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Global climate change, urbanization, and environmental pollution have significantly 
altered the ecosystem and socio-economic structure, while also promoting a new 
disease risk pattern that has markedly affected human physical and mental health, 
increasing the complexity and uncertainty of disease control and prevention. 
This review aims to summarize the correlation between unique public health 
vulnerabilities and disease distribution in different regions of China by investigating 
the national and regional personalized response strategies and research progress.
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Introduction

China is located in East Asia, with a vast territory, a complex geographical environment, 
diverse climate types, and significant altitude differences. It is not only challenging to 
immediately restore equilibrium when the complex ecosystem composition is altered by 
extreme weather, air pollution, globalization, and other correlated factors, but it also has major 
repercussions, particularly the dynamic evolution of the illness spectrum. The typical 
ecosystem vulnerability characteristics include three dimensions: sensitivity, exposure, and 
adaptability. An imbalance in any of these dimensions negatively affects the system’s 
vulnerability. China has unique topography and landforms (the frozen Qinghai-Tibet Plateau, 
the towering Himalayas, the arid Tarim Basin, and the fertile Northeast Plain of China) and 
water distribution (the Yangtze and the Yellow Rivers), which establishes the foundation for 
disease distribution (1–4). Furthermore, climate differences and changes substantially affect 
the temporal and spatial scope of vector-borne diseases (5). Moreover, the industrialization 
and urbanization of emerging economies have exacerbated pollution problems (6), reduced 
the burden of some diseases, and promoted the prevalence of chronic diseases and 
environmental health risks. Comprehensive evaluation of globalization, particularly its 
association with the Southwestern border and Southeast Asia, as well as coastal ports such as 
Guangdong, China, has been under constant pressure due to the emergence of infectious 
diseases from other countries and cross-regional transmission. It has also increased the risk 
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of infectious disease outbreaks (7–9). Although technological progress 
is crucial for disease prevention and control, it has several challenges, 
such as drug resistance and biosafety (10, 11). The significant changes 
in China’s ecosystem and socioeconomic structure have profoundly 
influenced the spread and distribution of diseases, forming a unique 
regional health risk pattern, indirectly making health issues 
particularly prominent.

Several epidemiological studies have shown that the causes of 
diseases are no longer simple and are often closely related to complex 
extreme weather events (such as heavy rain, high temperature, floods, 
cyclones, hurricanes, etc.). This can increase the incidence and 
mortality rates of acute and chronic diseases, as well as accelerate the 
incidence of severe mental health conditions (12, 13). In recent years, 
air pollution has caused > 1 million deaths in China each year (14), 
and some infectious diseases have re-emerged or even increased in 
certain regions (15). For instance, SARS-CoV-2 was first discovered 
in Wuhan in late 2019, then spread rapidly throughout China and 
worldwide (16). The Chikungunya virus was first discovered in Africa 
in 1952, and since then has caused unexpected large-scale outbreaks 
in Africa, Asia, Europe, and the Americas, becoming a major global 
health issue. On July 8, 2025, a local outbreak of Chikungunya fever 
was monitored in Shunde District, Foshan City, Guangdong Province, 
caused by an imported case.1 As of 24:00 on July 26, 2025, Guangdong 
Province reported 2,940 local cases of Chikungunya fever.2 Extreme 
weather events not only affect China, but also other developed 
countries like the United States. In 2020, the United States experienced 
22 such events, with annual losses reaching 1 billion US dollars (17). 
The United Nations report (18) states that global climate change is 
currently the most urgent common concern. In addition to becoming 
the subject of international public health concern, disease and health 
issues are also a significant factor in China’s rapid development. The 
“Healthy China 2030 Strategy” guides China’s health care development, 
aiming to comprehensively improve the health level of the entire 
population and promote the coordinated development of health, 
economy, and society (19). To create a more sustainable and resilient 
society, address the challenges posed by climate change, and 
understand the ambitious goal of universal and global health, it is 
imperative to fully integrate various resources, overcome governance 
bottlenecks, and develop individualized and reasonable long-term 
strategic decisions and response measures by comprehensively 
understanding the characteristics of climate vulnerability and disease 
distribution in recent years.

