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Backgrounds: Trihalomethanes (THMs), byproducts of water chlorination, are

pervasive in drinking water supplies and have known systemic toxicity. However,

their potential neurotoxic e�ects, particularly on cognitive function, remain

poorly understood. This study investigates the association between serum THM

concentrations and cognitive decline, aiming to identify environmental risk

factors for neurodegenerative diseases.

Methods: Data were drawn from the National Health and Nutrition Examination

Survey (NHANES) 2011–2014 cohort. A final analytic sample of 743 participants

aged 60 years or older was analyzed. Serum concentrations of four THM

species—chloroform, bromodichloromethane (BDCM), dibromochloromethane

(DBCM), and bromoform (TBM)—were measured. Cognitive performance was

assessed using CERAD Word Learning and Delayed Recall, animal fluency test

(AFT), and digit symbol substitution test (DSST). Cognitive impairment was

defined as scores below the 25th percentile. Multivariate logistic regression,

restricted cubic splines (RCS), and subgroup interaction analyses were used to

explore associations.

Results: Higher serum THM concentrations were significantly associated with

increased odds of cognitive impairment. In the fully adjusted model, individuals

in the highest quartile of total THMs (TTHMs) had a 2.50-fold higher risk

(95% CI: 1.68–3.71) compared to the lowest quartile. RCS analysis revealed a

non-linear association between BDCM and cognitive decline, particularly in the

AFT. Subgroup analysis indicated that older adults (≥70 years), females, and

individuals with hypertension or diabetes were more susceptible to THM-related

cognitive impairment.

Conclusion: Elevated serum THM levels are independently associated with

cognitive impairment, particularly in vulnerable populations. These findings

suggest that THMs may act as environmental neurotoxicants contributing to

cognitive decline. Public health e�orts to reduce THM exposure could play a

role in mitigating the risk of neurodegenerative diseases.
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1 Introduction

Trihalomethanes (THMs) are a class of chemical compounds
formed as unintended byproducts during the chlorination of
drinking water (1). These compounds, including chloroform,
bromoform (TBM), dibromochloromethane (DBCM), and
chlorodibromomethane, have been a subject of increasing concern
due to their widespread presence in potable water supplies (2).
While much research has focused on the toxicological effects
of THMs on liver, kidney, and cardiovascular health, their
potential impact on neurological function, particularly cognitive
decline, remains underexplored (3, 4). The neurotoxic potential of
environmental chemicals, especially those involved in long-term
exposure like THMs, could have profound implications for public
health, as cognitive dysfunction is linked to numerous age-related
conditions such as dementia and Alzheimer’s disease (5, 6).

This study utilizes data from the National Health and Nutrition
Examination Survey (NHANES) conducted between 2011 and 2014
to investigate the relationship between serum THM concentrations
and cognitive health. Cognitive dysfunction, which encompasses a
wide range of disorders from mild cognitive impairment to severe
dementia, is one of the leading public health concerns globally
(7). The increasing incidence of neurodegenerative diseases
underscores the urgency of identifying modifiable environmental
risk factors (8). While the role of chemical exposures in the
development of cognitive decline has been studied in various
contexts, research on the specific effects of THMs remains limited
and inconclusive (9). Therefore, understanding the potential
mechanisms through which THMs may influence brain health
is critical.

The pathophysiological mechanisms by which THMs may
impair cognitive function are still not fully understood, though
several theories exist. One proposed mechanism involves oxidative
stress, where THMs induce the production of free radicals that
cause cellular damage in brain tissues, particularly neurons (10, 11).
Additionally, inflammation and neuroinflammation could play a
pivotal role in this process, as prolonged exposure to environmental
pollutants is known to activate the immune response in the brain,
leading to chronic inflammatory states that affect cognitive function
(12). Furthermore, THMs may also disrupt the blood-brain barrier
(BBB) or interfere with neurotransmitter systems, exacerbating the
risk of cognitive decline (13). Given these potential mechanisms,
the neurotoxic effects of THMs could be subtle and cumulative,
manifesting over time with increasing exposure (14).

