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Background: Obesity is a prevalent and clinically significant complication 
among individuals with diabetes mellitus (DM), contributing to increased 
cardiovascular risk, metabolic burden, and reduced quality of life. Despite 
its high prevalence, the risk factors for obesity within this population remain 
incompletely understood. With the growing availability of large-scale health 
datasets and advancements in machine learning, there is an opportunity 
to improve risk stratification. This study aimed to identify key predictors of 
obesity and develop a machine learning-based predictive model for patients 
with T2DM using data from the National Health and Nutrition Examination 
Survey (NHANES).
Methods: Data from adults with diabetes were extracted from the NHANES 
2007–2018 cycles. Participants were categorized into obese and non-
obese groups based on BMI. Least absolute shrinkage and selection operator 
(LASSO) regression with 10-fold cross-validation was used to select relevant 
features. Subsequently, nine machine learning algorithms—including logistic 
regression, random forest (RF), radial support vector machine (RSVM), 
k-nearest neighbors (KNN), XGBoost, LightGBM, decision tree (DT), elastic 
net regression (ENet), and multilayer perceptron (MLP)—were employed 
to construct predictive models. Model performance was evaluated based 
on area under the ROC curve (AUC), calibration curves, Brier score, and 
decision curve analysis (DCA). The best-performing model was visualized 
using a nomogram to enhance clinical applicability.
Results: A total of 3,794 participants with type 2 diabetes were included 
in the analysis, of whom 57.0% were classified as obese. LASSO regression 
identified 19 key variables associated with obesity. Among the nine machine 
learning models evaluated, the logistic regression model demonstrated 
the best overall performance, with the lowest Brier score. It also showed 
good discrimination (AUC = 0.751  in the training set and 0.781  in the test 
set), favorable calibration, and consistent clinical utility based on decision 
curve analysis (DCA). A nomogram was constructed based on the logistic 
regression model to facilitate individualized risk prediction, with total points 
corresponding to predicted probabilities of obesity.
Conclusion: Obesity remains highly prevalent among individuals with type 2 
diabetes. Our findings highlight key clinical features associated with obesity 
risk and provide a practical tool to aid in early identification and individualized 
management of high-risk patients.
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Background

Diabetes mellitus (DM) has become one of the most prevalent 
chronic metabolic diseases worldwide, with a significant increase in 
prevalence over the past few decades, particularly in low- and middle-
income countries (1). According to the International Diabetes Federation 
(IDF), approximately 537 million adults globally were living with diabetes 
in 2021, and this number is projected to rise to 783 million by 2045 (2). 
Diabetes not only severely impacts patients’ quality of life but also imposes 
a substantial socioeconomic burden (3). Global healthcare costs related 
to diabetes and its associated complications amount to several hundred 
billion dollars annually, and this trend is expected to continue growing (4).

The occurrence of obesity in the DM patient group is significantly 
higher than in the non-diabetic population, which not only increases the 
risk of cardiovascular diseases, metabolic syndrome, and kidney diseases 
but also exacerbates the healthcare and social burden (5). However, even 
within the diabetic patient population, the incidence and severity of 
obesity show considerable variation (6). Research has shown that factors 
such as age, sex, race, lifestyle, dietary habits, and genetic predispositions 
can all influence the occurrence of obesity, and these complex factors make 
predicting the risk of obesity in diabetic patients more challenging (5).

In recent years, the rapid advancement of machine learning (ML) 
technology has provided new opportunities to address this issue, as 
sophisticated predictive models can effectively identify DM patients 
at high risk of obesity (7–9). The National Health and Nutrition 
Examination Survey (NHANES) offers high-quality, extensive clinical 
data, making it particularly well-suited for developing and validating 
predictive models. While previous studies have employed ML 
techniques to investigate the prediction of diabetes onset risk, 
treatment responses, and complications (such as cardiovascular 
diseases), there is relatively little research specifically focused on 
predicting the risk of obesity in diagnosed DM patients (10, 11).

