machine learning (ML) models were trained using these

covariates as predictors. The best-performing model (CatBoost) was further analyzed using partial dependence plots (PDP) and SHapley Additive

exPlanations (SHAP).

health and nutrition of people living in the United States (34). For

this study, we used data from three NHANES cycles (2013–2018),

which included 29,400 participants. After excluding individuals

with missing covariates or serum PFAS concentration data, 4,844

participants remained. Missing values, present in<20% of the data,

were addressed using the K-nearest neighbors (KNN) imputation

method. To ensure robust results, we further excluded extreme

PFAS values below the 1st percentile and above the 99th percentile

(37), leaving a final sample of 4,450 participants, as shown in

Figure 1. All participants provided written informed consent, and

the study was approved by the National Center for Health Statistics

Research Ethics Review Board.

Serum PFAS

The PFAS analyzed were 2-(N-Methyl-perfluorooctane

sulfonamido) acetic acid (MPAH), perfluorodecanoic acid (PFDE),

perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid

(PFNA), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic

acid (PFOA), and perfluoroundecanoic acid (PFUA). Total

concentrations of PFOS and PFOA were calculated by combining

their isomers: linear (n-PFOA) and branched (Sb-PFOA) for

PFOA, and linear (n-PFOS) and monomethyl branched (Sm-

PFOS) for PFOS. Pearson correlation coefficients were used to

evaluate relationships among the seven PFAS.

Covariates

This study included age, gender, race, education level, marital

status, body mass index (BMI), family income, and smoking

status as covariates. Race was divided into five categories:

Mexican American, other Hispanic, non-Hispanic White, non-

Hispanic Black, and other. Education was grouped into two

levels: high school or less, and more than high school. Marital
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status options were married, widowed, divorced, separated,

never married, and living with a partner. Family income was

calculated as a ratio of family income to poverty guidelines,

with any value above 5 recorded as 5. Smoking status was

defined as having smoked at least 100 cigarettes over a lifetime.

To assess multicollinearity among covariates, we calculated the

variance inflation factor (VIF). Variables with a VIF < 10

were retained for model construction, consistent with prior

methodological recommendations for avoiding instability in

multivariate models (38).

ML model construction and evaluation

The ML models were built using 15 variables, comprising

10 continuous variables (age, family income, BMI, and seven

PFAS biomarkers: MPAH, PFDE, PFHxS, PFNA, PFOA, PFOS,

and PFUA) and five categorical variables (gender, race, education

level, marital status, and smoking status). Continuous variables

were standardized using StandardScaler from scikit-learn to ensure

zero mean and unit variance. Categorical variables were encoded

as integers without additional transformation. The dataset was

randomly split into training (80%, n = 3,560) and testing (20%, n

= 890) sets using stratified sampling to maintain the proportion of

COPD cases in both sets.

Nine machine learning algorithms were implemented using

Python 3.9.19 and scikit-learn 1.3.0: random forest (RF), support

vector machine (SVM), decision tree (DT), K-nearest neighbors

(KNN), multilayer perceptron (MLP), voting classifier (VC), light

gradient boosting machine (LightGBM), CatBoost, and Extreme

Gradient Boosting (XGBoost). These models were chosen based on

their demonstrated performance in prior studies involving clinical

or environmental health prediction tasks (39, 40).

Hyperparameter tuning was performed using grid search, with

the optimized parameters provided in Supplementary Table S1. The

workflow of the study is shown in Figure 1. Model performance

was evaluated using metrics such as the receiver operating

characteristic (ROC) curve, area under the curve (AUC), accuracy,

sensitivity (recall), specificity, false-positive rate (FPR), false-

negative rate (FNR), positive predictive value (PPV), negative

predictive value (NPV), and F1 score. Thesemetrics are widely used

in medical machine learning studies to assess both discriminatory

power and classification balance, especially under imbalanced

conditions (39, 41).

