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Adolescent health has become a critical dimension in the digital era, as

social media platforms emerge as vital sources of real-time behavioral data

for informing sustainable and equitable public health strategies. However,

conventional topic modeling methods often struggle with the semantic sparsity

and noise inherent in short-form texts. The study proposes BERTopic_Teen, an

enhanced topic modeling framework optimized for adolescent health-related

tweets. The model incorporates three key innovations: a Popularity Deviation

Regularizer (PDR) to suppress high-frequency generic terms and amplify

domain-specific vocabulary; a Dynamic Document Embedding Optimizer

(DDEO) that adaptively selects optimal UMAP dimensions based on silhouette

scores; and a Probabilistic Reassignment Matrix (PRM) to reassign outlier

documents to relevant topic clusters. Using a dataset of 64,441 tweets

(61,039 successfully classified), experimental results show that BERTopic_Teen

outperforms LDA, NMF, Top2Vec, and the original BERTopic in all key

evaluation metrics. It achieves a 16.1% improvement in topic coherence

(NPMI = 0.2184), higher topic diversity (TD = 0.9935), and lower perplexity

(1.7214), indicating superior semantic clarity, topic distinctiveness, and modeling

stability. These findings suggest that BERTopic_Teen o�ers a robust solution

for extracting meaningful topics from social media data and advancing public

health surveillance.
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1 Introduction

Adolescent health is an important indicator of a country’s and society’s overall

development, and the dynamic interactions between their physiological, psychological,

and behavioral characteristics directly impact the effectiveness of public health systems

(1). According to the United Nations population statistics, the global youth population

aged 15–24 has reached 1.2 billion, and it is projected to increase to 1.3 billion

by 2030 (2). In the context of digitization and globalization, adolescent health faces

multifaceted challenges: increased social media usage leading to disrupted sleep cycles

(an average reduction of 0.8 h per day) (3), changes in dietary patterns contributing to

an increased risk of metabolic syndrome (OR = 1.32) (4), and a significant rise in the

detection of anxiety symptoms during the COVID-19 pandemic (from 12.9 to 25.6%) (5).
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These phenomena urgently require data analysis to reveal their

spatiotemporal evolution patterns, providing a scientific basis for

the formulation of long-term, sustainable public health policies.

With the advent of the digital age, the unprecedented

availability of massive data and the concurrent advancement

in computational capabilities have fundamentally reshaped the

paradigms of social science research (6). The aggregation of

large-scale data captures the digital footprints of individuals

and collectives, offering new opportunities to uncover patterns

in human behavior (7). Among these sources, social media

platforms have emerged as indispensable tools, particularly in

research on adolescent health, psychological wellbeing, and

behavioral trends, as they provide real-time, large-scale, and

behaviorally rich datasets. Twitter alone generates ∼500 million

tweets daily, with a significant portion involving health-related

content (8, 9). Compared to traditional epidemiological surveys

with response rates around 58% (10), social media data enable

high-frequency updates and real-time monitoring of collective

dynamics (11). However, their unstructured nature, especially

the dominance of short texts (over 70%), poses significant

challenges for topic modeling (12). BERTopic (13), which leverages

semantic embeddings from pre-trained languagemodels along with

Uniform Manifold Approximation and Projection (UMAP) for

dimensionality reduction, is compatible with multiple clustering

algorithms, such as HDBSCAN, and offers a flexible framework

for extracting evolving topics from such data. However, it faces

three key limitations in health-related applications: (1) fixedUMAP

dimensions may limit its ability to capture the full complexity of the

data (14); (2) high-frequency general terms (e.g., “health,” “teen”)

compromise topic specificity (15); and (3) HDBSCAN discards

outlier data during the clustering process (16), potentially missing

critical early signals of emerging health events.

Although big data analytics, particularly in the areas of

machine learning and natural language processing (NLP), holds

significant potential for applications in the social sciences, current

discussions remain largely focused on theoretical critique and

conceptual exploration, with relatively little emphasis on practical

implementation. While big data methods can uncover novel

patterns in social phenomena, effectively interpreting these patterns

and translating them into actionable research outcomes continues

to pose a major challenge for the academic community. As NLP

technologies rapidly advance, the emergence of new modeling

algorithms has further increased the complexity of analytical

processes. At the same time, these developments have introduced

new strategies for selecting and applying diverse analytical

approaches. Consequently, in domains such as adolescent health

and social media research, a pressing question emerges: how

can these advanced techniques be leveraged to accurately capture

health-related discourse on social media and reveal its dynamic

patterns of change?

To enhance the precision of health-related topic analysis,

this study proposes BERTopic_Teen, an improved version of

the BERTopic framework, incorporating the following three

computational optimizations:

(1) Popularity Deviation Regularizer (PDR). To suppress

high-frequency generic terms, we apply an exponential

decay based on term rank, reducing their weights while

highlighting domain-specific vocabulary.

(2) Dynamic Document Embedding Optimizer (DDEO).

Adapts the dimensionality of UMAP based on the

maximization of the silhouette score, selecting an optimal

dimension between two and 40.

(3) Probabilistic Reassignment Matrix (PRM). Reallocates

outlier documents to their nearest topic clusters using cosine

similarity, with a threshold of P > 0.15.

Empirical analysis based on 64,441 adolescent health-related

tweets (of which 61,039 were successfully classified) demonstrates

that the improved BERTopic_Teen model outperforms the original

BERTopic across all evaluation metrics. Specifically, it achieves

a 16.1% improvement in topic coherence (NPMI = 0.2184 vs.

0.1882), higher topic diversity (TD = 0.9935), indicating more

distinct and non-overlapping topics, and a significantly lower

perplexity (1.7214 vs. 2.0580), suggesting enhanced model stability

and better overall fit.

2 Literature review

2.1 Social media analysis of health topics

Social media data have emerged as a vital resource for public

health research, offering high temporal resolution and the ability to

reflect collective behavior in real time, thereby providing a valuable

complement to traditional epidemiological approaches (17, 18).

By analyzing text content from platforms such as Twitter and

Facebook, researchers can track the dissemination of health topics,

fluctuations in public sentiment, and the immediate effects of policy

interventions (19).

