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Traditional sleep staging using contact sensors may compromise data validity. 
This study proposes a non-contact ballistocardiogram (BCG)-based method 
to improve both accuracy and comfort in sleep monitoring. BCG signals were 
processed using continuous wavelet transform and low-pass filtering to extract 
heart rate variability (HRV) and respiratory rate variability (RRV). A novel feature 
selection model integrating attention mechanisms with XGBoost was developed, 
where attention weights are used to prioritize features before iterative refinement 
by XGBoost. Evaluated on 10,201 sleep segments, the Fast-ABC Boost model 
achieved an accuracy of 89.85%, along with superior precision, recall, F1-score, and 
Kappa values compared to conventional methods. The attention-XGBoost fusion 
effectively mitigates interference from noisy and redundant features while optimizing 
feature relevance, demonstrating robust adaptability to the complexity of sleep 
signals. This innovation advances the accuracy non-contact sleep staging, enabling 
practical applications in home healthcare and personalized sleep management, 
while improving user comfort.
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1 Introduction

In recent years, as the pace of modern life has accelerated, sleep patterns have undergone 
significant changes, leading to a continuously rise in the incidence of sleep-related disorders 
(1). In clinical practice, physiological indicators from different sleep stages are widely used to 
diagnose and monitor sleep disorders, assess sleep quality, and provide crucial support for 
developing of scientific treatment plans and intervention strategies. Accurately distinguishing 
and identifying each sleep stage is not only essential for gaining a deeper understanding of 
sleep mechanisms, but also a key aspect of improving the management of sleep disorder and 
enhancing individual health. In 2007, the American Academy of Sleep Medicine (AASM) 
released the latest sleep staging guidelines, which divide sleep into five stages: wakefulness 
(Wakefulness, W), rapid eye movement (Rapid Eye Movement, REM) sleep, and three 
non-rapid eye movement (Non-Rapid Eye Movement, NREM) stages (N1, N2, N3) (2), as 
shown in Figure 1. Based on this standard, current sleep research typically divides the entire 
sleep process into 30-s intervals, labeling each interval with the corresponding sleep stage to 
facilitate subsequent analysis.
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Traditional studies have shown that heart rate variability (HRV) 
features play a crucial role in sleep stage monitoring, and these HRV 
features are typically extracted from electrocardiogram (ECG) signals. 
HRV analysis from ECG has been used to study sleep, revealing that 
the low-frequency HRV power and heart rate are lower during deep 
sleep compared to REM sleep (3). Following this successful study, 
other researchers proposed sleep stage estimation algorithms based 
on ECG-derived HRV (4, 5). However, these methods require multiple 
electrodes to be  directly attached to the patient’s skin during 
measurement (6–8), which can cause inconvenience in daily life. From 
the perspective of sleep research, long-term non-invasive HRV 
monitoring holds significant value.

Ballistocardiogram (BCG) signals reflect cardiac activity. Unlike 
ECG, BCG can be  measured non-contact using pressure sensors, 
without the need for direct electrode contact with the body, and the 
equipment is low-cost. Studies (9–11) have demonstrated good 
consistency between BCG and ECG signals in HRV analysis through 
comprehensive statistical analysis. Therefore, using BCG signals for 
high-accuracy sleep staging offers important research value.

Currently, various types of sensors are used to collect BCG signals, 
such as chairs (12), weight scales (13), and sheet sensors (14). Among 
them, sheet sensors (15) have emerged as the ideal choice for sleep 
studies, as they can be  placed directly under the mattress to 
continuously monitor heart rate during sleep.

A typical BCG signal contains multiple peaks, such as H, I, J, K, L, 
M, etc. (16, 17), as shown in Figure 2. The I-J-K waves in the BCG 
waveform are the main components and are typically used as features 
for detecting heartbeats.

BCG signal processing aims to extract heartbeat and respiratory 
information, which are crucial for sleep staging. Digital filtering is a 
widely used, efficient, and reliable method. For instance, Alvarado-
Serrano et al. (18) employed continuous spline wavelet transform to 
reconstruct heartbeat signals and estimated heart rate using an 
adaptive threshold method. Thirion et  al. (19) applied a moving 
average filter and a Butterworth IIR filter to extract heart rate signals. 
Liu et  al. (20) optimized the parameters of variational mode 
decomposition (VMD) to analyze heart rate signals from fiber Bragg 

grating sensors. Wu et al. (21) designed an adaptive soft filter with 
convolution kernels of varying sizes to extract heartbeat waveforms. 
Sadek et al. (22) compared MODWT, CWT, and template matching 
for heart rate detection, finding that CWT with a Gaussian function 
performed best, while MODWT was the most time-efficient.