The goal of this study is to utilize the NHANES database to develop 
a robust machine learning predictive model capable of distinguishing 
between DM patients at risk for obesity and those not at risk. Through a 
systematic analysis of variables, including demographic characteristics, 
clinical indicators, nutritional status, behavioral traits, and biochemical 
markers, this study aims to identify the key predictive factors for obesity 
in DM patients. Successful implementation of this predictive analysis will 
not only improve the effectiveness of personalized clinical interventions 
and patient outcomes but also significantly reduce the healthcare costs 
associated with obesity and diabetes. Ultimately, the results of this study 
will contribute to a deeper understanding of the mechanisms behind the 
occurrence of obesity in diabetes, providing practical and effective 
insights for clinical practice and healthcare policy development.

Methods

Study design and population

This study utilized cross-sectional data from the NHANES survey, 
collected in the United States between 2007 and 2018. The survey, 

conducted by the National Center for Health Statistics (NCHS) under 
the Centers for Disease Control and Prevention (CDC), aimed to 
provide a nationally representative assessment of the health and 
nutritional status of non-institutionalized civilians in the United States. 
Since NHANES is a publicly available database and has been approved 
by the Institutional Review Board (IRB) of NCHS, our institution 
confirmed that no additional ethical approval was required. 
Furthermore, the IRB acknowledges that NCHS adheres to strict 
ethical standards in its data collection and processing procedures, 
including obtaining informed consent from all participants and 
ensuring data anonymization. These measures guarantee full 
compliance with ethical guidelines for secondary data analysis.

Assessment criteria for diabetes and 
obesity

Individuals diagnosed with diabetes were included in this study if 
they self-reported a diabetes diagnosis, had a fasting blood glucose 
level ≥126 mg/dL, had a hemoglobin A1c level ≥6.5%, or reported 
using anti-diabetic medications. Obesity was assessed based on 
participants’ body mass index (BMI), with a BMI ≥ 30.0 kg/m2 
defining obesity, and those with a lower BMI classified as non-obese. 
To maintain data quality and consistency, records with more than 10% 
missing data were excluded, while multiple imputation was applied to 
records with minor missing values. Following these stringent inclusion 
and exclusion criteria, a total of 3,794 diabetes participants were 
included in the final analysis, consisting of 2,163 participants in the 
obesity group and 1,631 participants in the non-obesity group 
(Figure 1).

This study carefully selected a set of variables to investigate the 
factors associated with obesity in DM patients. These variables include 
demographic, socioeconomic, lifestyle, clinical, and biochemical 
factors. The demographic variables consist of gender, age, race, 
education level, and marital status. Education level is categorized as 
below high school, high school, and above high school. Marital status 
is classified into the following categories: married, widowed, divorced, 
separated, never married, or living with a partner. Race is divided into 
categories such as Mexican American, Other Hispanic, Non-Hispanic 
White, Non-Hispanic Black, and Other Race—including Multi-Racial. 
The Poverty-to-Income Ratio (PIR) is calculated by dividing 
household income by the corresponding poverty line for the survey 
year and location (12).

Lifestyle variables include smoking status (smoker or non-smoker) 
and alcohol consumption behavior (drinker or non-drinker). Physical 
activity levels are categorized as light, moderate, and vigorous exercise 
based on MET values.

Anthropometric measurements collected during the NHANES 
survey cycle include BMI. Biochemical markers include Alb, ALP, 
ALT, AST, TC, Scr, TG, UA, Hb, and HbA1c. Data on essential 
hypertension (EH), chronic heart disease (CHD), and depression were 
obtained through the questionnaire modules. Essential hypertension 
(EH) and coronary heart disease (CHD) were defined based on 
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self-reported information from the “Blood Pressure and Cholesterol 
Questionnaire (BPQ)” and the Medical Conditions Questionnaire 
(MCQ) modules. Depressive symptoms were assessed using the 
PHQ-9 score, where a score of ≥10 indicates depression, and a score 
of <10 indicates no depression (13). Intake of total energy, protein, 
carbohydrate, total sugar, dietary fiber, total fat, vitamin B12, vitamin 
C, vitamin D, and vitamin K was obtained from the Dietary 
Data module.

