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Objective: Air pollution is a major environmental risk to human health, with

increasing evidence linking it to non-alcoholic fatty liver disease (NAFLD).

However, findings remain inconsistent. This meta-analysis aimed to assess the

relationship between air pollutants and the risk of NAFLD.

Methods: PubMed, Embase, and Web of Science were systematically searched

for studies published up to March 20, 2025. A random e�ects model was

used to estimate combined odds ratios (ORs) and 95% confidence intervals

(95% CIs). Subgroup analysis, sensitivity analysis, funnel plots, and Egger’s test

were conducted.

Results: A total of 12 studies, including 49,549,903 participants (published

between 2022 and 2024), were analyzed. For each 10 µg/m3 increase

in pollutants, the ORs were 1.22 (1.16–1.29) for particulate matter with

aerodynamic diameter ≤2.5µm (PM2.5), 1.15 (0.95–1.40) for particulate matter

between 2.5 and 10µm in aerodynamic diameter (PM2.5−10), and 1.07 (1.01–

1.13) for particulate matter with aerodynamic diameter ≤10µm (PM10). For

gaseous pollutants, the ORs were 1.45 (0.92–2.28) for sulfur dioxide (SO2) and

1.10 (1.06–1.14) for nitrogen dioxide (NO2). No notable connection emerged

between ozone (O3) or carbon monoxide (CO) and NAFLD. Subgroup analysis

revealed stronger associations for PM2.5, PM10, and NO2 with NAFLD in

developed countries, Europe, and cohort studies, compared to developing

countries, Asia, and cross-sectional studies.

Conclusion: This analysis supports a positive relationship between air pollution

and NAFLD risk. Geographic region and economic development appear to

moderate this association.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024594146, Identifier: CRD42024594146.

KEYWORDS

air pollution, particulate matter, non-alcoholic fatty liver disease, systematic review,

meta-analysis

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) ranks among the foremost causes of

chronic liver conditions globally, encompassing a progression from simple steatosis and

steatohepatitis to severe outcomes like fibrosis and cirrhosis (1). Currently affecting

32.4% of people globally, this condition is expected to see a notable surge in prevalence

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1606959
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1606959&domain=pdf&date_stamp=2025-08-19
mailto:yangxianzhao@bucm.edu.cn
mailto:mailto:rsy_2008@163.com
https://doi.org/10.3389/fpubh.2025.1606959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1606959/full
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024594146
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024594146
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1606959

over the next 10 years (2–4). Beyond its toll on liver function and

survival, NAFLD is connected to various extrahepatic disorders,

such as cardiovascular disease, type 2 diabetes mellitus, chronic

kidney disease, and select cancers (5–7), posing a growing public

health challenge (4). Understanding the risk factors for NAFLD is

crucial for early prevention and management.

Air pollution, a major environmental health threat, contributes

to an estimated 7 million premature deaths annually (8) and

is linked to chronic diseases including cardiovascular disease,

respiratory disorders, and cancer (9–12). Key pollutants include

particulate matter (PM), ozone (O3), nitrogen dioxide (NO2),

sulfur dioxide (SO2), and carbon monoxide (CO) (13). Recent

evidence suggests that air pollutants may also increase NAFLD risk,

though findings remain inconsistent (14–16). For instance, some

studies have reported a significant association between particulate

matter with aerodynamic diameter≤2.5µm (PM2.5) and the risk of

NAFLD (17, 18), whereas others have found little to no relationship

(19, 20). Experimental studies indicate that the underlying

mechanisms may involve oxidative stress, inflammation, and

insulin resistance induced by air pollutant exposure (21–23).

A prior meta-analysis (24) focused on NAFLD risk included

a limited subset of studies and failed to standardize effect sizes

across studies, leading to potential bias. Furthermore, several

large, high-quality cohort and cross-sectional studies in recent

years have added new insights into the relationship between air

pollution and NAFLD risk (17, 20, 25, 26). To address these

gaps, we conducted an updated meta-analysis to comprehensively

evaluate the relationship between multiple air pollutants (e.g.,

PM, NO2, SO2, CO, O3) and NAFLD risk, incorporating

recent high-quality studies and standardizing effect estimates for

improved comparability.

2 Methods

This meta-analysis followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

(27) and was registered with PROSPERO (CRD42024594146)

before initiation.