Most studies utilize heart rate variability (HRV) features extracted 
from BCG signals for sleep staging. Suliman et al. (23) and Mitsukura 
et al. (24) employed template matching and SVM models for five-stage 
classification based on HRV features. Liu et al. (25) analyzed heartbeat 
intervals and HRV features for both two-stage and four-stage sleep 
staging, while Yoshihi et al. (26) incorporated body movement data to 
improve stage estimation. Meanwhile, BCG signals also provide 
respiratory information (27), which can be used to extract respiratory 
rate variability (RRV) features. Yi et al. (28) and Wu et al. (29) integrated 
HRV and RRV features for multi-stage sleep classification using 
machine learning models, while Ahmed et al. (30) further incorporated 
motion data from BCG signals for sleep–wake classification using deep 
learning techniques. The combination of HRV and RRV features has 
demonstrated potential in enhancing sleep staging accuracy.

Despite significant progress in sleep staging based on BCG signals, 
several challenges remain. BCG signals are highly susceptible to 
individual differences and external noise due to their dependence on 
body movements and cardiac mechanical activities. In high-noise 
environments, signal contamination or loss can hinder heartbeat 
extraction. Additionally, real-world BCG datasets often suffer from 
severe class imbalance, with the N2 stage typically accounting for 
more than 40%, while the N1 stage represents less than 5%.

To address above challenges, this study proposes a sleep staging 
method based on BCG signals and the Fast-ABC Boost model, which 
prioritizes misclassified minority classes to enhance overall 
classification performance. Furthermore, an attention mechanism 
combined with the XGBoost algorithm is introduced for feature 
selection, enhancing robustness against noise and imbalanced data. 
Experimental validation on a BCG-based sleep staging dataset 
demonstrates the superiority of this approach compared to traditional 
feature selection techniques. As shown in Figure  3, the proposed 
framework consists of following main components:

 1 Separation of Heart Rate and Respiratory Signals: The first step 
involves using multi-scale continuous wavelet transform 

FIGURE 1

Sleep staging guidelines released by AASM.

FIGURE 2

Schematic diagram of BCG signal waveform.
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(CWT) and a low-pass Butterworth filter to separate the heart 
rate and respiratory signals from the original BCG signals. 
Next, the signal is divided into 30-s intervals, and the positions 
of the characteristic peaks are extracted to calculate the first-
order difference, thus forming the JJi and BBi sequences.

 2 Feature Extraction and Selection: Based on the JJi and BBi 
sequences, multi-dimensional HRV and RRV features are 
extracted through analysis and calculation. Long-term 
features are then extracted using extended time windows. An 
attention mechanism, combined with the XGBoost algorithm, 
is applied to mitigate the impact of redundant and noisy 
features, while selecting the most critical features for 
sleep staging.

 3 Class Imbalance Handling and Model Evaluation: The BCG 
sleep data were collected from 10 subjects, with full-night 
recordings from each. The data were combined into a single 
dataset and randomly split into training and testing sets. To 
address class imbalance, SMOTE (Synthetic Minority Over-
sampling Technique) was applied to augment the minority 
class in the training set. The Fast-ABC Boost model was 
then used to evaluate performance on the real-world 
sleep data.

2 Methods

2.1 Data preprocessing

2.1.1 Heart rate signal processing
BCG signals (as shown in Figure 4) are highly sensitive to both 

external and internal factors, and their characteristics are significantly 
influenced by individual differences and temporal variations. 
Physiological factors such as body constitution, weight, and cardiac 
structure of different individuals can affect the intensity and morphology 
of BCG signals. Additionally, even within a single individual, over time, 
BCG signals are influenced by dynamic factors such as breathing 
patterns, posture changes, and position adjustments, which can lead to 
increased signal volatility, making it challenging to construct a robust 
temporal representation model. Furthermore, BCG signals are highly 
susceptible to environmental noise, device vibrations, and external 
interference during the acquisition process, which can significantly 
deteriorate the quality of the data (31). The analysis of heart rate signals 
typically relies on the accurate detection of the J-peak within the 
heartbeat cycle. By obtaining the J-peak location and calculating the 
first-order difference, the heartbeat interval sequence can be obtained 
for further HRV analysis.

FIGURE 3

Diagram of sleep staging method based on BCG signal.
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To effectively extract heart rate event information from the BCG 
signal and adapt flexibly to its multi-frequency characteristics, this 
study uses a multi-scale continuous wavelet transform (CWT) filtering 
method. By generating CWT decompositions at different scales, the 
scale with the largest combined energy and variance is selected for 
feature extraction.