Statistical analysis

NHANES employs a complex multi-stage survey design to 
generate nationally representative data. Descriptive analysis 
involves calculating weighted averages with 95% confidence 
intervals and weighted percentages to account for the complex 
sampling design of the survey. Following NHANES analysis 
guidelines, chi-square tests were used for categorical variables, and 
weighted linear regression was applied to continuous variables to 
compare weighted groups. Unweighted data were used for model 
development and statistical analysis. Continuous variables are 
reported as means with standard deviations (SD), and categorical 
variables are presented as frequencies and percentages. Chi-square 
tests were used for categorical variables, and independent t-tests 
were applied to continuous variables to evaluate intergroup 
differences in clinical characteristics. A p-value of less than 0.05 
was considered statistically significant, and all tests were 
two-tailed.

All statistical analyses in this study were performed using R 
software (version 4.2.2). Initially, LASSO regression with 10-fold 
cross-validation was conducted using the cv.glmnet() function from 
the glmnet package for variable selection. To enhance the robustness 
and comparability of model performance, we  subsequently 
constructed and evaluated nine machine learning models: logistic 

regression (glm() with family = binomial), random forest 
(randomForest), radial support vector machine RSVM (e1071), 
k-nearest neighbors KNN (class), extreme gradient boosting XGBoost 
(xgboost), light gradient boosting machine LightGBM (lightgbm), 
decision tree DT (rpart), elastic net ENet (glmnet, α = 0.5), and 
multilayer perceptron MLP (nnet). Model performance was 
comprehensively assessed across four dimensions: (1) discrimination, 
measured by the area under the curve (AUC) using the pROC 
package; (2) calibration, evaluated via calibration plots using the rms 
and caret packages; (3) overall predictive accuracy, quantified using 
Brier scores calculated by the DescTools and ModelMetrics packages; 
and (4) clinical utility, determined by decision curve analysis (DCA) 
using the rmda package to estimate net clinical benefit at various 
threshold probabilities. All visualizations were generated using the 
ggplot2 package to ensure a clear and comprehensive presentation of 
the results. These methodological details have been incorporated into 
the revised Methods section to enhance clarity and reproducibility of 
the study.

Model building process

LASSO regression and cross-validation were used for feature 
selection in the training set to identify significant predictive factors. 
Features with non-zero coefficients were retained for subsequent 
analysis. We randomly allocated 70% of the patient population to the 
training set and 30% to the testing set. Stratified sampling was applied 
to ensure a balanced distribution of the target variable between the 
two groups. To address the issue of class imbalance, the Synthetic 
Minority Over-sampling Technique (SMOTE) was used to generate a 
balanced dataset in the training set (14).

In this study, we employed nine machine learning algorithms, 
including logistic regression, to model and predict the risk of 
obesity among patients with diabetes. These algorithms 

FIGURE 1

Flowchart of participant enrollment and exclusion.
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comprised logistic regression, random forest (RF), radial support 
vector machine (RSVM), k-nearest neighbors (KNN), extreme 
gradient boosting (XGBoost), light gradient boosting machine 
(LightGBM), decision tree (DT), elastic net regression (ENet), 
and multilayer perceptron (MLP). Model construction was 
performed on the training set, and only after repeated training 
yielded stable results were the models evaluated on the 
independent testing set. Model performance was assessed across 
four dimensions: discrimination (measured by ROC curves and 
AUC), calibration (evaluated using calibration plots), overall 
predictive accuracy (assessed using the Brier score), and clinical 
utility (measured by DCA to estimate net clinical benefit across 
a range of threshold probabilities). The model with the best 
overall performance was ultimately selected for clinical 
visualization and interpretation.

The model’s performance was evaluated based on classification 
accuracy and robustness. After training, the model was validated 
using the test set. The model’s classification performance was assessed 
using the ROC curve and the AUC metric (15). ROC curve analysis 
in the training set provided insights into the model’s predictive 
capability, while the AUC value was used to evaluate its 
discriminative ability.

