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This study examines COVID-19 transmission across 3,142 U.S. counties using a

truncated dataset from March to September 2020. County-level factors include

demographics, socioeconomic status, environmental conditions, and mobility

patterns. Ordinary Least Squares regression establishes a baseline for analyzing

COVID-19 confirm case counts for each county. We then use Moran’s I to

evaluate spatial clustering, prompting Spatial Autoregressive and Spatial Error

Models when autocorrelation is significant. Notably, spatial models outperform

the Ordinary Least Squares approach—R
2 rises from 0.4849 with Ordinary

Least Squares to 0.6846 under Spatial Error Model, while RMSE decreases

from 2.0891 to 1.642—demonstrating improved fit and more accurate spatial

transmission dynamics. Amultilevel framework further explores state-level policy

variations. Finally, Geographically Weighted Regression captures spatial non-

stationarity by mapping local coe�cient di�erences; we visualized temperature,

precipitation, and other key variables—revealing precipitation peaks near 110◦

W in the Southeast and Northeast and strong sensitivity to temperature. This

integrated sequence of methods provides a comprehensive lens for studying

epidemiological phenomena. While certain findings align with established

research, other variables reveal unexpected patterns. The proposed framework

o�ers a robust template for future investigations where spatial dependence and

policy heterogeneity warrant close examination.

KEYWORDS

COVID-19, county-level analysis, spatial dependence, multilevel modeling,
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1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented

global health crisis. The United States has been especially hard-hit; by June 30, 2020 it

accounted for∼2.6million confirmed cases and 127,000 deaths (1). These impacts have not

been uniform across communities. On the contrary, COVID-19 outcomes exhibit striking

geographic disparities in the U.S. For example, as of late 2020, a U.S. county at the 75th

percentile of COVID-19 cases per capita had about double the cases of a county at the

25th percentile (2). Such heterogeneity suggests that underlying county-level factors from

demographics and health resources to social behaviors play a crucial role in shaping the

spread and severity of COVID-19 (3). Understanding these local drivers is essential for

designing targeted public health interventions and informed policy responses.
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County-level studies of COVID-19 are therefore of great

significance. A growing body of research has begun to explore how

county characteristics are associated with COVID-19 incidence.

These analyses enable researchers to capture fine-grained variations

that would be masked in state or national averages. Killeen et al.

(4), for instance, compiled a comprehensive county-level COVID-

19 dataset integrating over 300 variables encompassing population

demographics, socioeconomic indicators, healthcare capacity, and

even mobility patterns. Such rich data resources have facilitated

numerous ecological studies. Using county-level data, Pan et al. (1)

identified health and social factors linked to COVID-19 mortality

across all 3,141 U.S. counties. These findings highlight how pre-

existing health disparities and social determinants at the county

level can translate into unequal COVID-19 outcomes.

Beyond health and demographic vulnerabilities, researchers

have examined a wide array of contextual variables. For example,

community mobility and adherence to social distancing have been

studied as key determinants of COVID-19 spread. Analyses of cell-

phone mobility data indicate that decreases in movement (greater

social distancing) are associated with reductions in COVID-19

case growth rates (5). Conversely, counties characterized by lower

compliance with distancing tended to have faster viral spread (5).

Environmental factors have also received attention: temperature,

humidity, and other weather variables were hypothesized to

influence viral transmission. Early evidence on meteorological

effects was mixed. Some global-scale studies suggested only a minor

direct effect of weather on COVID-19 transmission when human

factors were not accounted for (6), whereas other studies posited

that extremely low humidity and temperature might facilitate

spread under certain conditions (7). In the U.S., distinctive local

outbreaks underscored the role of specific environmental and

occupational settings. Notably, meat and poultry processing plants

emerged as infection epicenters in spring 2020 (8). These diverse

findings from prior research underscore themultifactorial nature of

COVID-19 spread at the county level, involving a combination of

population attributes, health disparities, policy responses, behavior,

and environment.

Most prior studies have employed a single modeling approach

(typically a standard regression) for a given outcome, which

may not fully account for the complex spatial and hierarchical

structure of the data (9). COVID-19 incidence in one county is

not independent of neighboring counties due to spatial diffusion

of the virus and regional similarities; Counties are nested within

states, and share state-level policies and resources (10). Indeed,

spatial analyses have revealed significant clustering of COVID-

19 outcomes. Mollalo et al. (10), for example, showed that

incorporating spatial autocorrelation via spatial lag and error

models greatly improved the fit of an ordinary least squares model

for county-level incidence (10). However, even after accounting

for global spatial dependence, substantial local variation remained,

and a Geographically Weighted Regression model captured those

local non-stationarities far better, explaining around 68% of the

variance in COVID-19 incidence compared to only 30% by a global

Ordinary Least Squares. These results suggest that relationships

between predictors and COVID-19 outcomes can vary across space,

and no single modeling strategy is sufficient to unveil the full

picture.

There is value in comparing what each method (classical

Ordinary Least Squares, spatial models, multilevel models, and

local regression) contributes to our understanding within a

unified study. In light of these gaps, the present study provides

a comprehensive statistical analysis of county-level COVID-19

confirmed cases, aggregated from March through September

2020 into a single cross-sectional dataset. First, we establish

a baseline with Ordinary Least Squares regression to identify

general associations under standard assumptions. We then employ

Spatial Autoregressive Models to explicitly model spatial diffusion

effects (i.e., the influence of cases in neighboring counties) and

Spatial Error models to account for spatially autocorrelated error

structures (unobserved spatially clustered factors). These spatial

models help ensure that residual spatial dependence is addressed,

improving estimation accuracy and inference. Next, we implement

a multilevel model (Hierarchical Linear model) treating counties

as nested within higher-level units (such as states or regions),

which allows us to control for unmeasured state-level influences

and borrow strength across counties with similar contexts. Finally,

we apply Geographically Weighted Regression as a local modeling

approach to explore spatial heterogeneity in the relationships:

Geographically Weighted Regression relaxes the assumption of

spatially constant coefficients, revealing how the influence of a

predictor may differ in magnitude or direction from one region to

another. By comparing results across these methods, we can cross-

validate findings and gain a nuanced understanding of both global

and local patterns.