To precisely locate the J-peak, a reasonable heart rate peak 
detection mechanism is set up. First, the height of the smallest peak 
is set to be greater than the average value of the positive portion, 
which effectively filters out low-amplitude interference signals. 
Then, the significance of the peak is set as 0.3 times the standard 
deviation, which filters out insignificant peaks and ensures that the 
detected peaks are more reliable. Next, the peak interval is set to 

be between 0.4 and 1.4 s to capture transient heart rate fluctuations 
caused by noise or interference, avoiding the omission of critical 
heart rate information. Finally, the position of the J-peak is 
extracted from the heart rate signal. The results are shown in 
Figure 5.

To eliminate random errors caused by electrode contact issues 
and abnormal pulsations, an outlier handling method was designed. 
First, the first-order difference of all J-peak positions within a 30-s 
segment is calculated to generate the JJi sequence, and the average 
value of the sequence is computed. Then, outliers that are smaller 
than 0.3 times the average value and larger than 1.5 times the average 
value are removed and replaced with the average value of 
the sequence.

FIGURE 5

Visualization of peak extraction from heart rate signal features.

FIGURE 4

Visualization of raw BCG signal.
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2.1.2 Respiratory signal processing
To effectively extract respiratory event information from the BCG 

signals, this study employs a Butterworth low-pass filter, with a cutoff 
frequency set at 0.5 Hz and using bidirectional filtering to effectively 
separate the respiratory signals from the BCG data. Then, by directly 
setting the distance threshold to 2 s, peak points are successfully 
extracted (the results are shown in Figure  6), and the first-order 
difference of all peak positions is calculated, forming the BBi sequence.

2.2 Feature extraction and feature selection

2.2.1 Feature extraction method based on 
multi-scale time window

This study adopts a multi-scale time window method to extract 
time-domain features at different time scales and explores the 
potential relationship between these features and sleep stages. By 
extracting time-domain features from longer time-scale windows, the 
long-term trends, state transitions, and physiological changes in the 
sleep signal can be analyzed more comprehensively. This approach 
helps capture the dynamic characteristics of sleep cycles, thereby 
improving the accuracy and robustness of sleep stage recognition. 
Therefore, this study concatenates each 30-s time segment with the 
subsequent 1, 3, 9, and 19 segments (representing 1-, 2-, 5-, and 
10-min time series, respectively), from which time-domain features 
are extracted. This multi-scale time-domain feature extraction method 
aims to reveal the temporal patterns of sleep signals at different time 
scales, providing richer information for more precise classification of 
sleep stages.

2.2.2 Attention mechanism for weighted feature 
selection

The attention mechanism is a key concept in the field of deep 
learning, inspired by the way biological systems in humans focus on 
important features when processing large amounts of information. By 
emulating this mechanism, models can better focus on task-relevant 

information when handling complex data (32). This allows the model 
to dynamically prioritize important features and reducing reliance on 
irrelevant ones.

In this study, multiple fully connected layers (Dense Layers) are 
used to learn more complex feature mappings, assigning weight values 
to each feature. BatchNormalization is added after each Dense layer 
to normalize activations, helping to improve training speed and 
stability. A Dropout layer is then included to reduce overfitting. 
Finally, a sigmoid activation function is used to ensure that the weights 
are between 0 and 1, reflecting the relative importance of each feature 
in the model. Features with higher weights receive more attention, 
while features with lower weights have less influence. This weighting 
mechanism allows the subsequent feature selection model to filter 
features more accurately, focusing on learning the most important 
features for the task and avoiding interference from noisy features 
during model training.

2.2.3 XGBoost-based feature selection for 
high-dimensional HRV and RRV data

High-dimensional HRV and RRV features can be extracted from 
the JJi and BBi sequences of 30-s and longer time segments through 
mathematical analysis. However, these features often contain a 
significant amount of noise and redundancy. On the one hand, 
certain individual features contribute little to model accuracy and 
may even have a negative impact on performance, and are thus 
considered noise features. On the other hand, different physiological 
features may exhibit similar variation trends within the same sleep 
stage, leading to a certain degree of redundancy among features. 
Therefore, this study adopts the XGBoost algorithm for feature 
selection (33). The core idea of XGBoost is to optimize the model by 
minimizing the objective function, which consists of a loss function 
and a regularization term, as defined in Equation (1):
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= =
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FIGURE 6

Visualization of peak extraction from respiratory signal features.
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where ( )ˆ,i iL y y  is the loss function, representing the error between 
the true value iy  and the predicted value ˆiy ; ( )kfΩ  is the regularization 
term used to control the model’s complexity and prevent overfitting. In 
the optimization process, XGBoost approximates the loss function 
through a second-order Taylor expansion, as defined in Equation (2):

 
( ) ( ) ( ) ( )θ

=

 ≈ + +Ω  
∑ 2

1

1
2

n

i i i i
i

Obj g f x h f x f
 

(2)

where ig  and ih  are the first-order and second-order derivatives, 
representing the gradient and curvature, respectively, and they help 
the model converge more quickly. The XGBoost algorithm calculates 
the weight of each feature.