Furthermore, a nomogram was developed based on the 
logistic regression model, providing an intuitive and user-
friendly tool for clinical use (16). The nomogram visually 
illustrates the relative contribution of each predictor to the 
obesity risk score. Each predictor is assigned a score proportional 
to its regression coefficient, and the total score corresponds to 
the predicted probability of obesity. A calibration curve was 
created to assess the predictive performance of the nomogram by 
comparing the predicted and observed probabilities of obesity. 
The discriminatory ability of the nomogram was evaluated using 
the AUC of the ROC curve. DCA was performed to evaluate the 
clinical utility of the nomogram by quantifying the net benefit at 
different threshold probabilities.

Results

Baseline characteristics

A total of 3,794 participants were included in this study, with an 
obesity prevalence rate of 57.01% (2,163/3,794). Among the 
participants, 1,990 were male and 1,804 were female, with average ages 
of 60.49 ± 12.66 years and 60.22 ± 12.96 years, respectively.

Compared to non-obese diabetic patients, those in the obese 
group were younger (57.85 ± 12.58 years vs. 63.69 ± 12.32 years), and 
the proportion of females was higher in the obese group (1,179/2,163 
vs. 625/1,630). Additionally, significant differences were observed in 
education level, marital status, and race between the two groups. 
Participants in the obese group slept significantly less than those in 
the non-obese group (6.98 ± 1.67 vs. 7.26 ± 1.66, p < 0.05). Contrary 
to expectations, there were no significant differences in PIR, 
smoking, or drinking behaviors between the two groups (p > 0.05). 
Regarding past diseases, the obesity group had a higher prevalence 
of essential hypertension and depression (p < 0.05), while there were 
no significant differences in the prevalence of CHD and stroke 
(p > 0.05).

Regarding blood markers, significant differences were 
observed in ALB, ALP, ALT, Scr, TG, UA, and HbA1c between the 
two groups (p < 0.05). No differences were found in the levels of 
AST, TC, and Hb between the two groups (p > 0.05). In terms of 
energy intake, participants in the obesity group consumed more 
energy (1,964.70 ± 956.79 vs. 1,863.92 ± 854.06, p < 0.05). 
Significant differences were observed in the intake of 
carbohydrates, total sugar, dietary fiber, and total fat between the 
two groups (p < 0.05), while no differences were found in the 
intake of vitamin B12, C, and D (p > 0.05). Table 1 presents all the 
significant variables.

Feature importance analysis

In the variables of DM participants, the occurrence of obesity 
is associated with several factors (Figure  2A). Age appears to 
be  the most significant variable, followed by gender and UA, 
suggesting that age, gender, and UA may play crucial roles in the 
obesity risk of diabetic patients. Furthermore, variables such as 
ALP, essential hypertension, TG, and depression showed 
significant predictive value. Other influencing factors include total 
fat, HbA1c, and education level, among others. In comparison, 
variables like smoking, alcohol consumption, vitamin intake, and 
sleep duration demonstrated relatively low predictive performance, 
indicating a weaker correlation with obesity risk (Figure 2B).

Machine learning model comparison after 
LASSO selection

To enhance the model’s robustness and minimize potential 
overfitting, LASSO regression was applied for the initial selection of 
predictor variables in the training set, with the optimal regularization 
parameter determined using 10-fold cross-validation (17). The 
LASSO model initially identified 19 variables with non-zero 
coefficients, including sex, age, race, marital status, PIR, ALB, ALP, 
AST, Scr, TG, UA, Hb, and sleep duration (Figure  3 and 
Supplementary Table S1).