Compared to conventional data sources like surveys, clinical

records, and government statistics, social media offer shorter

data collection cycles and broader population coverage. This

is particularly advantageous for adolescent populations, where

privacy concerns and low participation rates often result in survey

response rates below 58% (20), making it difficult to capture

sensitive behaviors such as internet addiction or disordered eating.

Moreover, public health emergencies like the COVID-19 pandemic

have highlighted the limitations of traditional monitoring systems

in terms of response speed and real-time adaptability (21).

Twitter alone produces∼500 million tweets per day, with 7.3%

related to health content. Rich metadata, such as timestamps and

geolocation, make these data suitable for analyzing spatiotemporal

health trends. Previous studies have demonstrated the potential

of social media in early warning systems; for example, Hswen

et al. (22) detected a vaping-related lung disease outbreak in

2021 3 weeks earlier than traditional surveillance systems. Social

media data have also been used to track public attitudes toward

health policies, such as the geographic diffusion of vaccine

acceptance (23).

Health-related tweets often exhibit informal characteristics,

such as abbreviations, slang, and emojis, which pose challenges for

natural language processing (NLP) techniques (24). Additionally,

prior studies have shown that tweets are typically concise, with
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limited word counts compared to formal text sources (25), which

can exacerbate semantic sparsity and reduce topic modeling

accuracy. Deep learning approaches have partially mitigated these

issues. For instance, BERTopic reduces the number of irrelevant

topic words compared to traditional models by leveraging

contextual semantic embeddings, which improve the semantic

coherence of generated topics (26), and Gaur et al. (27) applied

attention mechanisms to achieve 89% topic relevance in mental

health tweet analysis. However, most existing methods still struggle

with filtering high-frequency noise terms and identifying long-

tail domain-specific terms, lacking effective strategies to balance

the two.

2.2 Advances in topic modeling techniques

Topic modeling has evolved significantly in recent years,

with a methodological transition from early statistical approaches

to deep learning-based techniques. The core objective remains

the same: uncovering latent semantic structures in text through

unsupervised learning. Based on their underlying methodologies,

existing topic modeling approaches can be broadly categorized

into probabilistic models, matrix factorization methods, and neural

or embedding-based techniques. these categories exhibit distinct

strengths in terms of semantic representation, interpretability, and

computational efficiency.

Traditional topic modeling was initially dominated by early

statistical approaches, such as Latent Dirichlet Allocation (LDA)

(28) and Non-negative Matrix Factorization (NMF) (29). LDA

models a three-layer probabilistic structure, including document,

topic, and word, assuming that each document is generated from

a mixture of latent topics, each represented by a distribution over

words. In contrast, NMF factorizes the document-word matrix into

two non-negative matrices representing document-topic and topic-

word relationships. Although these methods perform robustly

on long-form texts, they rely on the “bag-of-words” assumption,

neglect contextual semantics and requiring the number of topics to

be predefined (30).

With the rise of deep learning, Neural Topic Models (NTMs)

have attracted increasing attention. Tu et al. (31) were among the

first to incorporate Variational Autoencoders (VAEs) into topic

modeling, proposing an end-to-end framework to learn latent

topic distributions. Dieng et al. (32) extended this line of research

by introducing Embedding Topic Models (ETM), which integrate

word embeddings to enhance topic coherence and interpretability,

but at the cost of higher computational complexity and longer

training times due to their reliance on neural variational inference.

They continue to rely on manually preset topic numbers, which

limits their applicability in dynamic health-related topic detection.

More recently, topic modeling methods that combine pre-

trained language models with clustering algorithms have achieved

notable progress. A representative example is BERTopic, which

employs a four-stage process for efficient topic extraction by

generating contextualized document embeddings using models

such as BERT, applying UMAP for dimensionality reduction, and

clustering documents using HDBSCAN (a density-based method

selected in this study), followed by extracting topic keywords via

class-based TF-IDF (c-TF-IDF) weighting.

TABLE 1 Keyword list for adolescent health topic.

Keywords

“Teen health,” “adolescent mental health,” “youth health education,” “adolescent

health”

2.3 Contributions of this study

As summarized from prior analysis (14–16), this study

addresses three main limitations of the original BERTopic model

by introducing the following modular enhancements:

(1) Popularity Deviation Regularizer (PDR). Applies

exponential decay to penalize high-frequency generic

terms and upweights domain-specific vocabulary to

improve topic distinctiveness.

(2) Dynamic Document Embedding Optimizer (DDEO).

Selects optimal UMAP dimensions based on silhouette

scores to minimize semantic information loss during

dimensionality reduction.

(3) Probabilistic Reassignment Matrix (PRM). Reassigns

HDBSCAN-identified outliers to the most semantically

similar topic clusters using a soft clustering approach.

3 Data and methods

3.1 Data collection and preprocessing

The study collected tweets related to “adolescent health” using

the official Twitter API v2. The retrieval keywords are listed in

Table 1. The data spans the period from January 1, 2018, to

December 31, 2024, resulting in a total of 64,441 original tweets.

The data preprocessing procedure involved the following steps:

Stopword Removal. Common high-frequency terms unrelated

to semantic content, such as “and” and “the,” were removed using

the default English stopword dictionary provided by the NLTK

library (33).

T′ = T\{w | w ∈ StopWords} (1)

where T represents the original word set of the tweet, and T
′

denotes the set after stopword removal.

Deduplication. To eliminate potential duplicate tweets, we used

hash matching and cosine similarity between sentence embeddings

generated via the Sentence-BERT model from the sentence-

transformers library.

Sim(ti, tj ) < ǫ H⇒ retain ti (2)

where Sim() denotes the similarity function between two texts, and

ǫ is the similarity threshold.

Emoji and URL Filtering. Regular expressions (Regex) were

used to detect and remove noisy content such as emojis and

hyperlinks. Unicode ranges corresponding to emojis were replaced

with empty characters, and strings beginning with “http(s)://” or

“www” were identified and removed as external links. As shown in

Table 2, an example of tweet content before and after preprocessing

is provided.
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TABLE 2 Example of tweet content before and after preprocessing.

Type Tweet content

Original @Aaron_GDAC Excited for you! I’ll be working

on more portraits and training as a child and

adolescent mental health coach!