There are significant regional differences in the many component 
characteristics associated with extreme climate events like droughts, 
wildfires, and floods, including the primary categories of catastrophes 
and the financial losses and mortality costs (20). Geospatial analysis 
indicates that certain regions are particularly prone to specific types 
of disasters. Factors such as terrain, local climate, and population 
density have a significant impact on the location where disasters occur 
(21). China is now one of the countries that are most frequently hit by 
disasters because of its varied temperature zones, complicated 

1  http://www.news.cn/20250715/e1cfa95744124efeb46966aa3bfbc

66a/c.html

2  https://www.news.cn/politics/20250727/d2d840908baa489580f36723c

8733f7b/c.html

geographic setting, significant urban–rural divides, and delicate 
ecosystems (22). Therefore, the seven major regions of China 
(Northeast Region, North China Region, Central China Region, East 
China Region, South China Region, Southwest Region, and Northwest 
Region) may experience different issues related to ecosystem 
vulnerability, indicating health problems and economic losses. This 
study summarizes the representative cases of systemic vulnerability in 
public health issues in the seven central regions of China, as well as 
the common problems that exist in some areas of the country, to 
provide practical and feasible suggestions and measures. It also 
summarizes some strategic measures for each region and highlights 
China’s experience through particular implementation cases. By 
lowering exposure risk factors at their source, the goal is to control the 
incidence of illnesses successfully. The findings can provide a guideline 
to prevent and control systemic vulnerability diseases worldwide.

Search strategy and selection criteria

For this review, PubMed was employed to search English articles 
published between 2000 and 2025. The search terms included 
combinations of “China” or “Northeast region” or “North China 
region” or “Central China region” or “East China region” or “South 
China region” or “Southwest region” or “Northwest region,” “system 
vulnerability” or “natural disasters” or “globalization” or “air pollution” 
or “ecosystem” or “extreme weather events,” “infectious diseases” or 
“chronic diseases” or “mental disorders” or “health issues,” “response 
strategies” or “strategic measures.” Furthermore, websites from 
different regions in China were also searched using Xinhuanet. 
Moreover, the official websites of various regions were investigated for 
data on “extreme weather events,” “natural disasters,” “infectious 
diseases,” and “response strategies.”

Vulnerability of China’s regional 
system

China is separated into seven geographical regions based on its 
different characteristics, resource distribution, and economic 
development, including the regions of Northeast,‌ North,‌ Central,‌ East,‌ 
South,‌ Southwest, and Northwest China. Diseases in different regions 
have different characteristics. The vertical distribution ranges from the 
plain areas below 500 meters above sea level to the Qinghai-Tibet 
Plateau with an average altitude of over 4,000 meters, spanning the 
Tarim Basin, Junggar Basin, Qaidam Basin, and Sichuan Basin. The 
distinctive regional diseases with Chinese characteristics are 
determined by the karst, Danxia, Yardang, and volcanic landforms 
found there (Figure 1).

	 1	 Northeast China (118°-135°05′E, 38°-53°33′N): including 
Heilongjiang, Jilin, Liaoning, and eastern Inner Mongolia, with 
mainly plain terrain and a cold climate, is China’s substantial 
agricultural and heavy industry base. The local cold climate 
and agrarian production mode determine the distribution 
characteristics of the disease in this area

In Northeast China, greenhouse cultivation, indoor fuel 
combustion, and outdoor straw burning are the main production 
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and living methods (23). The resultant environmentally persistent 
free radicals (EPFRs) (24) are considered the major risk factors for 
respiratory diseases, such as chronic obstructive pulmonary disease 
(COPD). A recent study revealed that COPD has a relatively high 
prevalence in Northeast China on a national scale (25). Furthermore, 
solid fuel combustion increased the risk of lung cancer (26). The 
primary strategies for preventing disease depend on the disease’s 
exposure factors. Residents’ lifestyles are altered and their living 
conditions are improved by pertinent public health laws and 
policies, such as the use of biogas in place of coal and the burning 
of straw (27). The government places a strong emphasis on 
addressing the health issues caused by COPD. China has made it a 
goal to lower the death rate associated with COPD and other 
chronic respiratory diseases among individuals under 70 to 
8.1/100,000 or fewer by 2030. The “Implementation Plan for the 
Prevention and Control of Chronic Respiratory Diseases” was 
released concurrently by the relevant departments, which calls for 
actively reducing the COPD risk factors, enhancing the prevention 
and control system, standardizing the diagnosis and treatment 
procedure, and improving support for comprehensive guarantees 
and scientific research. Coal use has declined, car emissions have 
been successfully managed, and nitrogen deposition in Northeast 
China has significantly decreased thanks to the tireless efforts of the 
government and everyone else, as well as because of the change in 
agricultural methods (28).