Based on the selected variables, nine machine learning models 
were developed, including logistic regression, RF, RSVM, KNN, 
XGBoost, LightGBM, DT, ENet, and MLP. All models were stably 
trained on the training set and subsequently evaluated on the 
testing set. Among these, the logistic regression model 
demonstrated the best overall performance across multiple 
evaluation dimensions. It exhibited strong discriminatory power, 
with an AUC of 0.751 in the training set and 0.781 in the testing 
set, indicating reliable differentiation between obese and 
non-obese patients (Figures 4A,B). In terms of clinical applicability, 
DCA showed that the logistic model provided the greatest net 
benefit across a range of threshold probabilities (Figures 4C,D). 
The model also achieved favorable calibration, with predicted 
probabilities closely aligning with observed outcomes, and yielded 
the lowest Brier score (0.189), reflecting high overall predictive 
accuracy (Figures 4E,F). These findings support the selection of 
logistic regression as the optimal model for obesity risk prediction 
in patients with diabetes. Accordingly, logistic regression was 
selected as the optimal predictive model in this study.
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TABLE 1  Baseline data of the obese and non-obese groups [mean ± SD or n (%)].

Variable Total Obese Non-obese Statistic p-value

N 3,794 2,163 1,630

Sex 97.049 <0.001*

 � Male 984 1,006

 � Female 1,179 625

Age (years) 57.85 ± 12.58 63.69 ± 12.32 −14.329 <0.001*

Education 1878852.0 <0.001*

 � Below high school 648 563

 � High school 500 398

 � Above high school 1,015 670

Marital status 23.558 <0.001*

 � Married 1,196 947

 � Separated/widowed/

divorced

625 511

 � Never married 239 110

 � Living with partner 103 63

Race 166.116 <0.001*

 � Mexican American 393 277

 � Other Hispanic 220 204

 � Non-Hispanic White 833 540

 � Non-Hispanic Black 605 329

 � Other Race 112 281

PIR 2.32 ± 1.55 2.31 ± 1.54 0.041 0.967

Drinking 1.894 0.169

 � No 703 495

 � Yes 1,460 1,136

Smoking 1.141 0.285

 � No 1,100 800

 � Yes 1,063 831

Activity level 5.45 0.066

 � Light 1,666 1,302

 � Moderate 183 109

 � Vigorous 314 220

Sleep time (hours) 6.98 ± 1.67 7.26 ± 1.66 −5.234 <0.001*

EH 89.466 <0.001*

 � No 582 678

 � Yes 1,581 953

Depression

 � No 1730 1,493 96.246 <0.001*

 � Yes 433 138

CHD 1.308 0.253

 � No 1959 1,458

 � Yes 204 173

Stroke Obesity Non-obesity 0.0 1.000

 � No 1991 1,502

(Continued)
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TABLE 1  (Continued)

Variable Total Obese Non-obese Statistic p-value

 � Yes 172 129

ALB (g/dL) 40.68 ± 3.37 42.00 ± 3.43 −11.826 <0.001*

ALP (U/L) 28.41 ± 19.39 24.48 ± 15.53 6.92 <0.001*

ALT (U/L) 27.01 ± 16.10 25.21 ± 12.36 3.908 <0.001*

AST (U/L) 76.89 ± 25.93 75.39 ± 27.76 1.692 0.091

TC (mg/dL) 4.82 ± 1.17 4.75 ± 1.22 1.884 0.060

Scr (mg/dL) 84.83 ± 41.24 89.34 ± 53.92 −2.818 0.005*

TG (mg/dL) 2.24 ± 1.56 2.06 ± 1.69 3.421 <0.001*

UA (mg/dL) 354.26 ± 95.46 328.58 ± 88.24 8.567 <0.001*

Hb (g/dL) 13.82 ± 1.60 13.88 ± 1.60 −1.176 0.240

HbA1c (%) 7.41 ± 1.70 7.29 ± 1.77 2.1 0.036*

Total energy (kcal) 1964.70 ± 956.79 1863.92 ± 854.06 3.416 <0.001*

Protein (g) 78.33 ± 40.86 75.04 ± 40.24 2.483 0.013*

Carbohydrate (g) 230.00 ± 117.46 222.18 ± 105.76 2.151 0.032*

Total sugar (g) 96.52 ± 70.88 88.49 ± 64.42 3.638 <0.001*

Dietary fiber (g) 16.01 ± 10.09 16.93 ± 10.79 −2.674 0.008*

Total fat (g) 79.11 ± 46.97 72.80 ± 42.39 4.328 <0.001*

Vitamin B12 (μg) 4.69 ± 5.74 4.64 ± 7.66 0.217 0.828

Vitamin C (mg) 75.68 ± 93.38 74.75 ± 79.97 0.331 0.741

Vitamin D (μg) 4.43 ± 6.18 4.30 ± 4.85 0.707 0.479

Vitamin K (μg) 105.73 ± 159.92 106.34 ± 160.07 −0.117 0.907

*p-value<0.05.