After preprocessing aaron_gdac excited working portrait training child

amp adolescent mental health coach

3.2 BERTopic model

BERTopic is a topic modeling method based on the pre-trained

language model BERT (Bidirectional Encoder Representations

from Transformers), designed to identify and analyze latent topics

within large-scale text corpora. Its core workflow consists of

four stages.

3.2.1 Text embedding
The model uses the paraphrase-multilingual-MiniLM-L12-v2

embedding model to convert textual input into embedding vectors

(34). An embedding vector refers to a dense, low-dimensional

representation of input data, such as text, images, or categorical

features, generated by an embedding function that maps complex,

high-dimensional, or sparse inputs into a continuous vector

space. This transformation produces high-dimensional semantic

representations, which are then reduced using UMAP to mitigate

the “curse of dimensionality” and improve clustering efficiency.

Specifically, let a text T = {w1,w2, . . . ,wn} consist of n tokens,

where each token wi is associated with a BERT embedding vector

vi. The overall embedding representation of the text, denoted as vT ,

is calculated as the average of all token embeddings:

vT =
1

n

n
∑

i=1

vi (3)

where vT represents the embedding of text T, and vi is the BERT

embedding vector of token wi.

3.2.2 Text dimensionality reduction
This study employs the UMAP algorithm to reduce the

dimensionality of BERT-derived embeddings. UMAP can preserve

both local and global structures in high-dimensional data:

v
′
T = UMAP(vT) (4)

Where v
′
T denotes the low-dimensional embedding vector of the

input text after dimensionality reduction.

3.2.3 Text clustering
To cluster semantically similar documents, we adopted the

HDBSCAN (Hierarchical Density-Based Spatial Clustering of

Applications with Noise) algorithm, which is particularly effective

for high-dimensional, sparse, and noisy data such as short-form

tweets. HDBSCAN constructs a hierarchical clustering based on

density estimation and selects the most stable clusters, offering two

key advantages over traditional algorithms like K-Means: it does

not require a predefined number of clusters, and it robustly handles

outliers by assigning low-density points to noise.

The clustering process includes the following steps:

(1) Mutual Reachability Distance. For any two points xi and xj,

their mutual reachability distance is defined as:

dmreach

(

xi, xj
)

= max
(

core (xi) , core
(

xj
)

, d
(

xi, xj
))

(5)

Where d
(

xi, xj
)

is the Euclidean distance between the

two points, and core (xi) is the distance from xi to its farthest

neighbor among the k nearest neighbors, with k defined by

the MinSamples parameter.

(2) Graph Construction and Clustering. A weighted graph is

built where edge weights equal the mutual reachability

distances. HDBSCAN then constructs a minimum spanning

tree and derives a hierarchical clustering. Cluster stability

S (C) is computed as:

S (C) =
∑

(i,j)∈C

(λbirth (C) − λdeath (C)) (6)

Where λbirth (C) and λdeath (C) represent the threshold

distances at which the cluster emerges and dissolves.

(3) Outlier Detection. Data points that fail to meet minimum

density criteria are labeled as noise. Outlier likelihood is

estimated based on core distance:

OutlierScore (xi) =
Core Distance (xi)

Mean Core Distance of Cluster
(7)

A higher score indicates a higher probability of being

an outlier.

(4) Final Cluster Assignment. Points are assigned to clusters

{C1,C2, . . . ,Ck}, or to a noise cluster Cnoise, according to:

ClusterLabel (xi) =

{

Ck if xi ∈ Ck

−1 if xi ∈ Cnoise
(8)

3.2.4 Topic representation
To extract representative keywords for each topic, we adopted

class-based TF-IDF (c-TF-IDF), which highlights terms that are

frequent within a topic but rare across others. The relevance of each

word wi in topic tj is calculated by:

c− TF − IDF
(

wi, tj
)

=
TF

(

wi, tj
)

∑

i TF
(

wi, tj
) × log

N
∑

d∈D I
(

wi, d
) (9)

In addition, to extract the most representative topic keywords,

the Maximal Marginal Relevance (MMR) method is applied to

promote term diversity and avoid redundancy:

MMR (wi) = λ · Sim
(

wi, q
)

− (1− λ) ·max
wj∈S

Sim
(

wi,wj

)

(10)

The structure of the BERTopic model is shown in Figure 1.
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FIGURE 1

The architecture of the BERTopic framework.

3.3 Improved BERTopic framework

3.3.1 Popularity deviation regularizer (PDR)
High-frequency generic terms in health-related tweets (e.g.,

“health,” “teen”) often lead to topic homogeneity. To mitigate

this issue, the Popularity Deviation Regularizer (PDR) employs a

twofold mechanism:

(1) Exponential Decay Weighting. An exponential penalty is

applied to the top 10% of high-frequency terms based on

their frequency rank:

w (t) = TF− IDF (t) × e−α·rank(t) (11)

Where α = 0.05, and rank (t) denotes the frequency rank

of term t (with the most frequent term ranked as 1).

(2) Domain Dictionary Enhancement. Terms included in the

adolescent health vocabulary (see Table 3), such as “bullying”

and “disorder,” are upweighted by a factor of 1.5 to

emphasize domain-specific semantics.

3.3.2 Dynamic document embedding optimizer
(DDEO)

To address the instability in semantic information retention

during the UMAP dimensionality reduction process, this study

introduces the DDEO. The goal is to adaptively determine the

optimal UMAP dimensionality to improve topic modeling quality.

The DDEO process involves the following steps:

(1) Dimension Range Setting. The UMAP output dimension d is

predefined within the range d ∈ [2, , 40], which covers typical

semantic representation requirements for textual embeddings.

(2) Silhouette Score Evaluation. For each candidate dimension

d, the silhouette score S
(

d
)

is calculated based on the

clustering result:

S
(

d
)

=
1

N

N
∑

i=1

b (xi) − a (xi)

max{a (xi) , b (xi)}
(12)

TABLE 3 The adolescent health vocabulary.