In summary, this study contributes a multi-method

investigation of county-level COVID-19 dynamics during the

first six months of the pandemic. This comprehensive framework

allows us to address issues of spatial autocorrelation, hierarchical

data structure, and non-stationarity simultaneously challenges

that, if unaddressed, can lead to biased or incomplete conclusions.

The findings not only deepen our understanding of the early

pandemic drivers at a fine spatial scale, but also provide practical

insights for public health officials. Overall, our statistics-based

framework demonstrates a template for rigorously analyzing public

health data with complex spatial dependencies, and it advances

the literature by uniting multiple analytical perspectives to paint a

more complete picture of COVID-19’s spread across the American

landscape.

2 Data introduction

We conduct an analysis of a county-level dataset detailing the

COVID-19 outbreak in the United States. The dataset (11) provides

reliable daily counts of confirmed cases for a wide geographical

area, thereby facilitating robust predictive modeling and in-depth

epidemiological analyses. The data span from January 22, 2020,

to September 16, 2020—a critical interval that captures the early

evolution of the pandemic and the impact of various predictive

features (11). Although the national series starts on 22 January

2020, we truncate it to 1 March–16 September 2020 for all

analyses because the vast majority (>99%) of counties reported

zero cumulative cases prior to March, and the sparse early counts

add noise but no information to the spatial models. In addition to

the daily case counts, the dataset contains a wide range of county-

level features. These include demographic variables, socioeconomic

indicators, healthmetrics, and infrastructuremeasures. Geographic

information is also provided for each county. Our approach is
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designed to capture both general and spatial patterns in the data.

We begin by exploring overall relationships among the variables.

We then assess potential dependencies and variations across space.

We also account for differences at multiple hierarchical levels.

Temperature and precipitation records had numerous missing

entries, so we filled these gaps by incorporating annual summary

data sourced from the National Centers for Environmental

Information (12).

2.1 Data cleaning

The dataset covers 3,142 U.S. counties. Daily variables include

confirmed COVID-19 cases, social distancing grade, temperature,

and precipitation. These data include demographic characteristics

(e.g., female percent, population density, immigrant student ratio),

socioeconomic status (e.g., gdp per capita, median household

income, political party), health indicators (e.g., percent diabetes,

percent smokers), and infrastructure measures (e.g., hospital beds

ratio, ventilator capacity ratio).

Table 1 provides an overview of the variables used in the

analysis. The first column indicates the data type (e.g., Continuous,

Percent, Binary), the second column lists the abbreviated variable

names, and the third column offers a brief description of each

variable.

Although the raw dataset provides daily observations, we

require county-level data for our analysis. We aggregated

the daily data for each county. Specifically, the cumulative

number of confirmed cases and precipitation were computed by

summing their daily values. For the remaining daily variables—

daily test, daily state test, temperature, precipitation, social

distancing total grade, social distancing encounters grade, and

social distancing travel distance grade—the mean values were

calculated across the study period. Static county-level attributes

(e.g., demographic, socioeconomic, and health system indicators)

remained unchanged. Each county is represented as a single

observation in the final dataset. This structure facilitates statistical

modeling and epidemiological assessment. Since Daily data often

contain short-term fluctuations and noise. Aggregation reduces

random measurement errors and highlights long-term trends (13).

This approach aligns the analysis with administrative boundaries,

which are relevant for policy decisions. Moreover, it mitigates

temporal autocorrelation, allowing the focus to shift to spatial

heterogeneity. Such aggregation is common in epidemiological

studies that seek to understand broad patterns over time (13).

This study focuses on the primary response variable, which is

the number of confirmed cases per 10k people. We deliberately use

this ratio to ensure that county population size does not influence

the results. This measure is common in epidemiological studies and

offers a standardized way to compare infection rates across regions

(14).

2.2 County-level case rate map

For our data description, we incorporated a U.S. map shapefile

obtained from the U.S. Census Bureau’s mapping files (15). This

TABLE 1 Variable descriptions.

Data type Variable name Description

cases_per_10k Confirmed COVID-19 cases in each

county

temp Average temperature (◦F)

precip Average precipitation (mm)

daily_test Daily tests performed (count)

pop_dens Population density (people/km2)

area County area (km2)

Continuous vent_cap Ventilator capacity ratio

tot_coll_pop Total college population (count)

ap_dist Distance to nearest airport (km)

pass_load Passenger load ratio

gdp_pc GDP per capita (USD)

med_income Median household income (USD)

hosp_beds Hospital beds ratio (per 1,000 people)

young Proportion of young population (e.g.,

0–19)

old Proportion of older population (e.g.,

65+)

female_pct Proportion of female population

less_HS Proportion with < high school

diploma

some_coll Proportion with some college or

higher

Percent diabetes_pct Proportion with diabetes

relig_cong Religious congregation ratio

insured_pct Proportion of insured population

immig_stud Proportion of immigrant students

smokers_pct Proportion of smokers

SD_total Overall social distancing grade, 5 best

to 1 worst.

Ordinal SD_travel Travel distance based social

distancing grade 5 best to 1 worst.

meat_plant Meat processing facilities count

Binary pol_party Political party preference 0 =

republican, 1 = democrat

spatial dataset allows us to explore how COVID-19 spreads in

different regions. As shown in Figure 1, the map of confirmed cases

per 10k people exhibits a strong spatial pattern.

In Figure 1, while some counties in major urban areas have

high confirmed case counts, these are depicted as blue-black points

scattered across the country. Many areas in the Southeast and

Southwest exhibit elevated infection levels, and some coastal urban

centers also show higher densities. By contrast, large portions of

the Midwest and parts of the Northeast reveal more moderate or

lower rates. These spatial patterns suggest that local demographic,

economic, and policy factors may drive substantial regional
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FIGURE 1

Map of confirmed cases per 10K people in USA Mainland.

variation in COVID-19 burden. This spatial disparity in COVID-

19 incidence suggests that factors such as regional demographic

characteristics, socio-economic conditions, and local policies may

play significant roles.

2.3 Other variables

Let us examine additional variables to uncover further insights.

Figure 2a shows a chart of selected key variables, where the

dependent variable is cases per 10k. We include variables from

several domains: climate, population structure, socio-economic,

education, medical and health behavior, and intervention and

location. In the chart, the correlations are sorted in descending

order—from strong positive values to negative values. Temperature

and precipitation show strong positive correlations; similar findings

have been reported in previous research (16). The proportion of

young individuals also correlates positively with infection rates.