To ensure that the selected feature set is both representative and 
effectively captures important information related to the research 
objective, this study first applies the attention mechanism for feature 
weighting. The weighted features are then input into the XGBoost 
algorithm for feature selection. After obtaining the weight of each 
feature, the features are sorted by their weights, and those whose 
weight proportions exceed a certain threshold are selected. Next, a 
dynamic feature set update strategy is employed, where the selected 
features are re-input into the algorithm for further iterative calculation, 
gradually refining the feature set. This process effectively avoids 
interference from low-weight or noisy features on the calculation 
results of high-weight features and helps retain the features most 
influential to model performance. The process flow diagram of this 
method is shown in the Figure 7.

2.3 INFO algorithm for optimizing 
parameter selection and enhancing model 
generalization

To reduce the impact of parameter combinations on model 
training performance, this study adopts the Weighted Mean of 

Vectors algorithm (INFO) (34), which aims to enhance the 
model’s generalization ability by optimizing its parameter 
configuration. The algorithm is based on the principle of weighted 
mean and updates the positions of the vectors through three key 
steps: update rules, vector combination, and local search. First, in 
the update rule stage, the algorithm combines the mean method 
with the convergence acceleration principle to generate new 
optimized vectors, thereby enhancing the stability and 
convergence speed of the search process. Next, in the vector 
combination stage, the optimized vectors obtained from the 
update rule are combined with the original vectors using a 
weighted approach, enhancing the information extension and 
development capability to improve global optimization 
performance. Finally, in the local search stage, the algorithm uses 
global position information and the weighted mean strategy to 
perform a local search, effectively avoiding the trap of local 
optima and ensuring that the search process moves toward the 
global optimal solution. This optimization algorithm not only 
enhances the model’s search capability in high-dimensional spaces 
but also improves its robustness and generalization ability in 
complex tasks.

2.4 SMOTE for addressing class imbalance 
in sleep stage data

To address the issue of class imbalance in the data samples due to 
the low proportion of the N1 stage during the sleep cycle, this study 
employs the Synthetic Minority Over-sampling Technique (SMOTE) 
(35) for feature augmentation. The advantages of the SMOTE feature 
augmentation method are as follows: First, it generates new synthetic 
sample points by interpolating between minority class samples rather 
than simply replicating existing minority class samples. Second, in the 
feature space, the method selects several nearest neighbors of a 
minority class sample and generates new samples via linear 

FIGURE 7

Architecture diagram of a feature selection model based on attention mechanism combined with XGBoost.
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interpolation between the sample and these neighbors. The formula 
for SMOTE is defined in Equation (3):

 ( )λ= + × −NN
i i iNew Sample X X X

 
(3)

where iX  is the minority class sample, NN
iX  is its nearest neighbor, 

and λ is a random number between 0 and 1, representing the 
interpolation ratio. This approach increases the number of minority 
class samples while retaining the original distribution of the data, thus 
avoiding the overfitting thus avoiding the overfitting that may result 
from simply duplicating minority class samples.

2.5 Sleep staging based on fast-ABC boost

To address the problem of low accuracy in traditional classifiers, this 
study proposes a classifier modeling strategy based on Fast-ABC Boost 
(36). This model is an iterative algorithm that integrates a series of weak 
classifiers (regression trees) and selects appropriate base classes during the 
iteration process, achieving strong classification performance. 
Equation (4) defines the first derivative of the loss function with respect 
to the base class, while Equation (5) defines the second derivative.