Keywords

Sleep, stress, depression, anxiety, nutrition, bullying, self-harm, substance,

screen, cyber, mental health, wellbeing, addiction, mindfulness, exercise, suicide,

therapy, meditation, resilience, counseling, psychology, social media, selfcare,

trauma, emotion, diagnosis, insomnia, disorder, coping, psychotherapy

where a (xi) is the average intra-cluster distance for sample

xi, and b (xi) is the smallest average distance from xi to any

other cluster.

(3) Optimal Dimension Selection. The dimension that

maximizes the silhouette score is selected as the optimal

UMAP parameter.

3.3.3 Probabilistic reassignment matrix (PRM)
Let T = {t1, t2, ..., tM} be the set of M topic clusters,

and N be the total number of documents. For any

document di, the probability P
(

di, tj
)

represents the

likelihood of dj belonging to topic tj, calculated based

on the semantic relationship between the document and

the topic. To handle outliers discarded by HDBSCAN,

the PRM reallocates them using soft clustering via

semantic similarity:

(1) Document–Topic Probability Matrix Construction. Each

document di is associated with a probability distribution

over topics:

P
(

di
)

=
[

P
(

di, t1
)

, P
(

di, t2
)

, . . . , P
(

di, tM
)]

(13)

Where
∑M

j=1 P
(

di, tj
)

= 1, indicating the distribution of

the document across all topics.

(2) Topic Probability Estimation. For each document,

the conditional probability of belonging to topic tj is
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FIGURE 2

The architecture of the BERTopic_Teen framework.

estimated using a softmax function over the mutual

reachability distances:

P
(

tj|di
)

=
exp

(

−dmreach

(

di, tj
))

∑M
k=1 exp

(

−dmreach

(

di, tk
))

(14)

Where dmreach

(

di, tj
)

denotes the semantic distance

between document di and topic tj. This ensures the resulting

probabilities sum to 1.

(3) Topic Assignment Update. After constructing the

probability matrix, documents, particularly outliers, are

no longer hard-assigned to a single cluster. Instead, each

document is associated with a full probability distribution

across all topics, enhancing topic coverage and representation.

The structure of the BERTopic_Teen model (BERTopic with

PDR, DDEO, and PRMmodules) is shown in Figure 2.

3.4 Comparative experiment design

3.4.1 Baseline models
The study compares the proposed model with four

representative topic modeling approaches.

(1) Latent Dirichlet Allocation (LDA). A probabilistic generative

model that assumes each document is generated from a

mixture of latent topics. The number of topics must be

predefined. The generative process is represented as:

P (w|θ ,φ) =
D

∏

d=1

Nd
∏

n=1

K
∑

k=1

θdkφk,wdn
(15)

where w denotes the words in documents, θdk is the topic

distribution for document d, φk,wdn
is the word distribution

for topic k, D is the total number of documents, and Nd is the

number of words in document d.

(2) Non-negative Matrix Factorization (NMF). Decomposes the

document-word matrix V into the product of a document-

topic matrix W and a topic-word matrix H, with the number

of topics set to K = 20. The objective is to minimize

reconstruction error:

min
W,H

‖ V −WH ‖2F (16)

where ‖ · ‖2F denotes the Frobenius norm.

(3) Top2Vec (35). A joint embedding and hierarchical clustering

model that automatically infers the number of topics. It uses

the Universal Sentence Encoder for document embedding and

does not require predefining the number of topics (36).

(4) Original BERTopic Model. This BERT-based topic modeling

method integrates BERT-derived embeddings, UMAP for

dimensionality reduction (n_neighbors = 30, n_components

= 5, metric = “cosine”), and HDBSCAN for clustering

(min_cluster_size= 100, metric= “euclidean”).
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TABLE 4 Performance impact of PDR on BERTopic.

Model Evaluation metrics Score

BERTopic Lexical diversity 0.3381

BERTopic_PDR 0.4643

BERTopic Cosine similarity 0.7336

BERTopic_PDR 0.6195

Reduction ratio 0.1542

Boosting rate 1.7628

3.4.2 Performance metrics for individual modules
To assess the effectiveness of the three proposed modules,

Popularity Deviation Regularizer (PDR), Dynamic Document

Embedding Optimizer (DDEO), and Probabilistic Reassignment

Matrix (PRM), we employed four evaluation metrics, each selected

to align with the specific objective of its corresponding module.

(1) Lexical Diversity (LD). Used to measure the uniqueness of

keywords within each topic. A higher LD indicates reduced

redundancy among top words, reflecting the PDR module’s

ability to suppress generic terms and enhance semantic

specificity. LD was computed using basic set operations and

token counting functions from Python’s built-in libraries

and NumPy.

(2) Cosine Similarity (CS). Applied to PDR as well, CS quantifies

the semantic proximity between document embeddings and

their assigned topic centroids. A lower CS score after

regularization suggests reduced embedding homogenization

caused by frequent terms. The cosine similarity was calculated

using the cosine_similarity function from scikit-learn.

(3) Silhouette Coefficient (SC). Used to evaluate DDEO’s impact

on clustering structure. SC measures the cohesion and

separation of clusters, with values closer to one indicating

better-defined topic boundaries in the reduced embedding

space. SC was computed using silhouette_score from scikit-

learn.

(4) Outlier Rate (OR). Used to evaluate PRM. OR reflects the

proportion of tweets labeled as noise (i.e., not assigned to

any topic) during clustering. A lower OR after applying PRM

indicates improved document retention and topic coverage.

3.4.3 Overall topic modeling evaluation metrics
To assess the effectiveness of the proposed topic modeling

methods, we used the following standard evaluation metrics:

(1) Normalized Pointwise Mutual Information (NPMI).

Evaluates semantic coherence bymeasuring the co-occurrence

of top words within each topic. Higher values indicate

stronger internal consistency. Computed using the Palmetto

coherence library.

(2) Topic Diversity (TD). Measures the uniqueness of keywords

across topics. A higher score suggests that different topics are

well-separated and exhibit less keyword overlap. Calculated

using custom Python scripts based on set operations.

(3) Perplexity. Reflects themodel’s ability to predict unseen data.

Although more suited for probabilistic models (e.g., LDA), it

was included here for comparative purposes and computed

using Gensim’s perplexity scoring method.