In contrast, the percentages of older individuals and insured

population, as well as airport distance, correlate negatively with

cases per 10k. These observations serve as an initial descriptive

overview.

Our analysis continues to focus on the detailed role of climate.

We divided temperature and precipitation into low, medium,

and high groups by percentile. Based on Figure 2b confirmed

cases increase as temperature and precipitation rise. Under low

temperature conditions, lower precipitation is linked to higher

confirmed cases than higher precipitation. In medium temperature

settings, the difference due to precipitation is minimal. Under high

temperature conditions, high precipitation is associated with more

severe infections compared to low precipitation. In environments

with high precipitation, temperature changes yield a greater

sensitivity in confirmed cases than in those with low precipitation.

These observations may reflect complex interactions between

climatic factors and transmission dynamics. Lower confirmed

cases in low temperature and high precipitation areas may be

linked to reduced outdoor activity. For example, Washington state

experienced frequent winter rain and adopted early strict measures

(17). New York enhanced public responses after initial outbreaks

(17). In contrast, high temperature and high precipitation regions

show increased indoor gatherings. Florida residents often meet in

air-conditioned spaces (16). Such examples indicate that climatic

conditions may alter behavior and viral stability. These examples

suggest that climatic conditions may interact with human behavior

and virus stability (18, 19).

The social distance grade is derived from Unacast, and is

based on mobile location data (20). It is based on three metrics:

travel distance, visitation patterns, and human encounters (11). The

travel distance metric indicates the percentage reduction in the

average distance traveled in each county (11, 21). The visitation

patterns metric represents the percentage change in visits to non-

essential venues (11, 21). The human encounters metric measures

the reduction in encounter density. An encounter is defined as

two devices being within a 50-m radius for <1 h. The total social

distance grade is the average score of these metrics (11, 21). Grades

were assigned based on the reduction level relative to a pre-

COVID-19 baseline. For instance, the social distancing encounters

grade is defined as follows: Grade A indicates a reduction of more

than 94%; Grade B reflects a reduction between 82 and 94%;

Grade C represents a reduction between 74 and 82%; Grade D

corresponds to a reduction between 40 and 74%; and Grade F

signifies a reduction of <40% or an increase (11). We use the total

social distance grade together with confirmed COVID-19 cases at

the county level. Our goal is to explore the link between social

distancing performance and infection rates under varied policy

backgrounds.We trim the data by removing outliers. In our graphs,

points with more than 400 confirmed cases per 10k residents are

excluded. This step enhances the clarity of the analysis. The Boxplot

in Figure 2c indicates little differences between grades F and D. A

systematic trend emerges from grade D through C, B, and A. As

the social distance grade improves, confirmed case counts decline.

Outbreak severity also diminishes with higher grades. This pattern

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1608360
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bao et al. 10.3389/fpubh.2025.1608360

FIGURE 2

Overview of some case-related variables. (a) Correlation of each variable with COVID-19 confirmed cases per 10k residents. (b) Average cases per

10k by temperature and precipitation groups. (c) COVID-19 confirmed cases per 10k residents across di�erent social distancing grades. (d)

County-level Local Moran’s I values for COVID-19 cases per 10k residents.

is observed consistently across various counties. These findings

suggest a potential relationship between adherence to social

distancing measures and lower infection rates. In addition, the data

reflect the impact of current public health policies on individual

behavior. Policy interventions that reinforce social distancing are

shown to have a measurable influence. These observations provide

an initial framework for assessing policy effectiveness and guide

future adjustments.

We also analyze county-level COVID-19 cases per 10K using

local Moran’s I. This statistic quantifies spatial autocorrelation and

identifies clusters of similar values. It has been widely applied

in spatial epidemiology (22) and featured in recent COVID-19

studies (23). High local Moran’s I values typically denote high–

high or low–low clusters. Our approach employs this metric to

explore disease spread patterns. In Figure 2d, local Moran’s I

shows notable clustering for COVID-19 cases per 10K. Initial

inspection revealed elevated values in the South, Northeast, and

northwestern Oregon. Comparing with Figure 1, we may identify

low–low clusters in the Northeast and Oregon, and high–high

clusters in the South. These results underscore the need to

account for spatial dependence in our COVID-19 analysis. The

clustering patterns observed at the county level suggest that spatial

autocorrelation is a key factor. This evidence provides a robust

basis for integrating spatial considerations in our future modeling

efforts.

In our work, county-level data on COVID-19 cases and various

predictive features have been examined. The dataset was aggregated

from daily in the previous sections we provided a concise overview

of county-level COVID-19 data with emphasis on climatic factors.

Temperature and precipitation groups were highlighted while other

variables received limited discussion. The next section presents our

methodological framework. We describe the statistical models and

analytical techniques used to examine these interactions.

3 Methodology

We aim to establish a robust empirical framework by

sequentially applying several statistical models, each capturing

different characteristics of the pandemic. Throughout our

approach, we adopt epidemiologic methods, spatial analysis

techniques, and regression models commonly used in public health

research (24). Our primary interest lies in understanding spatial

dependence rather than forecasting, so we employ the entire

dataset without partitioning it into training and testing subsets.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1608360
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bao et al. 10.3389/fpubh.2025.1608360

3.1 Baseline ordinary least squares

We begin with a baseline Ordinary Least Squares (OLS) model

to examine the relationship between relevant explanatory variables

and the dependent variable, denoted as yi = confirm_case_per_10k

for county i. The model assumptions include linearity,

homoscedasticity, normality of residuals, and independence

of errors.

Due to spatial clustering, county-level COVID-19 data often

violate the assumptions of independence and homoscedasticity.

The variable confirm_case_per_10k exhibits a skewness of 2.54. We

apply a Box-Cox transformation to yi to stabilize variance and

improve normality (25). The optimal λ is determined to minimize

deviations from normality and heteroscedasticity. This approach

also reduces the effect of outlier counties with exceptionally

high or low incidence rates. Then parameter estimates within

the OLS framework remain unbiased and consistent, aligning

with established epidemiologic methods and statistical modeling

practices.

We also assessed multicollinearity among predictors. Each

variable’s variance inflation factor was maintained below 10.

To achieve this, we omitted variables deemed less relevant.

This rigorous variable selection enhances model parsimony and

minimizes the risk of inflated standard errors, thereby supporting

robust inference.