Our findings suggest a significant association between elevated
serum THM concentrations and an increased risk of cognitive
impairment. These results highlight the potential neurotoxic effects
of THMs, positioning them as environmental risk factors for
cognitive decline (15). From a public health perspective, this
study underscores the importance of reducing exposure to such
chemicals, particularly in populations that may be more vulnerable,
such as the older person and those living in areas with suboptimal
water treatment. While the findings of this study are preliminary,
they pave the way for further research to explore the causal
relationship between THM exposure and cognitive decline, and
to assess the efficacy of public health policies aimed at limiting
exposure to these harmful substances.

In conclusion, the implications of THM exposure for cognitive
health are far-reaching. As the global population continues to
age, understanding the environmental determinants of cognitive
decline is essential to preventing and managing neurodegenerative
diseases. This research not only contributes to the existing body of
knowledge but also calls for urgent action to safeguard public health
by minimizing the presence of harmful environmental pollutants
such as THMs in drinking water supplies.

2 Methods

2.1 Study population

Data for this study were derived from the National Health
and Nutrition Examination Survey (NHANES) 2011–2014 cohort.
We limited our analysis to the NHANES 2011–2014 cycles
because these are the only cycles in which both serum
trihalomethane (THM) concentrations and cognitive function
assessments (CERAD-WL, CERAD-DR, AFT, and DSST) were
simultaneously collected. Figure 1 illustrates the data selection
process used in our study. Initially, 19,931 participants were
included, but exclusions were made for individuals with missing
serum trihalomethane (THM) data (n = 14,425), resulting in
a sample of 5,506 participants. Further exclusions for missing
cognitive data (n = 4,301) left 1,205 participants. After removing
individuals with missing covariate data, the final analytic sample
consisted of 743 participants.

2.2 Exposure assessment

Serum THM concentrations were assessed in peripheral blood
samples, as previously described in the literature. THMs measured
included chloroform (TCM), bromodichloromethane (BDCM),
dibromochloromethane (DBCM), and bromoform (TBM). For
analytes with results below the limit of detection (LOD),
values were substituted with LOD/

√
2. Additionally, total THM

(TTHMs), chlorinated THMs (Cl-THMs, comprising TCM,
BDCM, andDBCM), and brominated THMs (Br-THMs, consisting
of BDCM, DBCM, and TBM) concentrations were calculated (16).
These measures provided a comprehensive exposure assessment of
THMs as potential neurotoxicants.

2.3 Outcome assessment: cognitive
performance

Cognitive performance was evaluated using several
standardized tests included in the NHANES 2011–2014 cycles,
specifically the Consortium to Establish a Registry for Alzheimer’s
Disease Word List Learning (CERAD-WL), CERAD Delayed
Recall (CERAD-DR), animal fluency test (AFT), and digit
symbol substitution test (DSST). The CERAD test evaluates
episodic memory through immediate word list learning and
delayed recall. Each participant was asked to learn and recall ten
words, and the total score for the CERAD-WL and CERAD-DR
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FIGURE 1

Flowchart of the screening process for the study population.

tests combined could range from 0 to 40. The 25th percentile
threshold was selected based on precedents in population-
based cognitive studies using NHANES, particularly when
standardized clinical cutoffs are unavailable. This approach
allows for the identification of individuals with relatively poor
performance within a population distribution. Nonetheless,
we acknowledge the limitation and note that future work
may benefit from incorporating age- and education-adjusted
clinical norms.

The AFT measures categorical verbal fluency by asking
participants to name as many animals as possible in 1min. A score
of one point was awarded for each correct animal named. The
DSST, a test of cognitive processing speed and sustained attention,
requires participants to match symbols to corresponding numbers
within 2min, yielding a total score of 133 (17).

To define cognitive impairment, we used the 25th percentile
cutoff of each cognitive test score, as established in prior research.
This approach has been widely used to identify lower cognitive
performance in population-based studies.

2.4 Covariates

Potential confounding variables included sex, age, race,
education level, marital status, income-to-poverty ratio
(PIR), smoking status, alcohol consumption, hypertension,
hyperlipidemia, and diabetes. These covariates were selected based

on established associations with both THM exposure and cognitive
function in the literature.

2.5 Statistical analysis

Descriptive statistics were employed to summarize baseline
characteristics. Differences between groups were assessed using t-
tests for continuous variables and chi-square tests for categorical
variables. Chi-square tests were used for categorical variables
and ANOVA for continuous variables to assess differences
in demographic and health characteristics across quartiles of
THM exposure.