2.1 Data sources and searches

PubMed, Embase, and Web of Science were explored for

pertinent studies released by March 20, 2025. The search was

limited to English-language publications and utilized a blend of

medical subject headings (MeSH) and terms associated with liver

conditions (e.g., “fatty liver,” “steatohepatitis∗,” “Visceral Steatos∗,”

“liver steatosis∗”) and atmospheric pollutants (e.g., “air pollution,”

“particulate matter,” “nitrogen oxides,” “ozone,” “sulfur dioxide,”

“carbon monoxide”). The detailed search strategy is provided in

Supplementary Tables S1–S3.

2.2 Selection criteria

The meta-analysis included studies that met the following

Population, Exposure, Comparison, Outcome, Study Design

(PECOS) criteria:

Population: general population, including adults

and children.

Exposure: air pollutants, including PM2.5, particulate matter

between 2.5 and 10µm in aerodynamic diameter (PM2.5−10),

particulate matter with aerodynamic diameter ≤10µm

(PM10), NO2, SO2, CO, and O3.

Comparator: non-exposed or less-exposed populations.

Outcome: NAFLD, metabolic-associated fatty liver disease

(MAFLD), or metabolic dysfunction-associated steatotic liver

disease (MASLD). NAFLD diagnoses were based on ICD-

10 codes K75.8 and K76.0, or ultrasonography of hepatic

steatosis with complications such as obesity, type 2 diabetes

mellitus, or metabolic disorders (MAFLD) (28), or MASLD as

defined by hepatic steatosis plus one of five cardiometabolic

criteria (29).

Study design: observational studies, including cohort, cross-

sectional, and case-control designs.

Studies that reported odds ratios (ORs), risk ratios (RRs),

or hazard ratios (HRs) with 95% confidence intervals (CIs),

or provided sufficient data for these estimates, were included.

Recent or comprehensive studies were prioritized when datasets

overlapped (30).

Exclusion criteria included conference abstracts, protocols,

reviews, and duplicate publications.

2.3 Study selection

Titles and abstracts were independently reviewed by two

authors (XZ and LSH) based on pre-set inclusion and exclusion

guidelines. Full texts of potentially qualifying studies were

then evaluated to confirm their suitability. Any differences of

opinion were settled by involving a third author (XZY) as

a mediator.

2.4 Data extraction

Data were independently gathered by two authors (XZ and

LSH), with a third author (XZY) addressing any inconsistencies.

Collected details included the first author, year of publication,

study design, region, survey period, sample size, mean

age, female proportion, air pollutants measured, outcome,

statistical model, and effect estimates with corresponding

95% CIs.

2.5 Quality assessment

Quality assessments were independently performed by two

authors (XZ and LSH). Discrepancies were resolved through

discussion. The quality of cohort studies was assessed using the

Newcastle-Ottawa Scale (NOS) (31), with scores categorized as: low

(0–3), moderate (4–6), or high (7–9) quality. Cross-sectional study

quality was assessed using the American Agency for Healthcare

Research and Quality criteria (32), with scores classified as: low

(0–3), moderate (4–7), or high (8–11).
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FIGURE 1

Literature screening flowchart.

2.6 Statistical analysis

Adjusted ORs and their 95% CIs were relied upon to evaluate

the link between air pollutants and NAFLD risk. Studies reporting

RRs or HRs were considered equivalent to ORs (33). Pollutant

levels reported in parts per billion (ppb) were transformed to

µg/m3 using conversion rates: 1.88 for NO2, 2.62 for SO2, 1.96 for

O3, and 1.15 for CO. Due to varying increments of air pollutant

exposure, ORs and 95% CIs were standardized to a 10 µg/m3

increase using the formula (34):

OR(standardized) = OR(original)
10/Increment(original)

A random-effects model was employed to derive pooled

ORs linking NAFLD with pollutant exposure. Heterogeneity

was examined using Cochran’s Q test and the I² metric,

where I² exceeding 50% denoted substantial variability. Subgroup

analyses explored heterogeneity sources, considering factors

like study type, sample size, female ratio, economic context,

smoking prevalence, region, education, and outcome classification.

Sensitivity tests verified the stability of results. Funnel plots

and Egger’s regression test were used to detect publication

bias (35), with a minimum of 10 studies required for this

analysis (36). Statistical analyses were performed using Stata

version 14.0.

3 Results

3.1 Literature selection

The search strategy identified 3,620 relevant articles. After

removing duplicates, 2,564 records underwent title and abstract

evaluation. Full-text assessment was performed on 20 articles,

of which eight were excluded: four for lack of relevant results,

three for duplication, and one for addressing a different exposure.