To handle potential heteroskedasticity and serial correlation

in the error terms, we employ a Heteroskedasticity and

Autocorrelation Consistent (HAC) covariance matrix estimator,

we use it as a safeguard against potential deviations from

homoscedasticity and serial independence (26). HAC would be

implemented vcovHAC to adjust standard errors. This robust

approach ensures that inference remains reliable in our county-

level COVID-19 data, in line with established practices in spatial

epidemiology (24, 26).

3.2 Spatial model

In county-level COVID-19 analyses, disease outbreaks often

extend beyond administrative boundaries. Proximity fosters the

transmission of SARS-CoV-2, leading to correlated residuals.

This scenario violates OLS assumptions of independent error

terms (27). Spatial econometric models address such concerns

by incorporating structured dependence, either through the

dependent variable or the error term. We adopt two prominent

specifications: the Spatial Autoregressive Model (SAR) and the

Spatial Error Model (SEM). Both rely on a spatial weights matrix

W, constructed from county coordinates to reflect patterns of

geographic adjacency.

To demonstrate the need for spatial models, consider the OLS

regression:

y = Xβ + ε, (1)

where y is an n×1 vector of responses (in our case, the transformed

COVID-19 incidence), X is an n × k matrix of explanatory

variables (e.g., temperature, precipitation, population density, or

socioeconomic factors), and ε denotes the error term.

The SAR model captures dependence through a spatial lag of

the dependent variable:

y = ρ Wy+ Xβ + ε, (2)

where W is an n × n spatial weights matrix, and ρ measures

the strength and direction of spatial interaction (28). the matrix

W was derived by imposing a threshold distance between county

centroids, using their latitude and longitude. If ρ is positive and

significant, counties with elevated COVID-19 incidence tend to

be clustered near other counties with high incidence. This pattern

aligns with the communicable disease process, where infection can

spread through contiguous or adjacent populations. The parameter

ρ thus represents how strongly the virus diffuses across county

boundaries (29). In our county-level COVID-19 analyses, we

construct the spatial weights matrix W as a row-standardized

k-nearest-neighbors structure with k = 8, ensuring that every

county has eight neighbors and thus an equal contribution to the

spatial lag term—thereby avoiding the isolation of counties with

few or no adjacencies under contiguity methods or the arbitrary

cutoff and potential disconnects of fixed-distance thresholds; the

choice of k = 8 reflects the typical range of U.S. county

adjacencies, was validated through cross-validation of model fit and

assessment of residual spatial autocorrelation via Moran’s I, and

strikes a balance between preserving global network connectivity

and preventing excessive smoothing of localized effects (30).

By modeling interactions among neighboring counties, we gain

insights into how environmental monitoring, social factors, and

population surveillance interact with local incidence.

Although the SAR model captures how COVID-19 spreads

across nearby counties, it assumes that the spatial effect manifests

through the dependent variable. However, unmeasured factors can

also cluster geographically and produce correlated residuals (31).

This possibility motivates the SEM, where spatial correlation stems

from latent variables, policy choices, or other unobserved dynamics

(27).

Formally, the SEM is written as:

y = Xβ + u, u = λWu+ ε, (3)

where y denotes the transformed rate of COVID-19 cases per

10K, X is a matrix of covariates reflecting health, environment,

or socioeconomic status, and u represents spatially dependent

residuals. The term λWu captures hidden structures that diffuse

across county borders via adjacency or proximity. As with the

SAR formulation, W represents the spatial structure derived from

latitude and longitude. However, in this model, the contagion effect

is assumed to emerge through residual terms, rather than directly

in the dependent variable. In the SEM model, W is constructed

from latitude and longitude coordinates, ensuring that contiguous

counties exert greater influence on each other.The coefficient λ

indicates the magnitude of this unobserved spatial dependence

(29). If it is large and significant, communities in proximity exhibit

similar residuals, independent of explicit regressors (32).

By modeling the correlation in u, the SEM handles omitted risk

factors and policy differences. Some counties might have localized

testing, healthcare facility arrangements, or behavioral patterns that

are not directly specified in X. When these features correlate with

location, they induce clustering in the error term.
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Recognizing that spatial models, such as SAR and SEM,

capture local patterns of COVID-19 transmission, these approaches

may still overlook broader institutional and administrative

differences. State-level policy interventions, healthcare resource

distributions, and legislative authorities can vary widely. This

heterogeneity can shape testing coverage, vaccination programs,

and hospital capacity, often transcending simple spatial adjacency

(33, 34). Consequently, we introduce a hierarchical structure that

incorporates state-specific effects, acknowledging that counties

within the same state share regulatory frameworks and public

health strategies (34).

In this hierarchical model, each county i belongs to state j, with

j = 1, 2, . . . , J. A random-intercept formulation allows the model

to account for unobserved variations at the state level:

yij = αj +

K
∑

k=1

βkxij + εij, αj = α + νj, νj ∼ N (0, σ 2
ν ), (4)

where yij denotes the transformed COVID-19 incidence for county

i in state j, xij is a vector of county-level covariates, and νj represents

random intercepts capturing latent differences across states (35).

Random intercepts αj capture these statewide influences, while

county-level predictors still explain within-state variation. Unlike

pure spatial models that rely on geographic contiguity or distance

metrics, this hierarchical specification emphasizes that governance

structures, funding mechanisms, and policy mandates are state-

based rather than merely spatially contiguous (36). For instance,

two geographically distant counties within the same state might

display similar patterns of disease management due to uniform

mandates on mask usage or consistent resource allocations for

testing.

3.3 Geographically weighted regression

Geographically Weighted Regression (GWR) extends

traditional regression by allowing parameter estimates to

vary across locations (30, 37). This spatial heterogeneity is crucial

in public health contexts, where localized factors influence disease

incidence.

At the core of GWR is a weighting scheme that emphasizes

nearby observations. Each county i has coordinates (ui, vi) derived

from its longitude and latitude. The model is then defined as:

yi = β0(ui, vi)+

K
∑

k=1

βk(ui, vi) xik + εi, (5)

where yi is the transformed COVID-19 incidence for county i, and

xik represents local variables such as Temperature, Precipitation,

and other relevant epidemiologic factors (38). The terms βk(ui, vi)

are location-specific parameters. By mapping these coefficients,

researchers can explore how disease drivers vary spatially and gain

insights into local vulnerability.