 
( ) ( )∂

= − − −
∂ ,0 ,0 , ,

,

i
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Where ,i kF  represents the probability of the ith sample belonging 

to category k. ∂ ∂ ∂
∂

i
,

i,k

L /
F i i kL F  denotes the first derivative of the loss 

function iL  with respect to the base class ,i kF , providing gradient 
information about the loss function with respect to the base class. This 
guides the algorithm to adjust the direction under the current category 

probabilities to minimize the loss. 
∂

∂ ∂
∂

2
2 2i

,2
i,k

L /
F

i i kL F  represents the 
second derivative of the loss function iL  with respect to the base class 
, i,kFi kF , providing curvature information of the loss function and 

helping to select an appropriate step size, accelerating the convergence 
of the algorithm. By integrating these derivatives, the base class 
selection algorithm can adjust the category probabilities in time 
during the iteration process to optimize model performance. This 
allows the algorithm to make more informed decisions during the tree 
splitting process, thus improving the robustness and accuracy of the 
model. Compared to the traditional ABCLogitBoost, which uses an 
“exhaustive search” strategy, the Fast-ABC Boost algorithm improves 
computational efficiency and enhances model robustness by 
introducing three new parameters for smarter and more efficient base 
class selection. In ABCLogitBoost, base class selection is performed 
through exhaustive search, where the algorithm tries each class as a 
base class and selects the one that minimizes the training loss. 
Fast-ABC Boost introduces the “s-worst class” strategy: During each 
iteration, the algorithm only selects the best-performing class from the 
s worst-performing classes (where 1 ≤ s ≤ K, and K is the total 
number of classes). Additionally, Fast-ABC Boost introduces the “gap” 

parameter g and the “warm-up” parameter w to optimize the 
frequency of base class selection. Base class selection begins after w 
iterations of warm-up, and then the search is performed once every 
g + 1 iterations. This reduces the frequency of base class selection, 
lowering computational costs, while maintaining model efficiency 
without significantly affecting classification performance. By 
appropriately setting the parameters s, g and w, Fast-ABC Boost can 
achieve better classification performance than the exhaustive strategy, 
demonstrating superior robustness and efficiency in multi-class tasks.

In this study, the dataset is randomly divided into a training set 
and a test set in an 8:2 ratio. The INFO algorithm is used for systematic 
tuning of the model’s hyperparameters. By testing each possible 
s-worst class option as the base class selection scheme, the aim is to 
minimize the impact of parameter combinations on model 
performance and generalization. Once the optimal hyperparameters 
are determined, they are fixed and used in all subsequent experiments. 
To obtain a robust and realistic estimate of model performance, 
we further conduct five-fold cross-validation across the entire dataset 
using the selected parameter configuration. Final performance metrics 
are reported as the average across all five folds.

3 Experiment

3.1 Dataset description

The BCG data utilized in this study were provided by Bobo 
Technology (Suzhou) Co., Ltd., in collaboration with the affiliated Sir Run 
Run Shaw Hospital. The project received ethical approval from the Ethics 
Committee of Sir Run Run Shaw Hospital, Zhejiang University School of 
Medicine (Approval No. 20190520-67). The raw signal data were collected 
from 10 independent recordings using a BCG-based sleep monitoring 
device (Model: MD-EA, Medical Device Registration No. 20232070772). 
Each recording captured a full night of sleep from a different subject, with 
an average wake time of 1.02 ± 0.78 h, an average sleep time of 
7.84 ± 1.43 h, and an average total monitoring duration of 8.86 ± 0.74 h. 
The study population consisted of 10 healthy individuals (3 males and 7 
females), with an average age of 28 years. All participants were in good 
physical condition with no known health issues. All data were manually 
calibrated by three licensed physicians from Sir Run Run Shaw Hospital, 
affiliated with Zhejiang University’s Medical College. Sleep stages were 
annotated in 30-s epochs. Any segments with inconsistent annotations 
among the three physicians were considered invalid and subsequently 
excluded from the dataset. After this rigorous validation process, a total 
of 10,201 valid sample data points were retained for analysis. Details of 
the dataset parameters are summarized in Table 1.

TABLE 1 Sleep sample data statistics.

Number category Value

WK 1,082 (10.61%)

REM 2,183 (21.40%)

NREM (N1) 442 (04.33%)

NREM (N2) 4,414 (43.27%)

NREM (N3) 2080 (20.39%)

Total 10,201 (100%)
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3.2 Evaluation index

To evaluate the performance of the models in the sleep staging 
task, this study employed accuracy (ACC), precision (PRE), recall, 
F1-score, and Cohen’s kappa as evaluation metrics. The calculation 
methods for these metrics are presented in Equations (6–12).

 
+

=
+ + +

TP TNAccuracy
TP FP TN FN  

(6)
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=
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p
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Where True Positive (TP) refers to the number of samples that are 
correctly classified as category i. False Negative (FN) refers to the 
number of category i samples that are misclassified as not belonging 
to category i. False Positive (FP) refers to the number of non-category 
i samples that are misclassified as belonging to category i. True 
Negative (TN) refers to the number of samples correctly identified as 
not belonging to category i.