Inner Mongolia is home to a world-renowned dairy cluster and a 
well-developed livestock industry. It is the nation’s top producer of 
wool and mutton. Although the industry sector is expanding, it has 
promoted certain disease-related issues. Human brucellosis is most 
common in Inner Mongolia and the provinces or autonomous regions 
that surround it (29, 30). Large-scale sheep farming, frequent animal 
trading, cross-regional circulation of dairy products, and a weak 
grassroots epidemic prevention system all increase the risk of 
brucellosis transmission and resurgence. Strengthening personal 
protection, early detection, and early treatment can effectively control 
the trend of brucellosis (31).

Plague is a zoonotic disease that spreads through fleas and is 
transmitted by rodents carrying the pathogen (32). Historically, it has 
caused three major pandemics, resulting in over 200 million deaths 
(33). There are indications that the prevalence of plague is increasing 
in the Americas, Asia, and Africa as a result of climate change (34). 
The Siberian marmot (Marmota sibirica) is widely distributed in the 
grasslands of Northeast China (35), whereas the Marmota himalayana 
is widely distributed in the Qinghai-Tibet Plateau (QTP) (33); these 
two together form the largest natural infection area in China. The 
literature has indicated that plague spreads faster in areas with low 
population density and a high proportion of grassland or forest (36). 
Furthermore, the warming trend in the QTP region (37) and the 
developed tourism industry (38) further increase the risk of plague 
transmission. Some studies have indicated that an increase of 1 °C in 

FIGURE 1

The seven geographical regions of China are represented by different colors. Each region’s representative system vulnerability and disease conditions 
are marked, respectively (It indicates the interaction of animal-borne diseases between southwest China and neighboring countries).
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spring temperature elevates the risk of pathogen infection in gerbils 
by 59% (39). Further, heavy rainfall also increases the risk of plague 
transmission (40). Various fleas can survive in the Alxa Desert in 
Inner Mongolia, China, which is a typical arid region of Asia with a 
hot, dry climate. Fleas are the primary carriers of various zoonotic 
diseases and frequently parasitize rodents (22, 41). Therefore, novel 
strategies are required for the prevention and control of diseases 
like plague.

	 2	 North China (110.22°-119.85°E, 34.58°-42.37°N): covers 
Beijing, Tianjin, Hebei, Shanxi, and central Inner Mongolia, 
has diverse terrain and a temperate monsoon climate, and is 
the political and cultural center of China

In China, non-communicable illnesses have progressively become 
the major cause of early mortality and disability (41), with air pollution 
listed as one of the four major risk factors. In recent years, the 
environment, human health, and economy have all suffered due to 
deteriorating dust weather in northern China. The number of cross-
border sandstorms from Mongolia to China has been increasing from 
1987 to 2022 (42). The concentration of PM10 (particles with a 
diameter of less than 10 μm) in Beijing increased to over 7,000 μg M-3 
on March 15, 2021, due to a super sandstorm (43). Furthermore, the 
spring of 2023 had the highest frequency of spring dust weather in the 
previous 10 years due to a protracted sandstorm outbreak caused by 
the cold front of the Mongolian cyclone and the dust source area (44). 
Sandstorms have oxidation potential (OP) and EPFR, inducing 
oxidative stress. They are closely related to the incidence of circulatory 
system disorders (45–47) and respiratory system diseases (48). 
Moreover, the incidence of hospitalization among patients was 
significantly correlated with exposure to sandstorms (49). Moreover, 
recent studies have discovered that exposure to PM2.5 directly induces 
nephrotoxicity, which is linked to five different forms of kidney 
disorders (50). A meta-analysis indicated that PM2.5 exposure is 
significantly associated with liver dysfunction, chronic liver diseases, 
liver cancer, and colorectal cancer (51), as well as an increase in the 
incidence of lung cancer (52). In addition to threatening the 
environment and public health in northern China, sandstorms are 
progressively spreading to the center and southern parts of the 
country, endangering the environment and public health worldwide, 
and 150 nations have been directly impacted thus far (53). Despite the 
initiatives proposed by the United Nations, it is still influenced by 
various factors. Therefore, international cooperation and 
multidisciplinary health research are still needed.