The relationship between serum THM levels and cognitive
performance was analyzed using multivariate logistic regression in
three models:

• Model 1 included only the exposure (THM concentrations)
and the outcome (cognitive performance).

• Model 2 adjusted for sex and age.
• Model 3 incorporated all selected covariates (sex, age, race,

education, marital status, PIR, smoking, alcohol consumption,
hypertension, hyperlipidemia, and diabetes).

To assess potential non-linear associations between THM
concentrations and cognitive outcomes, restricted cubic
splines (RCS) were used. Subgroup analyses were conducted
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TABLE 1 Baseline characteristics of the study participants.

Characteristics Overall Blood total trihalomethanes P-value

Q1 Q2 Q3 Q4

n 743 212 197 279 55

Age, years 69.83± 6.71 69.58± 6.85 69.67± 6.50 70.01± 6.62 70.49± 7.50 <0.001

Gender, n (%) <0.001

Male 329 (44.2%) 100 (13.5%) 88 (11.8%) 128 (17.2%) 13 (1.7%)

Female 414 (55.8%) 112 (15.1%) 109 (14.7%) 151 (20.3%) 42 (5.7%)

Race, n (%) <0.001

Mexican American 56 (7.5%) 9 (1.2%) 15 (2.0%) 31 (4.2%) 1 (0.1%)

Other Hispanic 62 (8.4%) 29 (3.9%) 19 (2.6%) 12 (1.6%) 2 (0.3%)

Non-Hispanic Black 399 (53.7%) 113 (15.2%) 96 (12.9%) 164 (22.1%) 26 (3.5%)

Non-Hispanic White 148 (19.9%) 45 (6.1%) 47 (6.3%) 39 (5.2%) 17 (2.3%)

Other races 78 (10.5%) 16 (2.2%) 20 (2.7%) 33 (4.4%) 9 (1.2%)

Education, n (%) <0.001

<9th grade 76 (10.2%) 29 (3.9%) 14 (1.9%) 28 (3.7%) 5 (0.7%)

9–11th grade 87 (11.7%) 28 (3.8%) 22 (3.0%) 29 (3.9%) 8 (1.0%)

High school graduate 190 (25.6%) 59 (7.9%) 48 (6.5%) 67 (9.0%) 16 (2.2%)

Some college or AA degree 216 (29.1%) 45 (6.0%) 68 (9.2%) 84 (11.3%) 19 (2.6%)

College graduate or above 174 (23.4%) 51 (6.9%) 45 (6.1%) 71 (9.5%) 7 (0.9%)

Marital status, n (%) <0.001

Married 407 (54.8%) 103 (13.9%) 115 (15.4%) 161 (21.7%) 28 (3.8%)

Widowed 155 (20.9%) 46 (6.2%) 38 (5.1%) 53 (7.1%) 18 (2.5%)

Divorced 114 (15.3%) 41 (5.5%) 27 (3.6%) 40 (5.4%) 6 (0.8%)

Separated 12 (1.6%) 5 (0.7%) 5 (0.7%) 2 (0.2%) 0 (0.0%)

Never married 41 (5.5%) 12 (1.6%) 7 (0.9%) 19 (2.6%) 3 (0.4%)

Living with partner 14 (1.9%) 5 (0.7%) 5 (0.7%) 4 (0.5%) 0 (0.0%)

PIR, n (%) <0.001

≤1 125 (16.8%) 33 (4.4%) 29 (3.9%) 54 (7.3%) 9 (1.2%)

1–3 334 (44.9%) 108 (14.5%) 76 (10.2%) 123 (16.6%) 27 (3.6%)

>3 284 (38.3%) 71 (9.6%) 92 (12.4%) 102 (13.7%) 19 (2.6%)

Smoke, n (%) <0.001

Yes 336 (45.2%) 105 (14.1%) 86 (11.6%) 129 (17.3%) 16 (2.2%)

No 407 (54.8%) 107 (14.4%) 111 (14.9%) 150 (20.2%) 39 (5.3%)

Alcohol use, n (%) <0.001

Yes 493 (66.4%) 133 (17.9%) 138 (18.6%) 193 (26.0%) 29 (3.9%)

No 250 (33.6%) 79 (10.6%) 59 (7.9%) 86 (11.6%) 26 (3.5%)

Hypertension, n (%) <0.001

Yes 465 (62.6%) 140 (18.9%) 122 (16.4%) 166 (22.3%) 37 (5.0%)