4 Results

4.1 Feature selection

This study is based on the first-order difference of the peak 
position sequences of heart rate and respiratory signals in 30-s and 
longer time segments. A feature extraction method based on the 
JJi and BBi sequences is designed to explore their application in the 
analysis of heart rate variability (HRV) and respiratory rate 
variability (RRV) feature sequences. We  comprehensively 
considered various HRV and RRV features, including time-
domain, frequency-domain, non-linear domain, complexity index, 
Poincaré plot geometry, and long-time window time-domain 
features. These features can more comprehensively characterize 
the complex variations in physiological signals and reflect the 
long-term trends of sleep. A total of 232 HRV and RRV features 
were extracted, as detailed in Table 2. To further select HRV and 
RRV features that are strongly correlated with different sleep 
stages, feature selection was conducted using an attention 
mechanism combined with the XGBoost algorithm. The 
parameters were determined by the INFO algorithm, with the 

following settings: (Number of iterations: 3, Weight ratio: 0.796). 
Ultimately, 70 features were selected, and their weights are shown 
in Figure 8.

4.2 Model performance evaluation

The parameters of the Fast-ABC Boost model were obtained using 
the INFO algorithm during hyperparameter tuning on the initial 8:2 
split. To ensure consistency and minimize the influence of parameter 
combinations, the selected configuration is fixed and applied to all 

TABLE 2 HRV and RRV feature statistics.

Count Feature

34 Time domain features

 10 Mean, Median, Max, Min, and MAD for the JJ sequence and 

BB sequence.

 12 RMSSD, SDNN, SDSD, CVNN, CVSD, and RMSA for the JJ 

sequence and BB sequence.

 4 NN20, PNN20, NN50, and PNN50 for the JJ sequence.

 4 Mean, Min, Max, and Std for the HR sequence.

 4 TINN and HTI for the JJ sequence and BB sequence.

44 Frequency domain features

 16 LF, HF, MF, VL, TF, TLF, ULF, and Ttlpwr for the JJ sequence 

and BB sequence.

 10 LFf, HFf, MFf, TLFf, and TFf for the JJ sequence and BB 

sequence.

 8 LFn, HFn, MFn, and TLFn for the JJ sequence and BB 

sequence.

 6 LFHF, MFLF, and TLFLF for the JJ sequence and BB sequence.

 4 HFmaxf and HFamp for the JJ sequence and BB sequence.

14 Characteristics of the poincaré plot geometry

 8 SD1, SD2, SD1SD2, and S for the JJ sequence and BB sequence.

 6 CVI, CSI, and CSI_Modified for the JJ sequence and BB 

sequence.

14 Indices of heart rate asymmetry

 14 GI, C1d, C1a, SD1d, SD1a, C2d, C2a, SD2d, SD2a, SD2I, Cd, 

Ca, SDNNd, and SDNNa for the JJ sequence.

2 Indices of complexity

 2 SampEn for the JJ sequence and BB sequence.

124 Time series characteristics under multi-scale time windows

 48 Mean, Median, Mode, Max, Min, and MAD for the JJ 

sequenceand BB sequence in the i-minute time window (i = 1, 

2, 5, 10).

 56 RMSSD, SDNN, SDSD, CVNN, CVSD, SDANN, SDNNI for 

the JJ sequence and BB sequence in the i-minute time window 

(i = 1, 2, 5, 10).

 4 PNN50 for the JJ sequence in the i-minute time window (i = 1, 

2, 5, 10).

 16 Mean, Min, Max, and Std for the HR sequence in the i-minute 

time window (i = 1, 2, 5, 10).
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subsequent experiments. The final hyperparameter settings are as 
follows: (Learning rate: 0.4546, Maximum number of iterations: 645, 
Search: 3, Gap: 19, Warm-up: 34). To provide a robust and 
generalizable evaluation, all performance metrics reported below were 
obtained through five-fold cross-validation conducted on the entire 
dataset. The experimental groups are set as follows:

 • Experiment 1: Validation and evaluation of the datasets using 
HRV and RRV features, with results shown in Table 3.

 • Experiment 2: Validation and evaluation of the datasets using 
HRV and RRV features within long time windows, with results 
shown in Table 4.

 • Experiment 3: Validation and evaluation of the datasets using 
HRV and RRV features within long time windows, followed by 
dimensionality reduction using the feature selection framework 
proposed in this study, with results shown in Table 5.

 • Experiment 4: Validation and evaluation of the datasets using 
HRV and RRV features within long time windows, followed by 
dimensionality reduction using the feature selection model and 
mainstream linear and nonlinear dimensionality reduction 
models, as shown in Table 6.