ML model interpretation

To analyze the impact of individual PFAS on COPD risk, partial

dependence plots (PDPs) were created using the sklearn.inspection

module with a grid resolution of 50 points. These plots demonstrate

how a specific feature influences the model’s predictions while

holding other variables constant. Using the trained CatBoost

model, the relationship between selected features and COPD risk

was calculated and visualized. The trends were smoothed using

B-spline interpolation (scipy.interpolate.splrep with smoothing

parameter s= 30) to enhance readability, and individual variability

was highlighted through sample-specific curves. Additionally, rug

plots were included to show the distribution of feature values,

providing a deeper understanding of their range within the dataset.

SHapley Additive exPlanations (SHAP) analysis was applied

to understand how individual features influenced the predictions

made by the trained CatBoost model (42). The SHAP values,

calculated using “TreeExplainer,” provided a breakdown of

each feature’s contribution to the model output. A combined

visualization was created, consisting of a dot plot to display the

distribution and direction of feature impacts and a bar plot to rank

features by their average contribution. This dual representation

provided a clear view of the importance and variability of each

feature, offering valuable insights into the factors driving COPD

risk predictions. All analysis code and data are made publicly

available at https://huggingface.co/spaces/MLML202512/COPD/

tree/main for reproducibility.

Web-based risk calculator development

To translate the trained machine learning model into a user-

friendly application, we developed an interactive web-based COPD

risk calculator using the Gradio framework (https://www.gradio.

app/). The calculator was built based on the final CatBoost model,

which was trained using selected demographic, socioeconomic,

lifestyle, and PFAS biomarker variables. Only the numeric features

were standardized using StandardScaler, consistent with the model

training pipeline, while categorical variables were kept in their

original format as encoded integers. The interface allows users to

input raw values for 15 features, including five categorical (gender,

race, education level, marital status, and smoking) and 10 numeric

variables (age, family income, BMI, and seven PFAS biomarkers:

MPAH, PFDE, PFHxS, PFNA, PFOA, PFOS, and PFUA). Upon

input, the backend applies the same preprocessing pipeline and

uses the trained CatBoost model to generate a binary prediction

(COPD or Healthy), a probability score, and a qualitative risk level

categorized as low, medium, or high.

Statistical analysis

Continuous variables were reported as means with standard

deviations (SD), and categorical variables as counts with

percentages. T-tests and chi-square tests were used to compare

PFAS levels and demographics between COPD and non-COPD

groups. Analyses were performed using Python (3.9.19) and R

(4.4.0), with p-value <0.05 considered significant (43).

Result

Baseline characteristics

Among 4,450 participants, as shown in Table 1, 180 (4.0%) had

COPD. Participants with COPD were older (64.6 ± 11.5 vs. 49.0

± 17.6 years, p-value < 0.001) and more likely to be non-Hispanic

White (61.7 vs. 36.5%, p-value < 0.001) or have a lower education

level (60.0 vs. 43.7%, p-value < 0.001). Marital status also differed,
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TABLE 1 Demographic and clinical features of the participants.

Characteristics Non-COPD (N = 4,270) COPD (N = 180) Total (N = 4,450) p value

Age, year 49.0 (17.6) 64.6 (11.5) 49.6 (17.6) <0.001

Gender, n (%)

Male 2,012 (47.1%) 96 (53.3%) 2,108 (47.4%) 0.263

Female 2,258 (52.9%) 84 (46.7%) 2,342 (52.6%)

Race, n (%)

Mexican American 690 (16.2%) 8 (4.4%) 698 (15.7%) <0.001

Other Hispanic 481 (11.3%) 15 (8.3%) 496 (11.1%)

Non-Hispanic White 1,558 (36.5%) 111 (61.7%) 1,669 (37.5%)

Non-Hispanic Black 909 (21.3%) 26 (14.4%) 935 (21.0%)

Other 632 (14.8%) 20 (11.1%) 652 (14.7%)

Education, n (%)

High school or lower 1,864 (43.7%) 108 (60.0%) 1,972 (44.3%) <0.001

More than high school 2,406 (56.3%) 72 (40.0%) 2,478 (55.7%)

Marital status, n (%)