Ultimately, 12 studies were retained for the meta-analysis

(Figure 1).

3.2 Study characteristics

The 12 included studies (14–18, 20, 25, 26, 37–40), published

between 2022 and 2024, involved a total of 49,549,903 participants.
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TABLE 1 Characteristics of studies included in the meta-analysis.

Study ID Study type Region Survey time Sample size
(Case/Control)

Age (Mean ±
SD, years)

Female ratio Pollutant Outcome Statistical
model

Quality
score

Kong 2024 Prospective cohort UK 2006–2010 417,250

(4,752/412,273)

56.3± 8.1 223,892 (53.7) PM2.5 , PM2.5−10 ,

PM10 , NO2

NAFLD Cox proportional

hazard model

7

Feng 2024 Retrospective

cohort

China 3 years preceding

outcome

assessment

27,699

(7,374/20,325)

NA 4,052 (14.6) PM2.5 , SO2 , NO2 ,

O3 , CO

MAFLD Logistic regression

model

6

Bo 2024 Cross-sectional China 2001–2018 329,048

(96,852/232,196)

41.0± 13.0 185,164 (56.3) PM2.5 , NO2 , O3 NAFLD Logistic regression

model

8

Ji 2024 Cross-sectional China 2017–2020 2,711,207

(191,592/2,519,615)

49.7± 15.4 1,432,694 (52.8) PM2.5 , PM10 , SO2 ,

O3 , CO

MAFLD Spatial generalized

linear mixed

models

7

Cheng 2024 Cross-sectional China 2010–2017 131,592

(53,431/78,161)

NA 68,396 (52.0) PM2.5 , PM10 , SO2 ,

NO2 , O3 , CO

MASLD Logistic regression

model

7

Patterson 2023 Prospective cohort US 2014–2018 170 (30/110) 19.7± 1.2 56 (45.2) PM2.5 , PM10 , NO2 ,

O3

NAFLD Logistic regression

model

7

Han 2023 Longitudinal cohort China 2018–2019 6,350 (744/5,786) NA 4,145 (63.5) PM2.5 , PM10 , NO2 MAFLD Multiple logistic

regression models

7

Matthiessen

2023

Cross-sectional Germany 2000–2003 4,065 (1,288/2,777) 59.6± 7.8 2,157 (53.1) PM2.5 , PM2.5−10 ,

PM10 , NO2

NAFLD Logistic regression

model

8

Zhao 2023 Prospective cohort China June

2011–December

2013

15,337

(1,516/13,821)

47.6± 7.9 6,914 (45.1) PM2.5 MAFLD Cox proportional

hazard model

7

Deng 2023 Population-based

dynamic cohort

China 2005–2013 17,106

(4,640/12,466)

NA 12,231 (71.5) PM2.5 NAFLD Cox proportional

hazard model

8

Li 2022 Prospective cohort UK 2006–2010 456,687

(4,978/451,709)

NA NA PM2.5 , PM2.5−10 ,

PM10 , NO2

NAFLD Cox proportional

hazard model

8

VoPham 2022 Cross-sectional US 2001–2011 45,433,392

(269,705/45,163,687)

48.6± 28.0 26,550,788 (58.4) PM2.5 NAFLD Multivariable

logistic regression

model

6

PM2.5 , particulate matter with aerodynamic diameter≤2.5µm; PM2.5−10 , particulate matter between 2.5 and 10µm in aerodynamic diameter; PM10 , particulate matter with aerodynamic diameter≤10µm; NO2 , nitrogen dioxide; O3 , ozone; SO2 , sulfur dioxide; UK,

United Kingdom; US, United States; SD: standard deviation; NA, not available.
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TABLE 2 Meta-analysis of NAFLD in association with a 10 µg/m3 increase in PM2.5, PM2.5−10, PM10, SO2, NO2, O3, and CO.

Overall analysis Pooled OR (95% CIs) P value No. of studies Heterogeneity

P value I
2

PM2.5 1.22 (1.16, 1.29) <0.001 12 <0.001 91.4%

PM2.5−10 1.15 (0.95, 1.40) 0.150 3 0.937 0.0%

PM10 1.07 (1.01, 1.13) 0.016 7 <0.001 86.9%

SO2 1.45 (0.92, 2.28) 0.113 3 <0.001 98.4%

NO2 1.10 (1.06, 1.14) <0.001 8 <0.001 92.9%

O3 1.01 (0.90, 1.13) 0.837 5 <0.001 98.7%

CO 1.02 (0.99, 1.05) 0.281 3 <0.001 99.4%

FIGURE 2

Forest plot of the association between PM2.5 exposure (per 10 µg/m3 increment) and risk of NAFLD.