5 Discussion

This study establishes the mapping relationship between BCG 
signal data and sleep stages by analyzing and extracting high-
dimensional HRV and RRV features from the BCG signals, thereby 
linking the signal data to the corresponding sleep stages. 
Additionally, this study introduces long-time window features to 
better capture the long-term trends in sleep. Through the feature 
selection framework that combines the attention mechanism and 
XGBoost, the majority of the selected features are long-time window 
features. This underscores the importance of feature extraction using 
longer time window, which can capture the dynamic changes in 
biological information and better represent the sequential 
relationship of sleep as a continuous event, thus deepening the 

understanding of sleep staging. In experiments using high-
dimensional HRV and RRV features, an accuracy of 57.90% was 
achieved. When incorporating long-time window features, the 
accuracy increased to 84.02%, representing a 26.12% improvement 
compared to using only 30-s window features. This highlights the 
critical role of long-time window features in enhancing sleep 
staging performance.

Moreover, different feature combinations can influence the 
performance of the classifier in sleep staging. In experiments 
comparing HRV and RRV features before and after dimensionality 
reduction, the dimensionality-reduced dataset achieved an accuracy 
5.83% higher than the original, non-reduced dataset. This indicates 
the presence of redundant and noisy features in the high-dimensional 
data, which can negatively affect model performance and 
generalization ability, thus demonstrating the necessity of 
feature selection.

To rigorously evaluate the effectiveness of our proposed 
attention-based XGBoost feature selection framework, we  first 
conducted a comprehensive evaluation using a variety of mainstream 
feature selection and dimensionality reduction techniques, as 
summarized in Table 6. Among traditional linear methods, PCA and 
ICA achieved classification accuracies of 59.03 and 59.19%, 
respectively. LDA performed slightly better at 62.07% due to its 
supervised nature. However, these methods showed limited 
performance, likely because they rely on global projections that are 
not robust to irrelevant or noisy features commonly present in high-
dimensional HRV and RRV data. Similar limitations were observed 
in nonlinear dimensionality reduction methods. For example, t-SNE 
produced the lowest accuracy (49.76%) among all methods. This is 
expected, as t-SNE is primarily designed for visualization purposes 
rather than classification—it prioritizes preserving local structure 
while potentially distorting global relationships. In contrast, other 
nonlinear methods such as Autoencoder (72.06%), LLE (73.92%), 
and MDS (68.96%) performed better, although still inferior to feature 
selection-based approaches. These methods can capture nonlinear 
patterns to some extent, but often fail to eliminate irrelevant or 
redundant features, leading to suboptimal classification outcomes. 

FIGURE 8

Analysis of sleep stage feature weights.
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TABLE 6 Performance evaluation of feature selection model.

Method Evaluation index

ACC PRE Recall F1 Kappa

PCA 59.03% 43.83% 52.25% 45.81% 52.27%

ICA 59.19% 43.64% 52.26% 45.61% 52.19%

LDA 62.07% 57.04% 58.43% 57.41% 54.35%

t-SNE 49.76% 40.58% 42.13% 41.10% 39.23%

Autoencoder 72.06% 58.90% 63.11% 60.25% 66.43%

LLE 73.92% 62.02% 66.24% 63.61% 68.61%

MDS 68.96% 55.04% 60.92% 56.86% 62.95%

Lasso 86.15% 72.72% 78.12% 74.01% 83.31%

RFE 86.70% 75.45% 78.62% 76.62% 83.90%

ReliefF 85.27% 75.02% 77.47% 75.87% 82.07%

XGBoost 87.05% 74.56% 79.88% 76.19% 84.39%

Ours 89.85% 78.15% 83.25% 79.88% 87.74%

Feature selection methods, including Lasso (86.15%), RFE (86.70%), 
ReliefF (85.27%), and XGBoost (87.05%), explicitly rank and retain 
only the most informative features, avoiding the dilution of useful 
signals. These methods have demonstrated consistently better 

performance, highlighting the importance of targeted feature filtering 
over general-purpose dimensionality reduction in noisy 
physiological datasets.

The proposed method achieved the best overall performance, 
with an accuracy of 89.85%, outperforming all baseline methods. A 
key innovation lies in the integration of an attention mechanism with 
the XGBoost algorithm for feature selection. Specifically, the attention 
mechanism assigns adaptive weights to each high-dimensional HRV 
and RRV feature, emphasizing features more relevant to the sleep 
stage classification task. These weighted features are then input into 
the XGBoost model, which performs feature selection based on its 
tree-based importance metrics. Unlike conventional one-pass 
approaches, the propose method incorporates a multi-round iterative 
refinement mechanism, wherein attention-based weighting and 
XGBoost-based ranking are repeatedly updated. This iterative 
strategy enables progressive suppression of irrelevant or redundant 
features while reinforcing the influence of informative attributes. 
These design choices make our method highly robust to the 
challenges inherent in BCG-derived HRV and RRV features, which 
are often high-dimensional and noisy. As a result, the proposed 
framework is particularly effective in isolating features that are 
strongly correlated with transitions between sleep stages, thus 
improving not only classification accuracy but also the interpretability 
and reliability of physiological signal analysis.