FIGURE 2

Heatmap of correlations between various variables and their predictive capabilities. (A) Heatmap of correlations. (B) Feature importance ranking of 
variables in the model based on AUC values.
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FIGURE 3

Coefficient trajectories and optimal lambda selection in LASSO regression. (A) LASSO coefficient path plot. (B) Least angle regression path plot. After 
using the Lasso regression analysis method, 19 variables were identified as key factors for diagnosing obesity.

FIGURE 4

Performance evaluation of nine machine learning models for obesity prediction in patients with diabetes. (A–B) Receiver operating characteristic 
(ROC) curves of nine models in the training set (A) and test set (B), respectively. The area under the curve (AUC) values are shown in the legend. (C–D) 
Decision curve analysis (DCA) of the models in the training set (C) and test set (D), indicating net clinical benefit across a range of threshold 
probabilities. (E) Calibration plots of each model in the test set. The red line represents the observed probability, and the diagonal black line indicates 
perfect calibration. (F) Heatmap of Brier scores for each model in the test set. Lower Brier scores indicate better overall predictive accuracy.
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Construction and visualization of the 
logistic regression model

Following the identification of logistic regression as the optimal 
predictive model among the nine machine learning algorithms, 
we  further visualized the model coefficients and constructed a 
clinically applicable prediction tool. As shown in Figure 5, among the 
variables included in the logistic model, depression and EH emerged 
as the strongest positive predictors, suggesting that patients with 
these conditions are at increased risk of obesity. Additionally, 
metabolic indicators such as ALP and total fat intake also contributed 
positively. In contrast, variables such as male sex, Alb, and age were 
negatively associated with obesity risk, indicating a potential 
protective effect.

Based on the estimated regression coefficients, a nomogram was 
constructed to facilitate individualized risk assessment (Figure 6). This 
nomogram incorporates all significant predictors from the model. By 
locating the value of each patient’s characteristic on the corresponding 
axis, assigning points, and summing the total score, clinicians can 
estimate the predicted probability of obesity. The tool is intuitive, easy 
to interpret, and clinically applicable, offering a practical method to 
support early identification and personalized management of obesity 
risk in patients with diabetes.

To further enhance the clinical interpretability of the nomogram, 
we  determined the optimal cutoff point based on the maximum 
Youden index. As shown in Figure 7, the Youden index peaked when 
the total nomogram points reached 131, indicating the most balanced 
trade-off between sensitivity and specificity at this threshold. This 

cutoff value can serve as a reference point in clinical decision-making, 
enabling physicians to identify high-risk patients who may benefit 
from early lifestyle intervention or closer metabolic monitoring 
(Table 2).

Discussion

This study is based on data from the NHANES 2007–2018, 
involving a retrospective analysis of nearly 3,800 diabetic patients. The 
aim was to identify which indicators are particularly significant in the 
context of obesity among various clinical and lifestyle factors. Using 
machine learning algorithms, we ultimately identified 10 variables, 
including traditional physiological indicators such as ALP, Scr, and 
AST, as well as less frequently discussed variables, such as depression. 
This mixed result highlights an important issue: diabetes combined 
with obesity is not solely due to excess calorie intake, but rather a 
complex process involving metabolic, emotional, behavioral, and 
organ function imbalances.