Married 2,191 (51.3%) 79 (43.9%) 2,270 (51.0%) <0.001

Windowed 291 (6.8%) 28 (15.6%) 319 (7.2%)

Divorced 448 (10.5%) 37 (20.6%) 485 (10.9%)

Separated 158 (3.7%) 5 (2.8%) 163 (3.7%)

Never married 808 (18.9%) 27 (15.0%) 835 (18.8%)

Living with partner 374 (8.8%) 4 (2.2%) 378 (8.5%)

Weight, kg 82.7 (22.1) 86.2 (27.8) 82.8 (22.4) 0.558

Height, cm 167 (10.2) 166 (10.4) 167 (10.2) 0.985

BMI, kg/m2 29.7 (7.13) 31.1 (9.73) 29.8 (7.26) 0.480

Family income 2.52 (1.61) 1.80 (1.22) 2.49 (1.60) <0.001

Smoke, n (%) 2,550 (59.7%) 25 (13.9%) 2,575 (57.9%) <0.001

MPAH, ng/ml 0.161 (0.184) 0.231 (0.237) 0.164 (0.187) <0.001

PFDE, ng/ml 0.236 (0.202) 0.194 (0.182) 0.234 (0.202) 0.004

PFHxS, ng/ml 1.63 (1.45) 1.72 (1.42) 1.63 (1.44) 0.403

PFNA, ng/ml 0.695 (0.470) 0.636 (0.437) 0.692 (0.469) 0.188

PFOA, ng/ml 1.88 (1.16) 2.00 (1.18) 1.89 (1.16) 0.323

PFOS, ng/ml 6.63 (5.32) 6.75 (5.07) 6.64 (5.31) 0.782

PFUA, ng/ml 0.153 (0.138) 0.120 (0.0970) 0.152 (0.137) 0.006

BMI, body mass index; MPAH, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid; PFDE, perfluorodecanoic acid; PFHxS, perfluorohexane sulfonic acid; PFNA, perfluorononanoic acid;

PFOS, perfluorooctane sulfonic acid; PFOA, perfluorooctanoic acid; PFUA, perfluoroundecanoic acid.

with more widowed individuals in the COPD group (15.6% vs.

6.8%, p-value < 0.001). While smoking prevalence was lower in

the COPD group (13.9 vs. 59.7%, p-value < 0.001), this may reflect

smoking cessation after diagnosis or survivor bias. PFAS analysis

showed higher levels of MPAH (p-value < 0.001), lower PFDE (p-

value = 0.004), and lower PFUA (p-value = 0.006) in the COPD

group, with no significant differences for PFHxS, PFNA, PFOA,

or PFOS.

Serum PFAS concentrations showed significant changes from

2013 to 2018 (p-value < 0.001), as shown in Table 2. PFHxS,

PFNA, PFOA, and PFOS levels declined over time, with PFOS

dropping from 6.91 ng/ml in 2013–2014 to 6.22 ng/ml in 2017–

2018, and PFOA from 2.23 to 1.62 ng/ml. MPAH, PFDE, and PFUA

levels remained relatively stable. These trends suggest reduced

PFAS exposure, likely due to regulatory measures and shifts

in industrial practices. The Pearson correlation analysis showed

strong relationships between PFUA and PFDE (r= 0.74) and PFOS

with PFNA (r = 0.62), while MPAH exhibited weak correlations

with other PFAS (Supplementary Figure S1). These results suggest

shared sources or pathways for certain PFAS.
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TABLE 2 Serum concentration of PFAS from 2013 to 2018.