A kernel function governs how GWR assigns weights to

observations based on their distance from county i. We adopt the

bisquare kernel, which is defined by:

wij =















[

1−

(

dij

b

)2
]2

, dij < b,

0, otherwise,

(6)

where dij is the distance between counties i and j, and b is the

bandwidth (39, 40). The bisquare function sharply reduces weights

to zero beyond the distance b. This localized emphasis is often

desirable in communicable disease studies, because it reflects the

limited spatial range of interaction or environmental similarities

(39). Counties outside the bisquare radius exert no influence on the

coefficient estimates for county i.

Selecting an appropriate bandwidth b is essential for striking

a balance between bias and variance. A large b smooths over

broad regions, risking loss of local detail. A small b captures

highly localized patterns, but may amplify random noise (39, 41).

We use the corrected Akaike Information Criterion (AICc) to

find the best b value. This procedure considers model complexity

and fit, penalizing overparameterization (42). In our analysis, the

AICc-based search yields a bandwidth of 9.012423, indicating

that counties within this radius meaningfully affect each other’s

parameter estimates. This distance threshold captures mid-range

spatial dependence in COVID-19 data, reflecting factors such as

shared healthcare resources or regional climatic conditions.

The GWR fitting process then solves, for each location (ui, vi):

β̂(ui, vi) = argmin
β

n
∑

j=1

wij

(

yj − β⊤xj
)2
, (7)

where wij is calculated via the bisquare kernel, and xj is the

vector of covariates for county j (37). We implement this in our

model to ensure that the bandwidth and kernel choice remain

consistent. The algorithm produces a distinct set of coefficients

β0(ui, vi), . . . ,βK(ui, vi) for each county. These local estimates help

detect spatial variations in key predictors, such as Temperature

or Precipitation, and measure how each variable’s influence on

COVID-19 incidence changes from one region to another.

3.4 Framework

Our framework unites OLS, SAR models, SEM, hierarchical

modeling, and GWR to address multifaceted challenges in

epidemiological methods and data interpretation. We start with

OLS to establish a baseline for assessing statistical associations.

However, OLS ignores contagion and can underestimate standard

errors if spatial heterogeneity exists. By incorporating spatial

analysis through SAR, we capture direct influences of neighboring

counties on infection rates, thus clarifying regional diffusion

processes (29). If the Moran’s I test on the SAR model remains

significant, it indicates that some spatial effects have not been

captured, thereby justifying the application of SEM. SEM further

accounts for unmeasured spatial factors that propagate disease

risk, offering deeper insights when certain variables are difficult to

measure or remain unknown (31).

Even these spatial models may overlook hierarchical differences

among states, such as disparities in healthcare resources, legislative
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authority, or public health policies (33, 34). Our hierarchical

model acknowledges that counties within the same state share

overarching regulatory frameworks, leading to more accurate

model coefficients. This approach ensures that administrative

heterogeneity is considered alongside spatial adjacency. Lastly,

GWR reveals local variations in infection drivers by estimating

location-specific coefficients (39, 40). This local modeling strategy

shows how environmental parameters, such as precipitation or

temperature, affect COVID-19 incidence in distinct regions. By

highlighting geographic variations in disease determinants, GWR

aids public health practitioners in tailoring interventions and

resource allocations (37, 38).

In combination, these models deliver a comprehensive

statistical framework (see Figure 3). Each component addresses

different aspects of spatial heterogeneity, hierarchical clustering,

and local non-stationarity. By systematically applying OLS, SAR,

SEM, hierarchical modeling, and GWR, we move beyond naive

regression analyses. This strategy produces robust inferences,

improves predictive accuracy, and supports evidence-based

decisions in health and medicine.

4 Result

The core response variable consists of county-level confirmed

cases, measured as cases per 10k population. To ensure that

the linear regression assumptions hold, we first evaluate the

distribution of this outcome variable. The original data exhibits

a pronounced skew, which can violate normality assumptions

necessary for standard OLS estimation. Hence, we apply a Box-

Cox transformation with a coefficient of 0.263. This transformation

successfully reduces the skewness of the dependent variable to

0.0577, moving it closer to a normal distribution and strengthening

the validity of subsequent linear models.

Interpreting coefficients after transformation is less direct than

in untransformed models. A one-unit increase in a predictor

changes the transformed outcome y(0.263) by β , not the original

case rate. To express the effect in public health terms (e.g., cases

per 10,000 population), we back-transform using:

ŷ =
(

0.263 · ŷ(0.263) + 1
)1/0.263

(8)

.

We then compute the difference in predicted values after

increasing the predictor by one unit:

1y =
(

0.263 · (ŷ(0.263) + β)+ 1
)1/0.263

−

(

0.263 · ŷ(0.263) + 1
)1/0.263

(9)

.

This gives the change in expected cases per 10,000 population.

While not as immediately interpretable as models on the original

scale, this approach still yields clear, policy-relevant insights.

In parallel with the transformation, we explore the presence of

spatial dependence in the data. Using Moran’s I test, we find that

the cases per 10k exhibit significant spatial clustering (Moran’s I

= 0.5944, p-value< 2.2e-16). Such strong spatial autocorrelation

indicates that the infection rates are not randomly distributed

across counties (22). High spatial clustering can violate the

independence assumptions implicit in basic OLS, advanced spatial

models become relevant to adequately capture these Epidemiology

and Public Health processes (36, 37).

4.1 Model development and comparison

We construct a series of regression analyses by relating

the transformed case count variable (cases_per_10k_transformed)

to a range of explanatory factors, including meteorological

variables, demographic characteristics, mobility indicators, and

measures of population density, socio-educational status, and

healthcare capacity. Table 2 outlines the coefficients, significance,

and direction of effects for each predictor. The regression analysis

results indicate substantial differences in model performance

between the OLSmodel and the spatial models. Table 3 summarizes

the goodness-of-fit metrics for the four global models.