This study demonstrates a certain degree of innovation in terms 
of research perspective, methodological design, and the significance 
of the findings. It focuses on predicting the risk of obesity specifically 
within the population of individuals with diabetes. Although this topic 
has been discussed in the existing literature, systematic predictive 
modeling targeted at this specific subgroup remains relatively limited. 
Our study seeks to contribute additional insight in this underexplored 
area. Methodologically, we  applied LASSO regression for variable 
selection and developed predictive models using nine commonly used 
machine learning algorithms. Model performance was 

FIGURE 5

The regression coefficients of the 10 significant variables after logistic regression analysis. These regression coefficients are used to construct the 
nomogram for diagnosing diabetic obesity.
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comprehensively evaluated across multiple dimensions, including 
AUC, calibration (calibration plots), overall predictive accuracy (Brier 
score), and clinical utility (DCA). Furthermore, we  employed 
nomogram construction to enhance model interpretability and 
clinical applicability. In terms of results, the study identified several 
key variables strongly associated with obesity and established a 
predictive model with promising performance and generalizability. 
These findings may serve as a theoretical basis and practical reference 
for the early identification and individualized intervention of obesity 
risk in patients with diabetes.

First, it is important to highlight the prominent role of 
psychological factors, particularly depression, in the model. In the 
past, we tended to attribute obesity and diabetes to “eating too much 
and moving too little,” but the inclusion of depression as a variable in 
the model reminds us that we cannot overlook the long-term effects 
of psychological states on energy metabolism and behavior patterns. 
Existing studies suggest that chronic depression may disrupt appetite 
regulation mechanisms through abnormal activation of the HPA axis, 
which in turn influences eating preferences, sleep patterns, and even 
the willingness to exercise (18, 19). This impact may be  more 

FIGURE 6

Nomogram to estimate the risk of obesity in DM patients. The points assigned to each predictor are summed to obtain the total score. A vertical line 
drawn from the total score corresponds to the predicted probability of obesity.

FIGURE 7

Youden index analysis for determining the optimal cutoff point of the nomogram. The highest Youden index corresponds to a total point score of 131, 
as indicated by the dashed vertical line.
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pronounced in diabetic patients. At the same time, the inclusion of 
traditional factors such as hypertension, age, and gender is not 
unexpected. On one hand, these serve as “background variables” for 
disease progression, and on the other hand, they provide the empirical 
basis for clinical judgment. Therefore, we should pay more attention 
to whether there are factors, beyond the “familiar” variables, that 
we  have previously overlooked, which may be  subtly altering the 
course of the disease.

Some of the findings related to biochemical markers are quite 
thought-provoking. The appearance of ALP, AST, and Scr suggests that 
the mechanisms underlying diabetes combined with obesity may have 
far exceeded our conventional understanding of “glucose metabolism 
disorders.” ALP and AST are typically regarded as indicators of liver 
function, and their changes may already signal the presence of visceral 
fat accumulation, fatty liver disease, or even inflammation in the 
asymptomatic stage (20). This could explain why, in recent years, 
NAFLD has been recognized as a precursor to “novel liver-derived 
diabetes” (21). Scr, being a relatively stable marker of kidney function, 
is unsurprising in this population. Diabetes is a major contributor to 
kidney damage, and the symptoms of obesity further exacerbate the 
high-pressure burden on the glomerulus (22). More importantly, these 
markers are less likely to fluctuate compared to lifestyle variables, and 
as indicators of end-organ damage, they often provide a more accurate 
reflection of disease progression.

In terms of diet, the inclusion of total fat intake signals that 
“what” we eat may be more important than “how much” we eat. 
Although total sugar intake was not included in the final model, this 
contrasts with some findings in the literature. Possible explanations 
include: first, diabetic patients generally have an awareness of blood 
sugar control, which narrows the differences between groups; 
second, compared to carbohydrates, the metabolic effects of fat are 
more long-lasting and have a more direct impact on insulin 
resistance. Additionally, the presence of uric acid and albumin 
further supports the potential involvement of inflammation and 
oxidative stress in the pathology of obesity, a direction that has 
gained widespread attention in recent years (23). In general, the 
significance of these biochemical markers lies not only in their role 
as static diagnostic tools but also in their potential as dynamic 
warning signals, providing important information before clear 
metabolic imbalance is observed.