As China’s economy expanded quickly, a significant increase was 
observed in air pollution between 2012 and 2017. The green finance 
index of Liaoning experienced extreme smog pollution, and the 
Beijing-Tianjin-Hebei region exhibited an overall negative trend 
between 2010 and 2017 (54). Smog not only has a significant negative 
impact on the economy and society, but also poses a considerable 
threat to people’s health.

Urban greening is a valuable strategy that is being employed to 
reduce the premature mortality rate caused by non-communicable 
diseases by one-third by 2030. Green spaces can alleviate 
environmental pollution, restore energy consumption of the body, and 
help people build health capabilities (55). A systematic study revealed 
a positive association between green spaces and mental health, 
cardiovascular outcomes, and overall health (56).

	 3	 Central China (108°21′-116°39′E, 24°38′-36°22′N): includes 
Henan, Hubei, and Hunan provinces, has plain and hilly 
terrain, developed water systems, and is an important 
agricultural and industrial base in China

Floods have become more frequent and longer in duration due to 
global warming, which has had a negative influence on China’s social 
and economic structure as well as the health of the environment. The 
most catastrophic disaster since 1998 occurred in 2016, when the 
Yangtze River Basin experienced a devastating flood brought on by the 
El Niño phenomenon.

Hunan Province in China is regarded as one of the provinces most 
severely affected by floods in recent years (57). Water-borne illnesses 
include bacillary dysentery, cholera, and typhoid/paratyphoid. The 
risk of disease transmission rises when floodwaters contaminate 
drinking water (58). A study found that after the flash flood and 
waterlogging in Changsha City, the incidence of typhoid/paratyphoid 
and bacillary dysentery, which are related to intestinal infections, 
increased. The higher the level of storm floods, the higher the risk of 
disease outbreaks (59).

The saying “The danger of the Yangtze River lies in Jingjiang” 
refers to the distinctive geographic setting of the Jingjiang stretch of 
the Yangtze River in Hubei Province, which has historically been 
vulnerable to recurrent floods. In 2016, 20.8 million people in Hubei 
Province were impacted by the flood (60). Floods not only cause direct 
losses to people and facilities but also increase the risk of new 
infectious diseases. Hemorrhagic fever with renal syndrome (HFRS) 
is a zoonotic disease mainly transmitted by rodents carrying the 
Hantavirus (61). Previous literature suggests a positive correlation 
between hydrological conditions and the incidence of HFRS (62). 
According to some studies, HFRS will be a major threat to mainland 
China during the 21st century, particularly in the country’s northeast, 
east, and center. Furthermore, since the rodent population density 
may increase after floods, the risk of HFRS in low-altitude and flat 
terrain locations close to rivers should be assessed, and short-term 
HFRS preventative strategies should be formulated (60).

Schistosomiasis is a disease transmitted through the intermediate 
host, the Oncomelania snail (63). Although it has been successfully 
managed through extensive preventative and control methods, the 
central China region (Dongting Lake, Poyang Lake) has found it 
extremely challenging to prevent and control schistosomiasis due to 
the regular occurrence of floods (64). Comprehensive transformation 
of agriculture, water conservancy, forestry, health, and the 
environment is beneficial for the prevention and control of 
schistosomiasis (65). Of them, controlling the water levels at the Three 
Gorges Dam (TGD) to limit the population of Oncomelania snails has 
been considered a successful and effective case, as it has considerably 
decreased the snails’ density, infection rate, and potential for human 
interaction with (66).