The OLS model exhibits moderate goodness-of-fit, with

HAC-adjusted coefficients ensuring compliance with standard

assumptions. In comparison, the SAR model, which incorporates

a spatially lagged dependent variable, yields a notably higher

R2 and a statistically significant SAR coefficient, indicating an

improved capture of variance in COVID-19 case rates. The SAR

model increased the R2 from 48% to 65%, demonstrating its

effectiveness in capturing the direct influence of neighboring

counties on infection rates. However, a Moran’s I test on the SAR

residuals yielded a significant p-value (p = 0.002745), indicating

that substantial spatial autocorrelation remains unaddressed. This

finding justified the subsequent use of a SEM to capture the

remaining unobserved spatial effects. The SEM model produced

a non-significant Moran’s I (p = 0.97), and further improvements

in R2 and RMSE metrics confirmed that, although more

computationally intensive, SEM provides a more robust and

accurate framework for modeling spatial dependencies in the

data. The SEM approach demonstrates an additional improvement

in R2, and its spatial error coefficient is statistically significant.

This progression from SAR to SEM confirms that incorporating

unobserved, spatially structured factors leads to a more robust

model. Both spatial models demonstrate that incorporating spatial

autocorrelation which is a key aspect of spatial analysis in

epidemiology, yields more accurate predictions and better fit than

a standard OLS regression.

The multilevel model offered another perspective by

accounting for hierarchical structure in the data. The multilevel

model’s fixed effects yielded a marginal R2m = 0.4810, very similar

to the OLS R2. However, the conditional R2 accounting for both

fixed and random effects rose to 66.15%. Thus, incorporating

random intercepts for region dramatically improved the variance

explained, on par with the spatial models. In practical terms, about

0.6615− 0.4810 ≈ 0.1805 (18%) additional variance was explained

by adding higher-level effects. This underscores that a substantial

portion of the variability in COVID-19 case rates is attributable

to differences between state, beyond what is captured by observed

county-level covariates. The multilevel model’s performance is

similar to SAR/SEM model, demonstrating that accounting for
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FIGURE 3

A flowchart summarizing the analytical procedure: starting from county-level COVID-19 data, the process moves through data cleaning and OLS,

followed by spatial tests and models (Moran’s I, SAR, SEM), with parallel paths for hierarchical modeling and GWR to assess state policy e�ects and

local variability.

TABLE 2 Comparisons of four models (OLS, SAR, SEM, multi-level).

Variable OLS SAR SEM Multi-level

Coef p-value Coef p-value Coef p-value Coef p-value

temp 0.104 < 0.01 0.015 0.06 0.098 < 0.01 0.120 < 0.01

precip 0.021 < 0.01 0.006 0.02 0.011 0.04 0.005 0.15

young 0.113 < 0.01 0.059 < 0.01 0.035 0.04 0.030 0.11

old –0.064 < 0.01 –0.068 < 0.01 –0.113 < 0.01 –0.129 < 0.01

SD_total –0.037 0.30 –0.110 < 0.01 –0.139 < 0.01 –0.106 < 0.01

SD_travel –0.054 0.10 0.058 0.04 0.099 < 0.01 0.014 0.65

daily_test –1.6e–05 < 0.01 –7.6e–06 0.02 –2.e–06 0.75 –6.6e–06 0.69

pop_dens 4.e–05 0.07 7.4e–06 0.69 –3.3e–05 0.12 4e–05 0.04

female_pct –15.9 < 0.01 –11.906 < 0.01 –8.85 < 0.01 –7.086 < 0.01

area 7.7e–05 0.02 6.2e–05 0.03 1.3e–04 < 0.01 9.1e–05 0.01

vent_cap 100.7 0.39 168.9 0.08 150.56 0.10 66.6 0.52

less_HS 0.175 < 0.01 0.126 < 0.01 0.166 < 0.01 0.171 < 0.01

some_coll 0.065 < 0.01 0.039 < 0.01 0.038 < 0.01 0.030 < 0.01

tot_coll_pop 0.215 0.10 0.178 0.09 0.124 0.21 0.223 0.05

diabetes_pct 0.020 0.10 0.005 0.60 3.9e–04 0.97 0.012 0.25

relig_cong 0.030 < 0.01 0.015 < 0.01 0.013 < 0.01 0.020 < 0.01

pol_party –0.863 < 0.01 –0.381 < 0.01 –0.569 < 0.01 –0.731 0.08

ap_dist –0.005 < 0.01 –0.002 < 0.01 –0.005 < 0.01 –0.002 < 0.01

pass_load –0.003 0.44 –0.004 0.22 –0.005 0.15 –0.004 0.27

meat_plant 0.020 < 0.01 0.015 < 0.01 0.010 0.01 0.014 < 0.01

insured_pct 0.052 < 0.01 0.020 0.04 6.9e–04 0.96 –4.1e–04 0.98

gdp_pc –1.03e–04 < 0.01 –1.12e–04 < 0.01 –9.3e–05 < 0.01 –1.1e–04 < 0.01

immig_stud –2.133 0.46 0.199 0.93 0.905 0.68 –0.672 0.79

med_income –5.6e–07 0.91 –8.5e–06 0.04 –1.3e–05 0.01 6.9e–06 0.17

hosp_beds 35.1 < 0.01 17.466 0.05 14.661 0.07 18.680 0.04

smokers_pct 0.031 0.09 0.030 0.05 0.022 0.22 0.024 0.25
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TABLE 3 Model performance metrics.

Model R2 RMSE

OLS 0.4849 2.0891

SAR 0.6501 1.7454

SEM 0.6846 1.6420

Multi-level (conditional R2) 0.6615 1.8412

hierarchical clustering can rival the explanatory power of explicit

spatial lag or error terms.

It should be noted that the computation of R2 differs among

OLS, SEM, SAR, and multilevel models. Each method quantifies

explained variance in a distinctmanner. OLS employs a simple ratio

of explained to total variance. Spatial models adjust the measure to

incorporate spatial dependence. Multilevel models yield marginal

and conditionalR2 indices. This variability limits direct comparison

of model fit (43). Caution is warranted when interpreting these

metrics in epidemiologic research (35, 44). Nonetheless, comparing

the R2 from spatial models with the classical OLS R2 remains

a common heuristic for assessing the added value of spatial

dependence in public-health and spatial-econometric studies (29).

To provide a scale-invariant check, we also compute the RMSE.

The RMSE results corroborate the R2 ordering: both SEM and

SAR models outperform OLS, and the multilevel also achieves the

relative low RMSE, underscoring its predictive accuracy in this

context.