PFAS NHANES cycles p value

2013–2014
(N = 1,444)

2015–2016
(N = 1,506)

2017–2018
(N = 1,500)

Total
(N = 4,450)

MPAH, ng/ml 0.169 (0.194) 0.153 (0.183) 0.171 (0.183) 0.164 (0.187) <0.001

PFDE, ng/ml 0.250 (0.210) 0.209 (0.199) 0.245 (0.194) 0.234 (0.202) <0.001

PFHxS, ng/ml 1.82 (1.54) 1.62 (1.46) 1.46 (1.31) 1.63 (1.44) <0.001

PFNA, ng/ml 0.817 (0.494) 0.730 (0.473) 0.535 (0.390) 0.692 (0.469) <0.001

PFOA, ng/ml 2.23 (1.29) 1.82 (1.09) 1.62 (1.01) 1.89 (1.16) <0.001

PFOS, ng/ml 6.91 (5.21) 6.79 (5.48) 6.22 (5.21) 6.64 (5.31) <0.001

PFUA, ng/ml 0.157 (0.152) 0.133 (0.121) 0.165 (0.135) 0.152 (0.137) <0.001

MPAH, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid; PFAS, Per- and polyfluoroalkyl substances; PFDE, perfluorodecanoic acid; PFHxS, perfluorohexane sulfonic acid; PFNA,

perfluorononanoic acid; PFOS, perfluorooctane sulfonic acid; PFOA, perfluorooctanoic acid; PFUA, perfluoroundecanoic acid.

TABLE 3 Discrimination characteristics among nine ML models.

Metrics RF SVM DT KNN MLP VC LGB CB XGB

AUC 0.87 0.82 0.81 0.69 0.87 0.87 0.89 0.89 0.88

Accuracy (%) 84 60 62 74 71 71 73 84 73

Sensitivity/Recall 0.69 0.94 0.92 0.61 0.92 0.89 0.89 0.81 0.89

Specificity 0.85 0.59 0.61 0.75 0.70 0.70 0.73 0.84 0.73

FPR 0.15 0.41 0.39 0.25 0.30 0.30 0.27 0.16 0.27

FNR 0.31 0.06 0.08 0.39 0.08 0.11 0.11 0.19 0.11

PPV 0.16 0.09 0.09 0.09 0.11 0.11 0.12 0.18 0.12

NPV 0.99 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.99

F1 score 0.26 0.16 0.17 0.16 0.20 0.20 0.21 0.29 0.21

RF, random forest; SVM, support vector machine; DT, decision tree; KNN, K-nearest neighbors; MLP, multilayer perceptron; VC, voting classifier; LGB, light gradient boosting machine; CB,

CatBoost; XGB, extreme gradient boosting; AUC, area under the receiver operating characteristic curve; Accuracy (%), Percentage of correctly classified samples; Sensitivity/Recall, true positive

rate; Specificity, true negative rate; FPR, false positive rate; FNR, false negative rate; PPV, positive predictive value; NPV, negative predictive value; F1 score, Harmonic mean of precision

and recall.

ML models construction and evaluation

Nine ML models, including RF, SVM, DT, KNN, MLP,

VC, LGB, CB, and XGB, were constructed and evaluated to

predict COPD risk. Performance metrics such as AUC, accuracy,

sensitivity, and specificity were used to assess the models, as

shown in Table 3. Among these, CatBoost emerged as the best-

performing model, achieving the highest accuracy (84%), AUC

(0.89), sensitivity (81%), and specificity (84%). The ROC curves

in Figure 2 further confirmed the robust performance of CatBoost,

showing minimal overfitting and consistent AUC values between

training and testing datasets. In contrast, other models like KNN

exhibited significant overfitting, with a large performance gap

between training (AUC = 0.92) and testing (AUC = 0.69). Given

its superior performance, CatBoost was selected as the final model

for further analysis.

ML models interpretation

To investigate the relationship between specific PFAS exposure

and COPD risk, we performed partial dependence analysis in the

trained CatBoost model (Figure 3). The results revealed varying,

non-linear associations for different PFAS. COPD risk decreased

with higher levels of PFOS and PFUA, suggesting a potential

protective effect, while PFOA and MPAH showed a positive

association, with risk increasing at higher concentrations. PFNA

exhibited a U-shaped relationship, indicating increased risk at

both low and high levels, while moderate levels were associated

with lower risk. PFDE demonstrated a decreasing trend in risk at

moderate levels, followed by an increase at higher concentrations.