Of these, seven were cohort studies (17, 18, 20, 25, 37, 39,

40) and five were cross-sectional (14–16, 26, 38). Sample sizes

ranged from 170 to 45,433,392. Studies focused on various air

pollutants: 12 on PM2.5, three on PM2.5−10, seven on PM10,

three on SO2, eight on NO2, five on O3, and three on CO.

Geographically, seven studies were conducted in Asia, three

in Europe, and two in North America. Confounders adjusted

for in the studies varied slightly. Quality assessment revealed

eight studies rated as high quality and four as medium quality

(Supplementary Tables S4, S5). Detailed study characteristics are

provided in Table 1.

3.3 Exposure of air pollution and NAFLD

Table 2 presents the ORs linking air pollutants to NAFLD,

with forest plots for analyses involving over five studies shown

in Figures 2–4. A 10 µg/m3 rise in PM2.5, PM10, and NO2 levels

was notably tied to elevated NAFLD risk (PM2.5 OR = 1.22,

95% CI: 1.16–1.29; PM10 OR = 1.07, 95% CI: 1.01–1.13; NO2

OR = 1.10, 95% CI: 1.06–1.14; Figures 2–4). However, significant

heterogeneity was observed across studies (PM2.5 I² = 91.4%, P

< 0.001; PM10 I² = 86.9%, P < 0.001; NO2 I² = 92.9%, P <

0.001). For PM2.5−10 and SO2, a 10 µg/m3 increase suggested
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FIGURE 3

Forest plot of the association between PM10 exposure (per 10 µg/m3 increment) and risk of NAFLD.

FIGURE 4

Forest plot of the association between NO2 exposure (per 10 µg/m3 increment) and risk of NAFLD.
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TABLE 3 Association between exposure to PM2.5 and risk of NAFLD by subgroup analysis.

Subgroups Categories No. of studies OR, 95%CI I
2 (%) P values within subgroups

Study design Cross-sectional 5 1.15 (1.13, 1.17) 48.5 <0.001

Cohort 7 1.45 (1.21, 1.74) 95.0 <0.001

Sample size <100,000 6 1.25 (1.04, 1.49) 93.5 0.015

>100,000 6 1.20 (1.15, 1.27) 90.0 <0.001

Female, % <50% 3 1.15 (0.89, 1.49) 75.3 0.275

>50% 9 1.25 (1.18, 1.31) 90.9 <0.001

Economic level Developed countries 4 1.72 (1.05, 2.82) 87.2 0.031

Developing countries 8 1.18 (1.12, 1.24) 92.2 <0.001

Current smoker, % <25% 7 1.22 (1.15, 1.29) 86.8 <0.001

>25% 2 1.12 (0.90, 1.39) 81.0 0.310

Geographic area Asia 7 1.16 (1.11, 1.22) 92.1 <0.001

Europe 3 2.15 (1.78, 2.59) 0.0 <0.001

College or above <50% 3 1.20 (1.08, 1.34) 51.4 0.001

>50% 5 1.16 (1.08, 1.24) 94.6 <0.001

Outcome NAFLD 7 1.42 (1.25, 1.61) 93.0 <0.001

MAFLD 4 1.14 (1.04, 1.24) 88.8 0.006

TABLE 4 Association between exposure to PM10 and risk of NAFLD by subgroup analysis.

Subgroups Categories No. of studies OR, 95%CI I
2 (%) P values within subgroups

Study design Cross-sectional 3 1.01 (0.97, 1.06) 87.7 0.542

Cohort 4 1.26 (1.00, 1.60) 82.2 0.053

Sample size <100,000 3 1.06 (0.95, 1.19) 0.0 0.305

>100,000 4 1.07 (1.01, 1.14) 93.4 0.021

Economic level Developed countries 3 1.16 (1.02, 1.31) 0.0 0.025

Developing countries 4 1.06 (1.00, 1.12) 92.8 0.058

Geographic area Asia 3 1.02 (0.98, 1.06) 88.0 0.380

Europe 3 1.31 (0.95, 1.81) 82.8 0.097

Outcome NAFLD 4 1.27 (0.95, 1.71) 75.4 0.107

MAFLD 2 1.03 (1.03, 1.04) 0.0 <0.001

increased NAFLD likelihood, though these findings did not achieve

statistical significance (PM2.5−10 OR = 1.15, 95% CI: 0.95–1.40, P

= 0.15; SO2 OR = 1.45, 95% CI: 0.92–2.28, P = 0.113), with SO2

showing marked heterogeneity (I²= 98.4%, P < 0.001). No notable

connection emerged between O3 or CO and NAFLD.