4.2 Feature analysis

In our analysis, several additional predictor variables

demonstrated significant associations with COVID-19 case rates,

offering deeper insights into the pandemic’s dynamics. This study

shows that temperature exerts a significant effect on COVID-19

incidence across models, suggesting a critical role in modulating

viral viability and social behavior (45). Conversely, precipitation’s

effect is inconsistent across models, with its statistical significance

markedly attenuated in spatial specifications compared to its

robust performance in the OLS framework. In spatial models,

the weakened precipitation coefficient suggests that spatial

autocorrelation and unobserved heterogeneity may dilute its

apparent impact (43, 46).

The proportion of young individuals consistently exhibited

a positive association with COVID-19 case rates across multiple

models. This suggests that younger populations may have higher

transmission rates, potentially due to increased social interactions

or lower adherence to preventive measures. Conversely, the

proportion of older adults showed a negative association with

case rates, indicating that areas with higher older populations

experienced lower transmission rates. This could be attributed to

stricter adherence to preventive measures among older adults or

targeted public health interventions aimed at protecting vulnerable

populations.

The percentage of residents without a high school diploma was

positively associated with COVID-19 case rates. This underscores

the role of educational attainment in health literacy and adherence

to preventive measures. Individuals with lower educational levels

may have limited access to accurate health information, leading to

behaviors that increase transmission risk.

The presence of meat processing plants was positively

associated with case rates. These facilities have been identified as

high-risk settings for COVID-19 outbreaks due to close working

conditions and challenges in implementing preventive measures

(47). Neither the percentage of smokers nor the percentage

of diabetes showed significant associations with COVID-19

transmission rates in our models. Our model indicates that their

influence on viral spread appears limited. This may indicate

that these factors primarily affect disease severity rather than

transmission dynamics. Proximity to airports was negatively

associated with case rates, indicating that areas farther from major

transportation hubs experienced lower transmission. This could be

due to reduced travel-related spread in these regions.

Across all four models, temperature shows a consistent positive

link with COVID-19 incidence in every model. This stability

holds after we correct for spatial dependence and add state-level

random effects. In contrast, precipitation looks important only in

the naïve OLS and SAR. Its influence disappears once spatial error

or hierarchical structure is considered. Social-distancing grades tell

the opposite story. They become strongly protective in the three

spatial or multilevel models, even though they were silent in OLS.

The share of young adults remains a risk factor, yet its effect shrinks

when state heterogeneity is isolated. Political affiliation follows a

similar pattern. It is significant in SAR and SEM but fades in

the multilevel model, suggesting that partisan signals act mainly

through state policy rather than local ideology. These shifts matter.

Spatial and hierarchical methods not only tighten statistical fit;

they reveal which drivers act at county vs. state scales. Ignoring

those scales can mask true climate effects, inflate behavioral signals,

and blur policy guidance. Short, scale-aware models therefore give

clearer insights for public health planning.

The analysis of these additional predictor variables provides

insights into the multifaceted factors influencing COVID-19

case rates. Demographic characteristics, socioeconomic status,

environmental settings, and health behaviors all play significant

roles in shaping transmission dynamics. Understanding these

associations is crucial for tailoring public health interventions and

resource allocation to effectively mitigate the spread of COVID-19.

4.3 GWR analysis

Beyond the global regression models, a GWR was applied

to explore spatial non-stationarity in the relationships between

COVID-19 case rates and select predictors. We focused on

environmental variables (temperature and precipitation) in the

GWR analysis, given their potential spatially varying effects on

virus transmission dynamics.

Figure 4a illustrates the spatial distribution of temperature

across the United States, with higher temperatures observed

in lower-latitude regions. Figure 4b shows the local GWR

coefficients varied substantially by region. In southeastern and

northeastern counties, coefficients reached around 0.2, indicating

a strong positive association with COVID-19 incidence. In
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FIGURE 4

Comparison of observed and GWR-derived temperature. (a) Observed temperature. (b) GWR temperature.

FIGURE 5

Comparison of observed and GWR-derived precipitation. (a) Observed precipitation. (b) GWR precipitation.

contrast, coefficients in many midwestern counties were near zero,

suggesting a limited effect of temperature in those areas. These

results imply that in regions with higher ambient temperatures,

such as the Southeast and Northeast, temperature may more

strongly modulate disease spread—possibly by influencing human

behavior and outdoor activities—than in cooler, midwestern areas.

Also, we use GWR analysis yielded revealing insights

into the relationship between precipitation and COVID-19

spread. Figure 5b indicates that the GWR-derived sensitivity to

precipitation peaks near 110◦ W. This peak is strikingly inverse

to the actual precipitation distribution shown in Figure 5a. Such

an inverse pattern is consistent with prior investigations linking

meteorological variables to viral transmission (7), which is that low

humidity in arid regions can significantly enhance the transmission

of COVID-19 (7). Moreover, GWR precipitation remains high in

the northeastern United States during periods of low incidence.

This phenomenon may imply that low case rates do not always

coincide with reduced environmental exposure to precipitation

or other weather factors. Instead, our model points to a possible

interplay of epidemiologic factors, such as population density and

mobility, with local weather conditions.

The spatial variation we observe underscores the importance of

Spatial Analysis in public health research. GWR isolates local effects

that would otherwise remain obscured by conventional Regression

Analysis techniques. The significance maps for the temperature

and precipitation coefficients are presented in Figure 7 of the

Supplementary material.

5 Discussion and conclusion

Our findings reveal that aggregated county-level data offer

powerful insights into COVID-19 transmission dynamics. By

combining daily observations, we captured long-term patterns and

mitigated short-term noise. Our results underscore the importance

of spatial heterogeneity. Counties with similar demographic traits

can exhibit divergent infection rates if regional factors differ.

We observed significant clustering based on Local Moran’s I,

confirming that infection processes follow geographic boundaries

in ways that transcend administrative units (22, 23).

We employed four distinct models for this analysis, and

the spatial model achieved the strongest performance. However,

most risk factors for COVID-19 aligned with previous findings

(48), thus reinforcing mutual validation. One key variable

was the Social Distancing grade. Counties with higher grades

demonstrated better Infection Control of Covid-19 transmission,

as shown in Figure 2c. In three spatial models, its coefficients

were negative with significant p-values, implying that rigorous

disease outbreaks control correlates with reduced spread. This

outcome also matched the pattern for age structure. Counties
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with a larger young adult proportion exhibited higher COVID-

19 incidence, possibly because youthful populations engage in

more social contact. In contrast, counties with more older adults

showed lower incidence, likely due to stricter adherence to

protective measures (49). Educational attainment also contributed

to mitigating Transmission, as higher education often increases

awareness of Public Health guidelines. Conversely, the presence

of meat plants can accelerate spread, partly because Ventilation

challenges increase risk factors for COVID-19 (50).