4 Results

4.1 Model comparison

4.1.1 Validation of key innovations
To evaluate the contributions of the three proposed modules,

namely Popularity Deviation Regularizer (PDR), Dynamic

Document Embedding Optimizer (DDEO), and Probabilistic

Reassignment Matrix (PRM), we conducted ablation experiments

on each component within the BERTopic framework.

To evaluate the effectiveness of the three proposed modules,

we used the following metrics aligned with each module’s design

objective: Lexical Diversity (LD) and Cosine Similarity (CS) for

PDR, Silhouette Score (SC) for DDEO, and Outlier Rate (OR)

for PRM. These metrics, respectively capture improvements in

semantic richness, embedding structure, clustering quality, and

document retention.

As shown in Table 4, in terms of lexical diversity,

BERTopic_PDR achieved a score of 0.4643, significantly higher

than the original BERTopic model (0.3381), indicating that

PDR effectively suppressed high-frequency generic terms while

enhancing the weight of domain-specific vocabulary, resulting in a

more balanced lexical distribution across documents.

In terms of cosine similarity, BERTopic_PDR recorded a

score of 0.6195, which is 0.1141 lower than the original model’s

0.7336. This reduction suggests that PDR diminished the influence

of redundant high-frequency words and improved inter-topic

separability, thereby enhancing semantic clarity and overall

model interpretability.

Furthermore, the reduction ratio for high-frequency terms

reached 0.1542, and the boosting rate for domain-specific termswas

1.7628, further validating that PDR successfully reduced irrelevant

lexical noise while amplifying topic-relevant terminology critical to

the target domain.

Experimental results in Figure 3 demonstrate that the Dynamic

Document Embedding Optimizer (DDEO) has a significant impact

on topic modeling performance across different UMAP dimensions

(n_components). When n_components = 2, the Silhouette Score

(SC) was only −0.6309, indicating poor clustering performance

due to excessively low dimensionality, which failed to effectively

separate topics.

As the dimensionality increased from 2 to 40, the SC values

initially rose, reflecting improved topic separability, and peaked at

0.6180 when n_components = 13. Beyond this point, performance

leveled off or slightly declined, indicating that an embedding with

13 dimensions offered the best trade-off between topic cohesion

and semantic richness.

However, further increasing the dimensionality led to a decline

in performance, as the SC dropped to 0.6071, 0.5992, and 0.5681

at n_components = 16, 18, and 19, respectively. This suggests
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FIGURE 3

Optimization of UMAP dimensions in DDEO based on silhouette score.

TABLE 5 E�ect of min_cluster_size on topic count and outlier rate.

min_cluster_size Number
of topics

Outlier
count

Outlier
rate

30 325 4,296 6.67%

50 175 9,021 14.01%

100 50 17,670 27.43%

200 36 24,883 39.63%

300 23 29,302 45.50%

TABLE 6 Outlier rate comparison between BERTopic and BERTopic_PRM.

Model OR

BERTopic 17,670 (27.43%)

BERTopic_PRM 3,368 (5.23%)

that overly high dimensionality may introduce noise and reduce

topic clarity. Therefore, DDEO proves effective in improving topic

coherence and distinctiveness by adaptively selecting the optimal

embedding dimension within the BERTopic framework.

To determine an appropriate value for the min_cluster_size

parameter inHDBSCAN, we conducted baseline experiments using

the standard BERTopic framework under five candidate settings:

30, 50, 100, 200, and 300. As shown in Table 5, smaller values (e.g.,

30 or 50) produced an excessive number of fragmented topics,

many of which lacked semantic cohesion or interpretability. On the

other hand, larger values (e.g., 200 or 300) led to fewer topics but a

significantly higher Outlier Rate (OR), indicating many tweets were

discarded during clustering. A value of 100 was selected as a balance

point, yielding a manageable number of coherent topics with an

acceptable OR.

In this study, given the large dataset size (a total of 64,407

tweets), the HDBSCAN clustering algorithm was configured with

min_cluster_size = 100, meaning that a group of documents

is considered a valid cluster only if at least 100 samples share

similar embedding characteristics. Documents that fail to meet

this condition are labeled as outliers, resulting in a relatively high

Outlier Rate (OR).

Without applying the Probabilistic Reassignment Matrix

(PRM), the OR reached 27.43% (see Table 6), indicating that

a substantial portion of documents was discarded due to the

strict hard clustering criteria of HDBSCAN. To address this,

PRM targets only those documents initially labeled as outliers by

HDBSCAN (i.e., assigned label−1) and reassigns them to the most

semantically relevant topics based on embedding similarity to topic

centroids. This mechanism not only preserves documents with

potentially meaningful content that were previously discarded, but

also enhances topic coverage and coherence, especially for weak or

emerging themes that may be underrepresented in hard clustering.

Experimental results show that after applying PRM, the OR

significantly decreased to 5.23%, corresponding to 3,368 outlier

documents. This means that∼80% of the outliers were successfully

reassigned to appropriate topic clusters. These findings confirm

that PRM effectively reduces invalid outlier assignments and

preserves the semantic integrity of the corpus. The adjustment

not only lowers the outlier rate but also improves overall topic

coherence and interpretability.
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TABLE 7 Ablation experiment results.

ID Modules Evaluation metrics

PDR DDEO PRM NPMI TD Perplexity

1 × × × 0.1882 0.9867 2.0580

2
√

× × 0.2013 0.9917 2.0281

3 ×
√

× 0.1627 0.9816 1.6084

4 × ×
√

0.1882 0.9867 2.0580

5
√ √

× 0.1531 0.9813 1.6698

6
√

×
√

0.2013 0.9917 2.0281

7 ×
√ √

0.1627 0.9816 1.6084

8
√ √ √

0.2184 0.9935 1.7214

“×”: this policy is not used; “
√
”: this policy is used.

TABLE 8 Performance of LDA under varying topic numbers.