	 4	 East China (113.55°-122.87°E, 21.9°-38.32°N): It covers 
Shandong, Jiangsu, Anhui, Shanghai, Zhejiang, Jiangxi, Fujian, 
and Taiwan. The terrain is mainly hilly, with basins and plains. 
The climate is diverse, and the economy is developed

The increase in global warming and carbon emissions directly 
increases the surface temperature. High temperatures can lead to 
heatstroke and increase the risk of circulatory and respiratory system 
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failure (67). The COVID-19 pandemic and hot weather are no 
coincidence, as unprecedented heatwaves increase the number of 
infectious diseases (68, 69). The urban heat island effect may be more 
pronounced in the more economically developed eastern coastal 
districts, potentially intensifying and prolonging heatwaves (70, 71). 
It has been estimated that nationally, the attributable fraction of 
non-accidental deaths due to high temperatures will increase from 
1.9% in the 2010s to 5.5% in the 2090s, with an estimated attributable 
fraction of 6.3% for cardiovascular system deaths and 7.7% for 
respiratory system deaths (72). The literature suggests that the annual 
heat stress index (HSI) in China has generally risen, and by 2,100, will 
increase by 7.96 °C based on the SSP5-8.5 scenario (73). Furthermore, 
heatwaves have been found to significantly increase the risk of death 
among the older adults suffering from Alzheimer’s disease and other 
dementias (74). To prevent infectious diseases under the influence of 
high temperatures, government policies and individual protection 
awareness need to work together. The number and length of case 
encounters can be  decreased by non-pharmaceutical intervention 
techniques (NPIs). According to recent studies, the effective creation 
of biodegradable and sustainable filter materials offers a fresh, 
alternative approach to air quality control (75). Moreover, 
strengthening drug intervention can control the epidemic and reduce 
the risk of transmission (76, 77). A study showed that high 
temperatures can increase the burden of cardiovascular diseases. 
Therefore, reducing emissions and implementing strategies can 
mitigate health risks related to human-induced climate change (78).

Poyang Lake is the largest freshwater lake in China. The microbial 
population in the marshes around Poyang Lake’s shore experienced 
substantial alterations during the severe and quick drought event in 
2022. The diversity of denitrifying and DNRA bacteria declined (79). 
The increase in nitrous oxide emissions and nitrogen retention 
increased the greenhouse gas emissions and raised the risk of lake 
eutrophication, intensifying the positive feedback between climate 
change and nitrous oxide emissions (80).

	 5	 South China region (105°29′-117°14′E, 18°10′-26°15′N): 
includes Guangdong, Guangxi, Hainan, Hong Kong, and 
Macao. The terrain is mainly composed of hills with a humid 
and hot climate. It is the forefront of China’s opening up to the 
outside world

China borders the Northwest Pacific Ocean and is situated in the 
eastern region of the Eurasian continent. Therefore, she is one of the 
nations that is most severely impacted by tropical cyclones worldwide 
(81). Since tropical cyclones often make landfall in Guangdong 
Province, the losses caused by tropical cyclones in Guangdong 
Province are greater than those in any other province (82). In addition 
to their direct effects on the environment, economy, and society, 
tropical cyclones can have an indirect effect on public health. Studies 
have indicated that acute hemorrhagic conjunctivitis, diarrheal 
infectious diseases, leptospirosis, and hand-foot-mouth disease are 
among the infectious diseases that have been linked to tropical 
cyclones (83–85). A study showed that tropical cyclones may increase 
diarrheal infectious diseases in Guangdong Province (86). Another 
study revealed that tropical cyclones may increase the risk of hand-
foot-mouth disease in children under 6 years old (87). The danger of 
mosquito-borne illnesses like dengue fever rises in conjunction with 
the temperature fluctuations and precipitation brought on by tropical 

storms, which may be suitable for mosquito reproduction. Since an 
unprecedented dengue fever outbreak occurred in Guangdong 
Province in 2014 (88), from 2007 to 2017, about 94% of dengue fever 
cases in China occurred in Guangdong Province (89). Furthermore, 
it has been observed that in the Pearl River Delta, tropical cyclones are 
linked to a higher prevalence of primary dengue fever, with the risk 
peaking 5–9 days following the occurrence. The risk is greatest when 
lagging 5–9 days (90).