On the other hand, temperature and precipitation displayed an

unexpected positive association with COVID-19 in the continental

United States (Figure 2b). Prior work often suggests a negative

effect, where lower temperature and humidity boost viral activity

(7). Our cross-sectional data may fail to capture temporal

variations, especially since southern regions had higher COVID-

19 rates than northern areas. This phenomenon could reflect

other unmeasured factors. A more robust approach might involve

tracking seasonal changes within each county or state, correlating

local temperature and precipitation with COVID-19 test data. That

approach may clarify whether such climate variables truly exhibit

a positive relationship, or if they simply coincide with geographic

patterns.

Southeastern counties fall into high-high clusters (based

on Moran’s I), suggesting regional factors—such as relaxed

containment measures or high indoor congregation may amplify

transmission (23, 51). In contrast, many Northeastern counties

form low-low clusters, possibly reflecting stricter public health

interventions and a collective response informed by early

pandemic surges. This sharp disparity implies that meteorological

conditions alone cannot explain local COVID-19 dynamics.

Instead, community mitigation behaviors, policy enforcement,

and historical disease exposure likely mediate the observed

temperature sensitivity (52). Southeastern states face higher risk

due to a combination of elevated ambient temperature and fewer

preventive measures, whereas Northeastern regions benefit from

aggressive social distancing, targeted resource allocation, and

entrenched healthcare infrastructure. These findings underscore

the importance of examining not just climate variables, but also the

broader social and policy context that shapes disease incidence and

progression.

GWR-derived sensitivity to precipitation peaks near 110◦ W,

contrasting sharply with the actual rainfall distribution. We posit

that dryness may prolong aerosol persistence, thus amplifying viral

transmission (7, 51). Arid regions often lack adequate ventilation

and well-enforced preventive strategies, which can further intensify

pathogen circulation indoors (53). Evidence also suggests low

humidity can accelerate respiratory disease spread, highlighting the

joint influence of climate and public health measures (7).

The multilevel analysis showed that political party,

precipitation, and young people proportion lost significance

once state-level variation was introduced, even though they had

been significant in a pure spatial framework (see Table 2). This

outcome suggests that state policies or macro-level conditions

overshadow county-level effects. Politics and Public Policy can

drive far-reaching changes in healthcare access, education, and

resource distribution, explaining why political affiliation lost

direct impact under random intercepts. Likewise, Precipitation

might reflect broader environmental or funding patterns that are

better modeled at higher tiers. Young Adult attributes vary more

by statewide initiatives than by local differences. This approach

helps partition the variance between states and counties, revealing

that local variables can appear significant in spatial models but

become overshadowed when broader legislative frameworks are

accounted for (54). In terms of fit, R-square and RMSE improved

notably compared to standard OLS, though differences from SAR

or SEM were modest. Future analyses may require refined data on

State Government interventions, such as healthcare subsidies or

demographic programs. These findings align with Health Services

Research that emphasizes the interplay between state mandates

and local demographics. Such insights underscore the importance

of incorporating multiple administrative layers to advance robust

public health strategies.

These results lead to some clear policy actions. First,

position mobile vaccination and booster clinics in GWR-identified

hotspots—counties that combine high temperature, low humidity,

and poor distancing—to curb cluster growth (55). Second, require

state health agencies to operate a real-time dashboard that tracks

county-level distancing grades, testing volume, and hospital load,

triggering rapid resource shifts whenever thresholds are breached

(56). Third, enforce seasonal ventilation upgrades and routine

screening in meat plants, airports, and other crowded workplaces

within arid regions, where warm, dry air prolongs aerosol

persistence (50). These targeted, scale-aware measures translate our

statistical evidence into actionable public health practice.

In conclusion, this work demonstrates that a multi-method

strategy can deliver robust, nuanced conclusions for public

health research. Aggregation into county-level cross-sectional

data reduces day-to-day noise. Our framework begin with an

OLS baseline, we quickly observe that spatial dependence biases

standard errors, prompting the use of SAR and SEM that better

account for near-county interactions (31). Spatial econometric

models reveal the contagious nature of infection. Hierarchical

models highlight state-level heterogeneity. GWR documents local

variability in weather effects. Together, these findings underscore

the critical importance of tailored interventions, especially when

addressing diverse populations and regions. Policy makers should

integrate spatial, demographic, and hierarchical insights to allocate

resources effectively. Future studies may refine this framework by

incorporating real-time data, testing intensities, or contact-tracing

metrics. This layered and statistics-based approach paves the way

for evidence-based decision-making and more precise control of

emerging pandemics.

6 Limitations and future work

In our framework, social distance total grade, social distancing

encounters grade, and social distancing travel distance grade, the

mean values were calculated across the study period. Static county-

level attributes (e.g., demographic, socioeconomic, and health

system indicators) remained unchanged. Each county serves as

a single aggregated observation, reducing short-term noise and

random measurement error, highlighting long-term trends, and

aligning analyses with policy-relevant administrative boundaries.

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1608360
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bao et al. 10.3389/fpubh.2025.1608360

This aggregation also mitigates temporal autocorrelation, enabling

a clearer focus on spatial heterogeneity.

However, reliance on aggregated county-level summaries can

obscure temporal variability and introduce ecological fallacy,

limiting the ability to detect short-lived spikes or lagged effects

that are critical for timely intervention efforts (57, 58). Our next

work will focus on adopting a fine-grained time-series framework

to capture dynamic social distancing fluctuations at the county level

and address the biases introduced by aggregation.

Additionally, our analysis omits the effects of COVID-

19 vaccination campaigns and the dynamic influence

of emerging SARS-CoV-2 variants—potentially biasing

estimates of social distancing efficacy (55, 59). In future

work, we will update our county-level dataset with dynamic

vaccination coverage and variant prevalence metrics and

leverage fine-grained time-series analyses to address these

shortcomings.
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