No 278 (37.4%) 72 (9.7%) 75 (10.1%) 113 (15.2%) 18 (2.4%)

Hyperlipidemia, n (%) <0.001

Yes 411 (55.3%) 120 (16.1%) 115 (15.5%) 149 (20.1%) 27 (3.6%)

No 332 (44.7%) 92 (12.4%) 82 (11.0%) 130 (17.5%) 28 (3.8%)

(Continued)
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TABLE 1 (Continued)

Characteristics Overall Blood total trihalomethanes P-value

Q1 Q2 Q3 Q4

Diabetes, n (%) <0.001

Yes 159 (21.4%) 44 (5.9%) 43 (5.8%) 59 (7.9%) 13 (1.8%)

Borderline 547 (73.6%) 153 (20.6%) 144 (19.4%) 208 (28.0%) 42 (5.6%)

No 37 (5.0%) 15 (2.0%) 10 (1.4%) 12 (1.6%) 0 (0.0%)

TABLE 2 Weighted logistic regression analyses of association between the blood trihalomethane concentrations and cognitive impairment.

Z-score Model 1 Model 2 Model 3

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Q1 Ref Ref Ref

Q2 1.01 (0.70, 1.47) 0.949 1.15 (0.78, 1.70) 0.494 1.08 (0.73, 1.62) 0.692

Q3 0.89 (0.61, 1.30) 0.550 1.27 (0.85, 1.90) 0.240 1.17 (0.77, 1.76) 0.464

Q4 1.46 (1.03, 2.07) 0.032 2.86 (1.95, 4.21) <0.001 2.50 (1.68, 3.71) <0.001

P for trend <0.001 <0.001 <0.001

Model 1: no covariates were adjusted.
Model 2: age, sex, and race were adjusted.
Model 3: age, sex, race, education level, marital status, BMI, PIR, smoking status, alcohol status, diabetes status, hypertension status, hyperlipidemia status was adjusted.
95% CI, 95% confidence interval.

FIGURE 2

Determination of the association between trihalomethane and animal fluency test by restricted cubic spline (RCS) regression analysis.
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FIGURE 3

Determination of the association between trihalomethane and Consortium to Establish a Registry for Alzheimer’s Disease-Word Learning (CERAD

W-L) by restricted cubic spline (RCS) regression analysis.

to explore whether the relationship between THMs and cognitive
impairment differed by demographic or health status factors.
Interaction terms were also included to examine potential
effect modification.

All statistical analyses were conducted using SPSS version
27.0 and R version 4.4.2. Statistical significance was defined
as a P-value of <0.05. All statistical analyses incorporated the
NHANES sampling weights to ensure national representativeness
and account for the complex survey design. To combine the
2011–2012 and 2013–2014 cycles, 4-year weights were calculated
by dividing the 2-year weights by two, as recommended by
NHANES guidelines (https://wwwn.cdc.gov/nchs/nhanes/
tutorials/weighting.aspx).

3 Results

3.1 Baseline characteristics

The final analytic sample included 743 participants, stratified
into quartiles based on total serum THM concentrations (Table 1).
The mean age was 69.83 ± 6.71 years, and 55.8% of participants
were female. Significant differences were observed in demographic,
socioeconomic, and health-related variables across THM quartiles
(all P < 0.001). For example, the proportion of Non-Hispanic
Black individuals was highest in the lowest THM quartile (Q1:

53.3%) and decreased in higher quartiles. Participants in the highest
quartile (Q4) tended to have lower educational attainment (only
0.9% had college degrees or above) and a higher prevalence of
hypertension (67.3%) and hyperlipidemia (59.1%) compared to
lower quartiles. Additionally, smoking and alcohol consumption
were more common in higher exposure groups. These differences
underscore the necessity of adjusting for multiple covariates in
subsequent models.

3.2 Multivariate logistic regression analysis

The results of the multivariate logistic regression analysis
examining the association between serum THM concentrations
and cognitive impairment are presented in Table 2. The analysis
was conducted in three models: Model 1 (unadjusted), Model 2
(adjusted for age, sex, and race), and Model 3 (fully adjusted for
all covariates).