Number of
topics

Evaluation metrics

NPMI TD Perplexity

30 −0.1931 0.9932 −15.8234

40 −0.1853 0.9786 −16.3923

50 −0.1775 0.9988 −16.9605

60 −0.1714 0.9674 −14.1953

70 −0.1652 0.9961 −17.4301

80 −0.0888 0.9495 −12.8715

90 −0.1047 0.9594 −13.425

100 −0.1426 0.9915 −18.0219

110 −0.121 0.951 −15.4753

120 −0.1256 0.9334 −16.8076

130 −0.1226 0.9708 −17.6233

140 −0.1364 0.9865 −18.2355

150 −0.1154 0.9861 −18.4568

160 −0.1513 0.9893 −20.9934

170 −0.1621 0.9821 −23.0595

180 −0.155 0.9771 −22.3537

190 −0.1577 0.9924 −24.5947

200 −0.0987 0.9804 −18.7721

4.1.2 Ablation study
To evaluate the individual contributions of the PDR, DDEO,

and PRM modules, eight experiments were performed to assess

the impact of each module on topic modeling performance.

The purpose of these experiments was to isolate the effect of

each module by evaluating various model configurations. The

performance of each model variant was assessed using three key

metrics: NPMI coherence, Topic Diversity (TD), and Perplexity.

The experimental results are summarized in Table 7.

The Topic Diversity (TD) scores in this study were generally

high, primarily due to the inherent independence among

TABLE 9 Performance of NMF under varying topic numbers.

Number of
topics

Evaluation metrics

NPMI TD Perplexity

30 0.1425 0.9732 2.1195

50 0.1691 0.9829 2.0003

70 0.1735 0.9784 1.9121

100 0.1668 0.9742 1.8547

150 0.1493 0.9654 1.7902

200 0.1315 0.9601 1.7453

subdomains within adolescent health topics. Areas such as mental

health, nutrition, screen use, school bullying, and addictive

behaviors exhibit clear semantic separation, resulting in minimal

keyword overlap. Consequently, the topic modeling process

naturally produced well-differentiated and non-overlapping topics,

contributing to high TD scores.

In Experiment 2, the PDR module significantly improved

both NPMI (0.2013 vs. 0.1882) and TD (0.9917 vs. 0.9867), while

slightly reducing Perplexity (2.0281 vs. 2.0580). These results

suggest that PDR enhances topic coherence and separability

by suppressing redundant high-frequency terms and reinforcing

domain-specific keywords.

The DDEO module, tested in Experiment 3, primarily

improved document embedding quality, leading to a substantial

reduction in Perplexity (1.6084 vs. 2.0580). However, its effect on

NPMI and TD was limited, and in some cases slightly negative,

indicating that while DDEO improves model stability, it has

minimal impact on keyword-level topic coherence.

The PRM module focuses on reducing invalid outlier

classifications. In Experiment 4, using PRM alone resulted inmetric

values identical to the baseline, confirming that PRM does not

directly affect NPMI or TD. However, in Experiment 7 (DDEO +
PRM), Perplexity reached its lowest value (1.6084), suggesting that

PRM, when supported by improved embeddings, further optimizes

topic assignment. Similarly, in Experiment 6 (PDR + PRM), PRM

preserved the performance gains of PDR in both NPMI and TD.

In Experiment 8, where PDR, DDEO, and PRM were

combined, the model achieved the best overall performance: NPMI

reached 0.2184, TD peaked at 0.9935, and Perplexity dropped to

1.7214. These results indicate that PRM plays a critical role in

reducing outlier noise and, when integrated with PDR and DDEO,

contributes to a more stable and higher-quality topic distribution.

4.1.3 Comparative study
To ensure a fair and comprehensive comparison, we conducted

additional experiments with LDA and NMF under varying topic

numbers. The results are presented in Tables 8, 9. The evaluation

results for LDA under varying topic numbers are presented in

Figure 4.

For LDA, at k = 70, the NPMI reached −0.1652, topic

diversity (TD) was at 0.9961, and perplexity was −17.4301.

Although increasing k further (e.g., 150) continued to
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FIGURE 4

Evaluation metrics of LDA under varying topic numbers.

reduce perplexity slightly, NPMI began to plateau, and

topic diversity fluctuated. These trends suggest that k = 70

provides the most suitable configuration, balancing semantic

coherence, model fit, and topic diversity effectively without

over-fragmentation. In contrast, NMF exhibited a peak in

coherence (NPMI = 0.1735) at k = 70, with stable perplexity

and acceptable topic diversity. Beyond this point, coherence

began to decline, indicating that the model was generating overly

fragmented topics.

Based on these observations, we selected k = 70 for LDA

and k = 70 for NMF as the most appropriate configurations for

our experiments.

In this experiment, we compared the topic modeling

performance of LDA, NMF, Top2Vec, BERTopic, and the proposed

BERTopic_Teen on the same dataset (results shown in Table 10),

using NPMI, Topic Diversity, and Perplexity as evaluation metrics.

It is worth noting that the compared models differ in

how the number of topics is determined. The BERT-based
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TABLE 10 Comparison experiments of di�erent models.

Model Number
of topics

Evaluation metrics

NPMI TD Perplexity

LDA 70 −0.1652 0.9961 −17.4301

NMF 70 0.1735 0.9784 1.9121

Top2Vec 396 −0.2111 0.8745 1.1793

BERTopic 50 0.1882 0.9867 2.0580

BERTopic_Teen 55 0.2184 0.9935 1.7214

models (BERTopic and BERTopic_Teen) as well as Top2Vec

adopt automatic topic number estimation. Specifically, Top2Vec

generated 396 topics, BERTopic produced 50, and BERTopic_Teen,

after additional optimization, produced 55 topics. In contrast, LDA

and NMF require a predefined number of topics. To ensure a fair

and rigorous comparison, we performed additional experiments by

tuning the number of topics for both LDA and NMF across a range

of values (30–200). Based on the evaluation metrics, we identified

the optimal configurations as LDA with 70 topics and NMF with

70 topics.

In terms of performance, BERTopic_Teen achieved the best

results on both NPMI (0.2184) and TD (0.9935), indicating an

effective balance between topic coherence and diversity. LDA, at

its optimal setting (70 topics), reached a balanced configuration

with a NPMI of −0.1652, a high topic diversity (TD = 0.9961),

and a relatively low perplexity (−17.4301). NMF, at 70 topics,

achieved stronger coherence (NPMI = 0.1735) and moderate

perplexity (1.9121), demonstrating balanced interpretability and

coherence. In contrast, Top2Vec, which generated a large number

of topics (396), had a lower TD (0.8745) and negative NPMI

(−0.2111), indicating weaker coherence and more fragmented

topic formation.