PFHxS showed a fluctuating pattern without a clear monotonic

trend. These findings highlighted the complex influence of PFAS

on COPD risk, suggesting that different PFASmay affect the disease

through distinct mechanisms.

To further interpret the contributions of individual features to

COPD risk, SHAP analysis was performed. Figure 4A illustrated

a waterfall plot, which highlighted the impact of key features

on an individual prediction. Smoking status had the largest

positive contribution to COPD risk, followed by PFNA and

MPAH. Conversely, family income and PFUA were associated with

reduced risk. The plot clearly showed how individual features

influenced the model’s prediction for a specific instance. Figure 4B

presented a summary plot of SHAP values across the entire dataset,
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FIGURE 2

ROC curves of nine ML models for COPD prediction. ROC curves (A–I) illustrate the model performance on both training and test sets using

covariates including age, sex, BMI, smoking status, family income, and seven PFAS biomarkers. The nine models include: (A) Random Forest (RF), (B)

Support Vector Machine (SVM), (C) Decision Tree (DT), (D) K-nearest neighbors (KNN), (E) Multi-Layer Perceptron (MLP), (F) Voting Classifier (VC), (G)

LightGBM (LGB), (H) CatBoost (CB), and (I) XGBoost (XGB). CatBoost achieved the highest test AUC of 0.89.

ranking features by their overall importance. Age was the most

significant contributor to COPD risk, with older age associated with

higher risk. Among PFAS, PFUA, PFHxS, and PFOS demonstrated

negative contributions, indicating that lower levels of these PFAS

were linked to higher COPD risk. Conversely, MPAH and PFOA

showed positive contributions, meaning that higher levels were

associated with increased risk. PFNA and PFDE exhibited a mixed

effect, with both low and high levels contributing differently to

the risk. The SHAP summary plot illustrated these trends, with

red indicating feature values that increase COPD risk and blue

indicating values that decrease COPD risk, providing a clear and

detailed understanding of the directionality of each PFAS’s impact

on COPD risk.

Web-based risk calculator

To enhance accessibility and clinical applicability, we

implemented a web-based COPD risk calculator using the Gradio

framework. This interactive tool integrates the trained CatBoost

model and allows users to input raw demographic, lifestyle, and

PFAS biomarker data through a browser interface (Figure 5).

The calculator automatically standardizes numeric features in

the backend and provides real-time predictions, including binary

classification (COPD or Healthy), probability of risk, and a

qualitative risk level (low, medium, or high). The web-based

calculator serves as a user-friendly prototype for personalized risk

assessment and may assist clinicians or public health professionals

in early identification and stratification of COPD risk, particularly

in PFAS-exposed populations (https://huggingface.co/spaces/

MLML202512/COPD).

Discussion

Summary of main findings and model
performance

This study is the first to use interpretable ML techniques to

investigate the association between PFAS exposure and COPD

risk, utilizing data from the US NHANES (2013–2018). Among
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FIGURE 3

Partial Dependence Plots (PDP) for PFAS and COPD risk. PDPs for selected PFAS predictors—PFOS, PFUA, PFOA, MPAH, PFNA, PFDE, and PFHxS

(A–G)—illustrate the marginal e�ect of each feature on predicted COPD risk, while holding other covariates constant. For each panel, shaded bands

indicate 95% confidence intervals and rug plots show the distribution of data points. Adjusted covariates include demographic and behavioral

variables such as age, sex, BMI, smoking status, and income level.

FIGURE 4

SHapley Additive exPlanations (SHAP) analysis for COPD risk prediction. (A) Waterfall plot showing the contribution of top features (e.g., smoke,

family income, MPAH, PFNA, PFUA) to an individual prediction. Positive (red) values increase risk, while negative (blue) values reduce risk. (B)

Summary plot displaying mean SHAP values for all features across the dataset, ranked by importance. Age and smoke are the strongest predictors,

with PFAS (PFUA, PFOS, PFOA, MPAH, and PFNA) showing varied directional impacts on COPD risk. The color gradient represents feature values, with

red indicating high values and blue low values.

the nine ML models tested, CatBoost emerged as the best

performer, achieving an accuracy of 84%, AUC of 0.89, sensitivity

of 81%, and specificity of 84%, making it the optimal choice

for predicting COPD risk. To provide deeper insights, feature

importance analysis, partial dependence plots and SHAP analysis

were conducted to evaluate how individual PFAS and other

factors influence COPD risk. These findings underscored the

importance of regulating PFAS exposure to mitigate health risks
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FIGURE 5

The web-based COPD risk prediction calculator. This calculator, developed using the Gradio framework, integrates the trained CatBoost model.