TABLE 3 Sleep staging results using HRV and RRV features.

Confusion matrix Sleep stage performance Overall performance

N1 N2 N3 REM W Recall PRE F1

N1 11 249 35 95 52 02.49% 11.00% 04.06% ACC 57.90%

N2 39 3,361 459 424 131 76.14% 60.42% 67.37% PRE 44.21%

N3 9 909 972 138 52 46.73% 57.72% 51.65% Recall 48.12%

REM 29 788 149 1,046 171 47.92% 54.14% 50.84% F1 47.25%

W 12 256 69 229 516 47.69% 55.97% 51.50% Kappa 50.01%

TABLE 4 Sleep staging results using HRV and RRV features from long time windows.

Confusion matrix Sleep stage performance Overall performance

N1 N2 N3 REM W Recall PRE F1

N1 50 287 18 50 37 11.31% 23.04% 15.17% ACC 84.02%

N2 87 3,983 157 118 69 90.24% 82.60% 86.25% PRE 70.30%

N3 11 279 1735 32 23 83.41% 89.29% 86.25% Recall 73.47%

REM 26 127 11 1987 32 91.02% 88.63% 89.81% F1 71.34%

W 43 146 22 55 816 75.42% 83.52% 79.26% Kappa 80.74%

TABLE 5 Sleep staging results using dimensionality-reduced HRV and RRV features from long time windows.

Confusion matrix Sleep stage performance Overall performance

N1 N2 N3 REM W Recall PRE F1

N1 116 252 3 34 37 26.24% 49.36% 34.27% ACC 89.85%

N2 63 4,143 111 61 36 93.86% 87.87% 90.77% PRE 78.15%

N3 1 165 1901 6 7 91.39% 93.74% 92.55% Recall 83.25%

REM 9 53 0 2,115 6 96.89% 94.17% 95.51% F1 79.88%

W 46 102 13 30 891 82.35% 91.20% 86.55% Kappa 87.74%
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6 Conclusion

This paper proposes a feature dimensionality reduction 
method based on BCG sleep staging technology to enhance the 
accuracy of sleep staging. High-dimensional HRV and RRV 
features extracted from BCG signals are used in conjunction with 
an attention mechanism and the XGBoost algorithm to select 
appropriate feature combinations for sleep staging research. Since 
BCG signals are an indirect recording of cardiac activity, they are 
subject to noise interference from the external environment and 
body movements. Therefore, this study employs low-pass filtering 
and continuous wavelet transform, automatically selecting the 
appropriate frequency bands in a multi-scale parameter space to 
separate and reconstruct the respiratory and heart rate signals 
from the original signal. This process extracts peak information, 
forming the JJi and BBi sequences.

This study presents a novel feature selection framework that 
effectively bridges deep learning and ensemble learning strategies for 
physiological signal analysis. By integrating attention-based dynamic 
weighting with XGBoost and incorporating an iterative refinement 
mechanism, the framework demonstrates strong robustness to noise 
and redundancy—common challenges in high-dimensional 
BCG-derived HRV and RRV features. This approach successfully 
improves sleep stage classification performance.

To address the class imbalance in the dataset, SMOTE is 
applied to enhance the minority class samples, allowing the model 
to focus more on these underrepresented classes. Finally, the 
Fast-ABC Boost model is employed for sleep staging. Experimental 
results show that the feature set selected by the proposed feature 
selection framework, when applied to the Fast-ABC Boost model, 
achieves an accuracy of 89.85%, outperforming mainstream 
feature dimensionality reduction models in terms of 
classification performance.

This study utilizes BCG signals for sleep staging. Compared 
to traditional EEG, EOG, and ECG signals, BCG signals offer the 
advantage of non-contact measurement, providing richer 
biological feedback. This sleep staging method holds significant 
potential for broad application, particularly in home and mobile 
environments, offering a convenient solution for the auxiliary 
diagnosis and treatment of sleep disorders. However, due to the 
current lack of publicly available standard datasets for BCG-based 
sleep staging, this study relies on a limited dataset annotated by 
experts. The small sample size constrains the generalizability of 
the results. Future efforts will focus on constructing large-scale, 
high-quality datasets to enhance model robustness and promote 
progress in sleep health technologies.
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