In Model 1, the odds ratios (ORs) for cognitive impairment in
the second (Q2), third (Q3), and fourth (Q4) quartiles of serum
THM concentrations relative to the first quartile (reference group)
were 1.01 (95% CI: 0.70, 1.47), 0.89 (95% CI: 0.61, 1.30), and
1.46 (95% CI: 1.03, 2.07), respectively. The P-value for the trend
across quartiles was <0.001, indicating a significant increasing
trend in the odds of cognitive impairment with higher THM
concentrations. Although individual comparisons for Q2 and
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FIGURE 4

Determination of the association between trihalomethane and digit symbol substitution test (DSST) by restricted cubic spline (RCS) regression

analysis.

Q3 were not statistically significant, the overall dose–response
relationship remains evident, as supported by a significant trend
test (P for trend < 0.001).

After adjusting for age, sex, and race in Model 2, the OR for
the fourth quartile (Q4) increased to 2.86 (95% CI: 1.95, 4.21),
and the P-value for the trend remained significant (P < 0.001). In
the fully adjusted Model 3, which included additional covariates
(education level, marital status, PIR, smoking status, alcohol use,
diabetes, hypertension, and hyperlipidemia), the OR for the fourth
quartile of THMs was 2.50 (95% CI: 1.68, 3.71), further supporting
a robust association between higher THM concentrations and
cognitive impairment.

3.3 Restricted cubic spline analysis

The non-linear relationships between individual THMs and
cognitive function were evaluated using restricted cubic splines
(RCS), focusing on chloroform (TCM), bromodichloromethane
(BDCM), dibromochloromethane (DBCM), and bromoform
(TBM). The analysis revealed a significant non-linear relationship
between BDCM and cognitive performance on the AFT test.
Specifically, there were two distinct inflection points at
serum BDCM concentrations of 3.97 and 4.68 (Figure 2),
with a P-value for non-linearity of 0.0356. This suggests
that the relationship between BDCM levels and cognitive
performance is not linear, and the risk of cognitive impairment

may increase more sharply beyond these concentrations.
In addition to total THMs, we conducted species-specific
analyses for chloroform, bromodichloromethane (BDCM),
dibromochloromethane, and bromoform. These analyses
revealed that bromoform was associated with the AFT test
(Supplementary Table 1).

For the other THMs (TCM, DBCM, and TBM), while the P-
values for non-linearity were not statistically significant, the RCS
plots showed that all of them intersected with an odds ratio of 1,
suggesting that there might be thresholds or subtle effects at higher
levels of exposure (Figures 3, 4). These findings highlight the need
for further investigation into the potential thresholds or nonlinear
effects of THMs on cognitive function.

3.4 Subgroup and interaction analyses

To further explore whether the association between total
serum THM concentrations and cognitive impairment varied
across population subgroups, we conducted stratified analyses and
tested for potential interactions (see Figure 5). Overall, the positive
association between high THM exposure and cognitive impairment
was more pronounced in several vulnerable groups. Notably,
among participants aged ≥70 years, those in the highest quartile of
THMs had significantly higher odds of cognitive impairment (OR
= 3.72; 95% CI: 2.13–6.47), whereas the association was weaker and
not statistically significant in participants <70 years (OR = 1.71;
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FIGURE 5

Subgroup and interaction analyses of the association between trihalomethane and cognitive function.

95% CI: 0.89–3.28), with a P-value for interaction = 0.047. Similar
trends were observed by sex: the effect was stronger in females (OR
= 3.14; 95% CI: 1.92–5.14) than in males (OR = 1.88; 95% CI:
1.00–3.52), though the interaction was not statistically significant.
Participants with hypertension showed a robust association (OR =
3.12; 95% CI: 1.95–4.99), compared to those without hypertension
(OR = 1.67; 95% CI: 0.89–3.15), P for interaction = 0.038.
Likewise, in individuals with diabetes, the association between
THM exposure and cognitive impairment was stronger (OR= 3.80;
95% CI: 1.88–7.65) than in non-diabetic individuals (OR = 2.01;
95% CI: 1.14–3.55), with marginal interaction (P = 0.062).

No significant interactions were observed by education level or
alcohol use; however, the ORs remained elevated in low-education
and alcohol-consuming groups. Collectively, these results suggest
that older adults and individuals with preexisting metabolic
or cardiovascular conditions may be more susceptible to the
neurotoxic effects of THM exposure.