Leptospirosis is an animal-source disease (91), and the risk of 
leptospirosis outbreak is significantly increased by flood events (92). 
Leptospirosis has historically been more common in the Southwestern 
and Southeast regions. The disease is mainly linked with farmland and 
marshes in the Yangtze River Basin and its Southern areas, flood 
exposure in the Yellow River Basin and Northern China, and the 
buildup of water following heavy rains in low-lying plains (93). The 
transmission of leptospirosis is promoted by climatic variables such as 
heavy rain, floods, humidity, and high temperature (94). Studies have 
found that leptospirosis outbreaks can be avoided in locations that are 
vulnerable to extreme weather events like floods and heavy rain by 
implementing prevention and control measures (95).

	 6	 Southwest Region (78°-110°E, 21°-34°N): covers Sichuan, 
Guizhou, Yunnan, Tibet, and Chongqing. The terrain is mainly 
composed of plateaus and basins, with diverse climates and 
rich cultures

Since the COVID-19 pandemic in 2019, animal hosts have 
attracted much attention, including bats, civets, pangolins, and other 
species (96). Zoonotic infectious illnesses have increased as a result of 
the varied effects of climate change on the species diversity of animal 
hosts. Bat species richness has increased significantly in southern 
Yunnan, Myanmar, and Laos as a result of climate change, and bats are 
currently thought to be the source or intermediate host of Middle East 
Respiratory Syndrome (MERS) (97), Ebola (98), SARS-CoV-1 and 
SARS-CoV-2 Rift Valley fever (RVF) (99), etc. At present, the 
coronavirus strain found in bats in southern Yunnan is the closest to 
SARS-CoV-1 and SARS-CoV-2 (100). Hunting, eating patterns, and 
agricultural practices that involve intimate contact with pathogen-
carrying wild animals are all linked to the zoonotic disease outbreak 
(101). Therefore, it is crucial to protect natural habitats, implement 
strict regulations on wildlife hunting and trade, establish appropriate 
animal welfare standards, and adjust dietary and medicinal customs 
(96, 102).

Dengue fever is a mosquito-borne disease that is prevalent 
worldwide (103). The invasion of alien species and changes in the 
global environment have become major contributors to the 
development of dengue disease and have made its prevention and 
control extremely difficult (104, 105). However, China’s public health 
prevention and control efforts continue to prioritize preventing local 
dengue fever transmission; thus, environmental intervention and risk 
area identification are essential. It has been observed that Southeast 
Asia is the primary source of dengue fever invasions, and Yunnan, 
China, which borders Laos, Vietnam, and Myanmar, is under intense 
pressure to prevent the invasion and reduce dengue fever prevalence 
(106). Temperature affects the physiological process of the dengue 
virus-mosquito-host chain, thus becoming one of the important 
driving factors for dengue fever (107). Aedes aegypti and Aedes 
albopictus are the primary vectors for dengue fever transmission, 
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which can survive at 10 °C–40 °C and spread diseases in a temperature 
range from 16.2 °C to 34.5 °C. Higher temperatures may increase the 
expected lifespan of mosquitoes, promoting a longer exposure time to 
dengue fever. The Southeastern part of China is affected by the East 
Asian monsoon, with higher summer temperatures (108); therefore, 
this region has a significant impact of dengue fever (106). Due to 
climate change, the suitable environment for vector insects is 
expanding (109), and the risk of dengue fever transmission 
is increasing.

One of the highest-altitude towns in the world, Lhasa is situated 
in the middle of the Tibetan Plateau and experiences significant 
intensities of ultraviolet (UV) radiation. The literature has indicated 
that UV radiation is one of the major risk factors for three pigmentary 
skin illnesses, which are far more common in high-altitude regions 
than in low-altitude ones (110). Due to climate warming and the 
prolonged duration of ozone, earlier seasonal snowfall and ice melting, 
more and more people are exposed to ultraviolet radiation, which 
seriously affects human health (111).