3.4 Subgroup analysis

Given the scarcity of studies, subgroup analyses were not

feasible for PM2.5−10, SO2, O3, or CO. Subgroup analyses for PM2.5,

PM10, and NO2 are presented in Tables 3–5. In most subgroups,

exposure to these pollutants remained positively associated with

NAFLD, although heterogeneity remained at moderate to high

levels. Stronger associations were observed in studies from

developed countries, Europe, and cohort studies compared to

those from developing countries, Asia, and cross-sectional studies.

Specifically, a significant and robust association was found for

PM2.5 in Europe (OR = 2.15, 95% CI: 1.78–2.59, P < 0.001, I² =

0%). Stratified analysis of PM10 in developed countries, with sample

sizes<100,000, showed I²= 0%, as did stratified analysis of NO2 in

cross-sectional studies.

3.5 Sensitivity analysis and publication bias

Sensitivity analysis, conducted by excluding one study at a

time, indicated that the results for most air pollutants were

stable (Supplementary Figure S1). Publication bias tests were not

conducted for exposures with fewer than 10 studies. Visual

inspection of the funnel plot for PM2.5 indicated no significant
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TABLE 5 Association between exposure to NO2 and risk of NAFLD by subgroup analysis.

Subgroups Categories No. of studies OR,95%CI I2 (%) P values within subgroups

Study design Cross-sectional 3 1.04 (1.03, 1.04) 0.0 <0.001

Cohort 5 1.16 (1.06, 1.28) 93.8 0.002

Sample size <100,000 4 1.12 (0.97, 1.29) 78.7 0.110

>100,000 4 1.01 (1.04, 1.17) 96.5 <0.001

Economic level Developed countries 3 1.16 (1.03, 1.30) 44.3 0.016

Developing countries 5 1.07 (1.04, 1.11) 90.6 <0.001

Geographic area Asia 4 1.04 (1.02, 1.07) 78.0 <0.001

Europe 3 1.18 (1.13, 1.23) 40.8 <0.001

Outcome NAFLD 5 1.12 (1.02, 1.24) 95.3 0.015

MAFLD 2 1.14 (0.92, 1.41) 92.2 0.229

FIGURE 5

Funnel plot of the association between PM2.5 exposure (per 10

µg/m3 increment) and risk of NAFLD.

publication bias (Figure 5). Additionally, Egger’s regression test (P

= 0.069) supported the absence of publication bias.

4 Discussion

Based on 12 studies involving 49,549,903 participants, the

results indicate that exposure to air pollutants, including PM2.5,

PM2.5−10, PM10, SO2, NO2, O3, and CO, correlates with an

increased risk of NAFLD. However, considerable heterogeneity

was observed across studies, with the associations for PM2.5−10

and SO2 not reaching statistical significance. Subgroup and

sensitivity analyses supported these overall findings, with consistent

associations observed across most subgroups.

A prior meta-analysis by He et al. reported that PM2.5, NOx,

PM10, and PM2.5−10 elevate NAFLD risk, while suggesting a

protective role for O3 (24). That review, however, was limited

to a subset of earlier studies on air pollution and MAFLD risk,

introducing potential selection bias. In addition, the meta-analysis

did not normalize effect sizes to the same increments across studies.

In contrast, this work involved an exhaustive review of research

linking air pollution to NAFLD, MAFLD, or MASLD, included

several recent, large-sample, high-quality studies, and standardized

effect sizes to 10 µg/m3 increments. Therefore, this research has

more advantages in timeliness and comparability. In addition,

instead of including the cross-sectional study by Guo et al. (41),

the same sample, the latest cohort study by Han et al. (25), was

chosen, which contributes to the reliability of causal inference.

Notably, unlike the results from He et al., no significant association

was found between O3 and NAFLD. Stronger associations were

observed between PM2.5, PM10, NO2, and NAFLD in developed

countries, particularly in Europe, and in cohort studies.