4 Discussion

This study explores the association between serum
trihalomethane (THM) concentrations and cognitive impairment,
highlighting significant findings suggesting that higher serumTHM
levels are associated with an increased risk of cognitive dysfunction.
The results align with existing literature that links environmental
pollutants, including chlorination by-products, to neurological
damage (18). Specifically, we identified that individuals with higher
THM levels, particularly bromodichloromethane (BDCM), showed
an elevated risk of cognitive impairment, particularly in older
adults and those with preexisting conditions like hypertension
and diabetes.

The mechanisms through which THMs contribute to cognitive
impairment remain incompletely understood. One potential
pathway is through oxidative stress, as THMs, particularly
BDCM, are known to induce the generation of reactive oxygen
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species (ROS) in cells, leading to cellular damage in neuronal
tissues (19, 20). Previous studies have demonstrated that
oxidative stress plays a significant role in neurodegeneration,
and chronic exposure to environmental pollutants like THMs
could exacerbate this process (21, 22). Furthermore, THMs
may also influence neuroinflammatory pathways, which are
increasingly recognized as key contributors to cognitive decline
(23, 24). Elevated levels of neuroinflammation can disrupt
neuronal signaling, impair synaptic plasticity, and lead to
neurodegeneration (25). These mechanisms are particularly
concerning as they suggest that the neurotoxic effects of
THMs could be cumulative and subtle over time, potentially
accelerating age-related cognitive decline or contributing to the
onset of conditions like Alzheimer’s disease and other forms
of dementia.

Another potential mechanism is the disruption of the blood-
brain barrier (BBB). The BBB plays a crucial role in protecting
the brain from harmful substances, but it is vulnerable to damage
by environmental toxins, including THMs (26). If THMs or their
metabolites can penetrate the BBB, they may directly damage brain
tissue, contributing to cognitive dysfunction (27). Additionally, the
impact of THMs on neurotransmitter systems, particularly those
involved inmemory and learning (e.g., acetylcholine), could further
exacerbate cognitive impairment, although direct evidence of such
effects is limited (28, 29).

From a public health perspective, our findings raise concerns
about the widespread exposure to THMs in drinking water,
especially given their ubiquitous presence in chlorinated water
supplies worldwide. Cognitive impairment and neurodegenerative
diseases are growing public health concerns, particularly in
aging populations (30). With the increasing prevalence of
conditions like dementia, understanding the environmental factors
that contribute to cognitive decline is vital (31). Reducing
exposure to THMs could, therefore, be a public health priority,
particularly in communities that rely on chlorinated drinking
water sources. Policy measures to limit THM concentrations
in public water supplies and promote the use of alternative
disinfection methods, such as ultraviolet treatment or ozonation,
could reduce the population’s overall exposure to these neurotoxic
compounds (32).

However, this study has several limitations. First, the cross-
sectional nature of the NHANES data prevents us from establishing
causal relationships between THM exposure and cognitive decline.
Longitudinal studies are necessary to track the progression of
cognitive dysfunction over time in relation to THM exposure (33).
Second, while we adjusted for numerous potential confounders,
residual confounding remains a possibility, as there may be other
unmeasured variables that contribute to both THM exposure and
cognitive function. Third, the use of serum THM concentrations
as a proxy for long-term exposure may not fully capture the
cumulative burden of THM exposure over a lifetime. Future
studies should consider using biomarkers of chronic exposure
or environmental monitoring data to better assess the long-
term effects of THMs. Lastly, while we observed significant
associations between THM levels and cognitive impairment, the
exact thresholds of exposure that lead to significant neurotoxic
effects remain unclear. Further research is needed to identify
these thresholds and determine whether any safe levels of

exposure exist. Despite adjusting for a broad set of covariates,
the possibility of residual confounding remains. Unmeasured
factors such as occupational exposures, genetic predispositions,
or other environmental pollutants may have influenced the
observed associations.

In conclusion, our study provides compelling evidence for
the association between higher serum THM concentrations and
cognitive impairment, with potential implications for public
health policy. The findings suggest that reducing THM exposure,
especially in vulnerable populations such as the older person and
those with preexisting health conditions, could help mitigate the
growing burden of cognitive decline. Nonetheless, more research
is needed to clarify the mechanisms behind these associations and
to establish causal relationships, as well as to identify effective
strategies for reducing THM exposure in the general population.
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