4.2 Summary of experimental results

This study compared five topic modeling methods,

namely LDA, NMF, Top2Vec, BERTopic, and the proposed

BERTopic_Teen, to evaluate their performance in analyzing

adolescent health-related data from social media. Experimental

results indicate that BERTopic_Teen outperforms all other models,

validating the effectiveness of the proposed optimization strategies:

PDR, DDEO, and PRM.

BERTopic_Teen achieved an NPMI score of 0.2184,

representing a 16.0% improvement over the original BERTopic

(0.1882), indicating enhanced semantic coherence among topic

keywords. In comparison, LDA (70 topics) and Top2Vec (396

topics) yielded negative NPMI scores (−0.1652 and −0.2111,

respectively), reflecting poor topic quality and a lack of meaningful

lexical associations in the short-text environment of social

media data.

The Topic Diversity (TD) score for BERTopic_Teen reached

0.9935, suggesting a well-balanced distribution of distinctive topics

with minimal keyword redundancy. This is consistent with the

diverse yet separable nature of adolescent health discussions, where

subdomains such as mental health, lifestyle behaviors, and digital

media are commonly discussed in isolation.

Regarding perplexity, BERTopic_Teen achieved a score of

1.7214, lower than the original BERTopic (2.0580) and NMF

(1.9121 at 70 topics), indicating more stable and confident

topic assignments. LDA (70 topics) achieved a well-balanced

configuration with a relatively low perplexity (−17.4301) and high

topic diversity (0.9961), suggesting effective topical separation.

This configuration also exhibited a more favorable NPMI score

of −0.1652 compared to higher topic settings, indicating better

semantic coherence. Top2Vec achieved the lowest perplexity

(1.1793), but generated 396 topics, which significantly reduced its

TD (0.8745), indicating overly fragmented topic distributions that

compromise interpretability. The behavior can be attributed to the

core mechanism of Top2Vec, which detects topic vectors based on

the clustering of document embeddings in a continuous semantic

space. While this approach does not require the number of topics

to be preset, it is highly sensitive to noise and lexical variation—

common characteristics in short-form, user-generated texts such

as tweets. Minor differences in spelling, grammar, or phrasing

can result in semantically similar content being split into multiple

clusters. Additionally, Top2Vec lacks post-processing procedures

to consolidate redundant topics or penalize generic terms, further

exacerbating topic overlap and reducing clarity.

To assess the computational feasibility of our proposed

approach, we recorded the approximate runtime required for

processing the full dataset of 64,407 tweets. All experiments

were conducted on a workstation equipped with an NVIDIA

RTX 3090 GPU and 128 GB of RAM. Using the complete

BERTopic_Teen pipeline—including the Popularity Deviation

Regularizer (PDR), Dynamic Document Embedding Optimizer

(DDEO), and Probabilistic Reassignment Matrix (PRM)—the end-

to-end process took ∼2.5 h. This includes document embedding

generation, dimensionality reduction via UMAP, HDBSCAN

clustering, and post-processing steps. While the model is more

computationally intensive than traditional methods such as LDA,

its performance benefits and modular structure make it feasible for

most academic or applied research settings.

5 Discussion

5.1 Topic overview

A total of 61,039 adolescent health-related tweets were

successfully classified, resulting in seven core thematic domains

covering a wide range of issues, including mental health, substance

use, and access to medical services. To improve interpretability,

topic labels were manually assigned based on both the top-ranked

keywords and representative tweets within each cluster. Two

researchers with backgrounds in public health and computational

social science independently proposed the labels, and any

discrepancies were resolved through discussion until consensus was

reached. The thematic distribution and corresponding subtopics

are presented in Figure 5 and Table 11.
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FIGURE 5

Tweet distribution across thematic dimensions.

To further enhance interpretability, word clouds were

generated for each of the identified topics based on their top-

ranked keywords. Figure 6 displays examples of these word clouds,

offering a visual summary of the semantic focus within each

thematic domain.

Public Health and Policy (25.476%) emerged as the most

prominent domain. Its visibility is largely driven by policy

implementation and region-specific health initiatives. For instance,

the topic “Youth Health Week” (5.498%) triggered a peak daily

tweet volume of over 1,200, fueled by online–offline integrated

activities such as health screenings and vaccination campaigns.

Regional topics like “Indian youth health” (1.751%) centered on

sharing practical experience in malaria prevention, highlighting the

health assistance needs of developing countries. Meanwhile, “The

Lancet Child Health Research” (3.268%) demonstrated viral spread

among parent communities.

Mental Health (20.185%) ranked second, presenting a mix

of traditional and emerging issues. While “Mental health of

adolescents” (7.446%) remains a central topic, discussions have

expanded from academic stress to digital generational conflicts.

Notably, “Autism and related research” (2.050%) surpassed

“ADHD” (1.337%) in volume for the first time. Many tweets

advocated for educational reform, such as a viral U.S. proposal to

mandate autism counselors in public schools, which was retweeted

over 320,000 times, reflecting an evolving societal awareness

of neurodiversity.

Medical Services and Resources (17.574%) revealed systemic

tensions in healthcare delivery. Tweets under “Mental health

services for adolescents” (4.305%) reported that 81% of cases faced

wait times exceeding 6 months. Discussions around “Adolescent

Psychiatry and Mental Health Services” (3.883%) focused on the

monopolization of private mental health resources. Meanwhile,

“Nurse profession andmental health services” (1.434%) highlighted

the positive role of frontline nurses in developing countries, with

86% of tweets praising their contributions to school-based mental

health screening.

5.2 Key drivers of attention di�erentiation

Public health policies played a pivotal role in driving attention

to youth health topics on social media. Policy-related campaigns,

such as “Youth Health Policy” and “Youth Health Week,” achieved

wide visibility through digital dissemination, catalyzing broad

social engagement. These campaigns often integrated online health

screenings and vaccination efforts, exemplifying action-oriented

policy design with high interaction and diffusion rates.