Naturally, it is somewhat surprising that some factors 
traditionally thought to be  closely related to obesity, such as 
smoking, drinking, stroke history, physical activity, and sleep 
duration, did not enter our model. This does not necessarily imply 
that they are unimportant, but rather suggests that their explanatory 
power in the context of diabetes has been overshadowed by other 
factors. The metabolic effects of smoking and drinking may 
primarily manifest through cardiovascular and inflammatory 
pathways, rather than directly contributing to obesity (24). Physical 
activity and sleep data in NHANES are primarily based on self-
reported questionnaires, which are susceptible to cognitive bias. 
Furthermore, these factors may exhibit collinearity with the 
selected variables, and weaker variables are more easily “pushed out 
of the model” in LASSO regression. In other words, the LASSO 
results are more about selecting variables that maintain 
independent explanatory power in high-risk populations such as 
“diabetes + obesity,” rather than simply listing all potential 
influencing factors.

Overall, our goal is not to create a comprehensive obesity 
prediction system, but rather to use a feature selection method 
from the machine learning field—LASSO-logistic regression—to 
identify a set of variables that truly possess independent 
explanatory power and predictive value, amidst numerous 
variables and highly redundant information. Compared to 
traditional regression, this machine learning method offers 
stronger dimensionality reduction capabilities and superior 
recognition of collinear variables, making the model more concise 
and stable, and thus suitable for clinical decision-making scenarios 
based on real-world data (25). It is noteworthy that we chose not 
to rely on complex “black-box” models, but instead employed a 
linear regularization algorithm with good interpretability, striking 
a balance between statistical significance and clinical applicability. 
The final results reveal that the selected variables span multiple 
dimensions, including psychology, biochemistry, nutrition, and 
organ function, which, to some extent, outline the biological 
feature spectrum of diabetes combined with obesity. This also 
suggests that in future chronic disease research and management, 
machine learning is not only a tool but also a perspective—it can 
help us unravel complex data and identify the key aspects that 
truly warrant attention and intervention.

Limitation

This study has several limitations that should be acknowledged. 
First, the data were derived from the NHANES database between 2007 
and 2018, and therefore may not fully capture more recent trends or 
behavioral and physiological changes in the post-COVID-19 era. 
Second, due to the cross-sectional nature of the NHANES data, causal 
inferences cannot be drawn from the observed associations. Third, 
although multiple machine learning algorithms were used and their 
performance compared, external validation using independent 
datasets was not conducted, which may limit the generalizability of 
the models. Fourth, some relevant variables such as genetic, 
environmental, or medication-related factors were not available in the 
dataset, potentially affecting the model’s completeness. Finally, 
although the study applied nomogram visualization, the clinical 

TABLE 2  Odds ratios and 95% confidence intervals from multivariate 
logistic regression analysis.

Variable OR 2.5% 97.5%

Alb 0.8885973 0.863925 0.9139741

ALP 1.0144196 1.0085186 1.0203552

AST 0.9959228 0.9925759 0.9992811

Scr 0.9974336 0.9954171 0.9994542

UA 1.0045131 1.0034784 1.0055488

EH 2.2246476 1.8358482 2.6957877

Sex 0.4893815 0.4046678 0.5918293

Age 0.9573351 0.9499819 0.9647452

Depression 2.2946446 1.7645954 2.98391

Total fat 1.0050249 1.0028926 1.0071617
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applicability of the prediction model should be  further tested in 
prospective studies and real-world settings.

Conclusion

In summary, this study identifies key risk factors associated 
with obesity among individuals with type 2 diabetes using large-
scale population-based data and a comparative machine learning 
framework. Our findings underscore the multifactorial nature of 
metabolic dysregulation in this population, involving 
psychological, nutritional, biochemical, and organ function 
indicators. Among the nine models evaluated, logistic regression 
demonstrated the most balanced predictive performance and was 
used to construct a clinically interpretable nomogram. This tool 
may support early risk stratification and personalized intervention 
in diabetic patients. Future studies should focus on external 
validation and longitudinal tracking to enhance model 
generalizability and translational potential.
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