Users input values for age, sex, BMI, smoking, income, and serum PFAS levels. The tool applies the same standardization and feature scaling as in

model training, and outputs a COPD risk probability, risk category (Low/Medium/High), and binary prediction (COPD or Healthy). It is accessible at:

https://huggingface.co/spaces/MLML202512/COPD.

and demonstrated the potential of interpretable ML methods to

identify high-risk populations, guiding targeted interventions and

improving public health outcomes.

PFAS as key predictors of COPD risk:
consistency with prior studies

Previous research highlights that PFOA and PFNA are

strongly associated with increased COPD risk, particularly among

males, exhibiting a characteristic nonlinear and J-shaped dose-

response relationship for PFOA exposure (34). Similarly, Pan

et al. demonstrated significant associations between serum

levels of PFOS and PFOA and increased COPD risk, noting

differential impacts based on sex, age, and smoking status, and

indicating protective roles of moderate-intensity physical activity

in mitigating PFAS-related COPD risk (33). Our study aligned

with these findings, as the CatBoost model identified PFAS,

particularly MPAH and PFOA, as significant predictors of COPD

risk. Notably, our study uniquely identified PFOS and PFUA as

potentially protective against COPD risk, differing from findings

reported by Wang et al. (34) and Pan et al. (33), who found

positive associations for PFOS. These discrepanciesmay result from

variations in demographic characteristics, exposure measurement

methodologies, or different adjustments for confounding variables

across studies. While previous literature suggests that PFAS may

influence COPD development through inflammation and oxidative

stress pathways (44, 45), the specific biological roles of individual

PFAS compounds like PFOS and PFUA remain complex and

heterogeneous. Thus, further longitudinal and mechanistic studies

are needed to clarify these differences and establish causality.

Moreover, SHAP analysis in our study highlighted the notable

contribution of PFAS to COPD risk, alongside demographic and

socioeconomic factors. These results reinforced the hypothesis that

PFAS may influence COPD development through mechanisms

such as inflammation and oxidative stress (44, 45), further

emphasizing the need for stricter PFAS regulation and further

exploration of their impact on respiratory health.

Biological mechanisms underlying
PFAS–COPD associations

The observed relationships between PFAS levels and COPD risk

in our study can be explained by underlying biological mechanisms,

including inflammation (44), oxidative stress (45), and PFAS
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interactions with albumin and lung tissues (46). For PFOS

and PFUA, the protective association at higher concentrations

may reflect their ability to stabilize pulmonary surfactants and

reduce oxidative stress (47). Albumin, known to bind PFOS

and PFUA, could facilitate their targeted delivery to lung tissues

(46), while moderate and lower levels might help maintain

epithelial integrity (48) and mitigate inflammation (49), key

drivers of COPD progression. In contrast, PFOA and MPAH were

positively associated with COPD risk at higher concentrations,

which aligned with their known pro-inflammatory and oxidative

effects (50). PFOA has been shown to activate the NLRP3

inflammasome and increase cytokine production, including IL-

6 and TNF-α, leading to sustained inflammation in lung tissues

(51). MPAH may exert similar effects by disrupting epithelial

barriers and exacerbating oxidative stress (52), contributing to

airway damage and disease progression. These findings highlighted

the role of chronic inflammation and oxidative damage as central

mechanisms linking higher PFOA and MPAH levels to increased

COPD risk.