In the mental health domain, topics such as suicide prevention

and art therapy showed distinct temporal spikes. Suicide

prevention tweets surged during examination seasons, reflecting

academic stress as a critical trigger of youth mental distress.

Art therapy emerged as an innovative intervention strategy; for

instance, the #MentalHealthArtChallenge attracted substantial

youth participation. This interactive campaign bridged online

discourse with offline practices, demonstrating the potential of

digital engagement in promoting mental health literacy.

Although “Adolescent Psychiatry and Mental Health Services”

(3.883%) was widely discussed, youth still face major barriers in

accessing professional care. Many tweets referenced prolonged

wait times, which not only delay treatment but risk worsening
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TABLE 11 Subject distribution situation.

Dimensions Specific topic Quantity

Public health and

policy

Youth health week 571 (0.935%)

Youth health policy 323 (0.529%)

Youth health and awards 3,066 (5.023%)

The lancet child health research 3,356 (5.498%)

Youth health research 462 (0.757%)

Youth health in East Africa 1,422 (2.330%)

Indian youth health 1,995 (3.268%)

Vaccination and immunization 2,231 (3.655%)

Healthy day and public activities 703 (1.152%)

Nigerian youth health 352 (0.577%)

COVID-19 pandemic’s impact on

teenagers

1,069 (1.751%)

Mental health Mental health of adolescents 4,545 (7.446%)

Autism and related research 1,251 (2.050%)

Prevention of suicide and

self-harm

978 (1.602%)

Anxiety and depression 816 (1.337%)

Mental health institution 597 (0.978%)

ADHD

(attention-deficit/hyperactivity

disorder)

496 (0.813%)

Gender identity and mental health 390 (0.639%)

Trauma and mental health 564 (0.924%)

Attachment relationships and

mental health

849 (1.391%)

Resilience and mental health 765 (1.253%)

Art and mental health 157 (0.257%)

Marijuana use and adolescent

mental health

1,251 (2.050%)

Medical services and

resources

Medical services and funding 1,103 (1.807%)

CAMHS (child and adolescent

mental health services)

615 (1.008%)

Nurse profession and mental

health services

875 (1.434%)

Medical waiting times and

accessibility

376 (0.616%)

Medical services and referrals 948 (1.553%)

Adolescent psychiatry and mental

health services

2,370 (3.883%)

Youth health-related profession 1,154 (1.891%)

Mental health services for

adolescents

2,628 (4.305%)

Challenges in CAMHS and support

appeals

658 (1.078%)

Social media and

communication

Internet link and social media

spread

6,019 (9.861%)

Podcast and mental health

communication

820 (1.343%)

(Continued)

TABLE 11 (Continued)

Dimensions Specific topic Quantity

Social media and mental health 1,242 (2.035%)

Digital health and technology 724 (1.186%)

Reproductive and

sexual health

Maternal and infant health and

newborn care

1,731 (2.836%)

Sexual health and reproductive

health

350 (0.573%)

Reproductive health and maternal

and child health

422 (0.691%)

AIDS and adolescent health 533 (0.873%)

Menstrual hygiene and health 2,322 (3.804%)

Transgender youth health 530 (0.868%)

Adolescent abortion and the law 409 (0.670%)

Social and

environmental factors

Social media use and behavior 398 (0.652%)

Climate change and children’s

health

287 (0.470%)

Youth violence and relationships 827 (1.355%)

The impact of racism on teenagers 737 (1.207%)

Substance abuse and addiction 365 (0.598%)

Cyberbullying and school bullying 1,300 (2.130%)

Youth social welfare and policy 239 (0.392%)

Nutrition and lifestyle Dietary health and dietary

disorders

1,098 (1.799%)

Sleep health and psychological

impact

749 (1.227%)

Physical activity and health 640 (1.049%)

Smoking and e-cigarettes 408 (0.668%)

Fetal alcohol syndrome (FASD) 291 (0.477%)

conditions. Furthermore, tweets under “Mental health services

for adolescents” (4.305%) emphasized increasing demand amid

insufficient supply, particularly within CAMHS (Child and

Adolescent Mental Health Services) and referral mechanisms,

highlighting critical issues of coverage and timeliness.

Social media demonstrated a dual effect in health

communication. While social media links (9.861%) facilitated

rapid information dissemination, they also contributed to content

fragmentation and misinformation, for example, erroneous claims

about e-cigarette safety. In contrast, long-form content such as

podcasts enabled deep vertical discussions. Topics like school

violence gained traction through such formats, which boosted

outreach for non-profit mental health organizations. This suggests

that high-quality content holds irreplaceable value in advancing

targeted public engagement and intervention.

5.3 Study limitations

Despite its strong performance, BERTopic_Teen has certain

limitations. First, the model was trained and fine-tuned specifically

for adolescent health data. While this ensures domain-specific
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FIGURE 6

Word cloud visualizations of topics identified by the BERTopic_Teen model.
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performance, it may constrain the model’s generalizability to other

domains or broader public health applications. Second, due to its

reliance on deep learning-based embeddings, the computational

cost is relatively high, limiting its scalability for real-time analysis.

Third, perplexity may be less informative for short-text data, as it

does not always reflect topic coherence, underscoring the need for

complementary metrics such as NPMI and Topic Diversity.

6 Conclusion and future work

This study conducted a comparative evaluation of five

topic modeling methods, namely LDA, NMF, Top2Vec,

BERTopic, and the proposed BERTopic_Teen, on adolescent

health-related social media data. To enhance model

performance, we introduced three optimization strategies:

PDR to mitigate the influence of high-frequency terms,

DDEO to adaptively select UMAP dimensions, and PRM

to reduce invalid outlier classifications. Experimental results

show that BERTopic_Teen outperformed all baselines

in terms of NPMI, Topic Diversity, and Perplexity,

demonstrating improved accuracy in identifying health-related

topics and enhanced modeling stability through effective

outlier reassignment.

Future work could explore computationally efficient

alternatives, such as lightweight embedding models

or distributed computing frameworks. Additionally,

integrating complementary techniques, such as sentiment

analysis and causal inference, may help uncover the

evolution and underlying drivers of youth health topics,

further enhancing the real-world applicability of the

modeling results.
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