Subgroup analysis indicated a stronger association between

PM2.5, PM10, and NO2 with NAFLD in cohort studies, which

offer greater reliability for inferring correlation compared to cross-

sectional studies. Additionally, a more pronounced and statistically

significant association was found for PM2.5 in women over 50%.

This may be linked to sex-specific differences in susceptibility

to air pollution, as previous studies have suggested women may

have a higher susceptibility to respiratory and cardiovascular issues

related to PM2.5 exposure (42, 43). Furthermore, estrogen has

been shown to regulate liver lipid metabolism, potentially offering

protective effects in women (44–47). The decline in estrogen levels

post-menopause may increase susceptibility to NAFLD in women

exposed to air pollution, contributing to the observed gender

differences. Gender differences in NAFLD risk may, therefore

contribute to heterogeneity in the results. Regional variations

were also evident, with stronger associations found in studies

from developed countries, particularly Europe, for PM2.5 and

NO2, possibly reflecting economic and environmental influences—

though limited study numbers constrain broader conclusions.

In stratified analysis comparing NAFLD and MAFLD

outcomes, no significant differences were observed regarding their

associations with PM2.5, PM10, and NO2. Notably, a study by the

European LITMUS “Liver Investigation: Testing Marker Utility in

Steatohepatitis” Consortium found that 98% of NAFLD cases met

the MASLD criteria (29), and data from Song et al. indicated that

most NAFLD patients met the metabolic criteria for MAFLD and

MASLD (48). This suggests that findings for NAFLD are applicable

under both the MAFLD and MASLD definitions.
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The mechanisms by which air pollution contributes to

NAFLD remain incompletely understood, though animal studies

offer valuable insights. Chronic exposure to PM2.5 has been

demonstrated to cause liver inflammation, oxidative stress, and

insulin resistance, which are pivotal factors in the pathogenesis

of NAFLD (49–52). Experimental studies also suggest that PM2.5

disrupts liver glycogen storage, causes glucose intolerance, and

contributes to non-alcoholic steatohepatitis (53, 54). Furthermore,

PM2.5 exposure activates hepatic stellate cells, promoting liver

fibrosis (55, 56). NO2 and O3 exposure may also impair lipid

metabolism and trigger insulin resistance, potentially exacerbating

NAFLD risk (57–59). However, this analysis did not show a

significant correlation between O3 and NAFLD, possibly due

to differences in species, exposure levels, or study design. The

effects of SO2 and CO on NAFLD remain unclear and warrant

further research.

Given the global health burden of air pollution and rising

NAFLD prevalence, our findings highlight the urgent need for

improved air quality, which may help prevent NAFLD and

other related non-communicable diseases, like cardiovascular and

respiratory conditions (60, 61).

This study has several limitations. First, methodological and

clinical heterogeneity was observed due to variations in confounder

adjustment and study designs. Although subgroup analyses were

conducted to explore potential sources of heterogeneity, the limited

number of studies restricted a comprehensive identification of

contributing factors. Second, the analysis focused on individual

pollutants, despite the potential for combined effects of air

pollutants on health outcomes. The complexity of joint effects

and the scarcity of relevant studies precluded their inclusion in

this meta-analysis. Third, the included studies did not consistently

stratify NAFLD by severity (e.g., simple steatosis vs. non-alcoholic

steatohepatitis or fibrosis), limiting the ability to assess the impact

of air pollution on non-reversible forms of the disease. Future

studies stratifying outcomes by NAFLD severity could reduce

heterogeneity and provide clearer insights into the role of air

pollution. Finally, given the heterogeneity and limited number

of studies for certain pollutants, caution is warranted when

interpreting the findings. Larger-scale cohort studies are needed to

validate these results and further elucidate the relationship between

air pollution and NAFLD risk.

5 Conclusion

This meta-analysis provides evidence that exposure to air

pollutants, particularly PM2.5, PM10, and NO2, is associated with

an increased risk of NAFLD. These findings underscore the

importance of improving air quality to mitigate the burden of

NAFLD and related diseases. However, it remains to be determined

whether air pollutants directly target the liver or contribute to

NAFLD by aggravating obesity and insulin resistance in air-

polluted environments. Future research should focus on large-

scale, longitudinal cohort studies that stratify NAFLD by severity,

evaluate the combined effects of multiple air pollutants, and explore

underlying biological mechanisms.
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