Non-linear e�ects of PFNA, PFDE, and
PFHxS

The U-shaped relationship observed with PFNA and the

mixed pattern with PFDE reflected their dual roles in COPD

risk. At moderate concentrations, PFNA and PFDE may

exhibit stabilizing effects on lung tissues, potentially reducing

inflammation and oxidative stress. However, at very low

or high concentrations, these PFAS may disrupt immune

homeostasis and amplify inflammatory responses, leading to

increased COPD risk (34). The fluctuating trend for PFHxS

likely stems from its complex interplay with inflammatory

and antioxidant pathways, which may vary depending on

individual susceptibility and exposure levels (34). These

findings emphasized the nuanced and concentration-dependent

effects of PFAS on COPD risk, highlighting the importance of

further mechanistic studies to better understand their roles in

respiratory health. These findings emphasized the need for further

toxicological studies to elucidate the specific mechanisms by

which different PFAS contribute to COPD risk. Experimental

research is also needed to determine whether certain PFAS

exhibit synergistic or antagonistic effects, particularly in cases

of mixed exposure. Understanding these interactions will

be critical for developing targeted strategies to mitigate the

health impacts of PFAS exposure and for informing regulatory

policies aimed at reducing risks associated with these persistent

environmental pollutants.

Study limitations

This study has several limitations. First, as NHANES used a

multi-stage stratified sampling design, the findings may not fully

represent the entire U.S. population. Second, while our machine

learning models demonstrated strong predictive performance,

they lack external validation on independent datasets, which is

essential to assess model stability and generalizability. Third,

COPD status in NHANESwas based on self-reported questionnaire

data rather than spirometry or clinical diagnosis, which may

lead to recall bias or disease misclassification. Additionally,

smoking status was also self-reported and may be subject to

underreporting, particularly among certain demographic groups.

Fourth, although we adjusted for several known covariates,

potential unmeasured confounders such as physical activity, dietary

factors, occupational exposures, and access to healthcare services

were not available in our dataset. These variables could influence

both PFAS exposure and COPD risk and may have biased the

observed associations. Fifth, PFAS concentrations were measured

at a single time point, which may not accurately reflect long-

term or cumulative exposure levels. Given the chronic nature

of COPD, longer-term exposure assessments would provide a

more accurate understanding of causal relationships. Furthermore,

the exclusion of participants with missing data may have

introduced sampling bias, and the lack of access to detailed

healthcare records—such as medication history, comorbidities,

or imaging findings—limited our ability to fully characterize

disease severity or differentiate COPD subtypes. Moreover, this

study did not formally compare models with and without PFAS

variables, which may limit the assessment of their specific

contribution to COPD risk prediction. Finally, cultural and

regional differences in environmental exposure, healthcare access,

and disease awareness may limit the generalizability of these

findings to other populations or countries. These limitations

underscore the need for further longitudinal studies incorporating

detailed clinical records, long-term exposure measurements, and

more comprehensive confounding adjustment to validate and

expand upon our findings.

Conclusion

This study explored the relationship between PFAS exposure

and COPD risk using NHANES (2013–2018) data, applying

interpretablemachine learning techniques for the first time. Among

the nine models, CatBoost performed best, achieving an accuracy

of 84%, an AUC of 0.89, a sensitivity of 81%, and a specificity

of 84%, making it the optimal model. PDP analysis revealed

that higher PFOS and PFUA levels were associated with reduced

COPD risk, while higher PFOA and MPAH increased risk. PFNA,

PFHxS, and PFDE showed complex, non-linear associations.

SHAP analysis provided individual risk predictions and overall

variable contributions, while an interactive web-based calculator

was deployed for real-time risk assessment. This is the first

study to integrate interpretable ML algorithms with large-scale

epidemiological data to examine concentration-dependent effects

of individual PFAS compounds on COPD risk. By combining

advanced modeling with user-friendly tools, our approach bridges

data science and clinical application. These results emphasize

the need for PFAS regulatory actions and demonstrate how

transparent ML can enhance precision risk stratification in chronic

respiratory diseases, providing a scalable framework adaptable to

other environmental exposures and health outcomes.
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