Yunnan, situated in the tropics and subtropics, boasts rich 
biodiversity, earning it the title of having one of the richest plant 
communities in the world, which in turn makes its fungal resources 
abundant (112). Edible mushrooms come in many different varieties 
and are both tasty and nourishing. The living environment of 
mushrooms has altered as a result of ecological changes, and both 
their poisonous and nutritious components have changed as well. 
Mushroom poisoning incidents are one of the main causes of death 
from foodborne diseases in China (113, 114). Due to its unique 
climate and topography, it is the province with the most extensive 
variety of snake species in the country and a high incidence area of 
snakebite poisoning in China. Furthermore, this region borders the 
frontier, with ethnic minorities and poverty-stricken areas (115).

	 7	 Northwest Region (73°-111°E, 31°-49°N): includes Shaanxi, 
Gansu, Qinghai, Ningxia, and Xinjiang. The terrain is mainly 
composed of plateaus and deserts, with an arid climate and 
abundant resources

Severe air pollution has been associated with sandstorms. Several 
studies have indicated that during sandstorms, the hospitalization and 
mortality rates increase significantly (116, 117). Asian sandstorms 
mainly originate from the arid regions in the northwest and north of 
China and Mongolia, and spread to East Asian countries (118). 
Furthermore, sandstorm events have been positively correlated with 
the number of visits for asthma (119), stroke (120), congestive heart 
failure (121), and conjunctivitis (122).

Climate warming is melting the glaciers in the Asian mountainous 
regions (123), and the permafrost layer on the Qinghai-Tibet Plateau. 
When the frozen viruses are discharged, there are more chances for 
the viruses to propagate throughout the habitats and migrations of 
wild migratory birds. When the frozen viruses are discharged, there 
are more chances for the viruses to propagate in the wild migratory 
birds’ habitats and migrations (124). In 2005, a large-scale H5N1 avian 
influenza epidemic broke out in the Qinghai Lake area, resulting in 
the death of thousands of migratory birds (125). This indicates that 
the Qinghai Lake area has become a significant source of H5N1 
avian influenza.

	 8	 Common Systemic Vulnerable Diseases in China

Cryptosporidiosis is a zoonotic disease transmitted through the 
fecal-oral route (126), which can cause abdominal pain, diarrhea, and 
acute gastroenteritis in infected hosts (127). It is highly contagious and 
has become a globally highly concerning acute infectious disease 
(128). Research has indicated a strong correlation between climate 
change and Cryptosporidium’s biological adaptability, and climate 
change may be  a major factor influencing the species’ survival, 
resulting in its extinction, re-distribution, resurgence, or re-emergence 
(129). Furthermore, regions in Northeast China (Jilin Province and 
Heilongjiang Province), Southwest China (Yunnan Province), and 
Northwest China (Xinjiang Uygur Autonomous Region) are 
significantly affected by climate change and may be suitable for the 
survival of Cryptosporidium. Future climate change may provide 
China with more favorable habitats for Cryptosporidium (130). The 
Maxent model can predict the distribution of Cryptosporidium and 
formulate a public health strategy covering “parasite–host-
environment,” strengthening real-time monitoring, increasing 
information exchange and communication, improving the monitoring 
reporting system, and improving interdisciplinary linkage 
mechanisms (130).

China’s rainfall is influenced by various large-scale ocean–
atmosphere patterns, including El Niño-Southern Oscillation (ENSO), 
Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (IOD), and 
Atlantic Multidecadal Oscillation (AMO) (131). These patterns play an 
important role in the occurrence of extreme drought events (87, 132). 
Wildfires are becoming more frequent as a result of drought and global 
warming, which is extremely dangerous for human life, health, and 
productivity (133, 134). Carbon-containing gases and tiny particulate 
matter are released when wildfires burn, polluting the air and raising 
the risk of cancer, heart disease, and respiratory ailments for firefighters 
who fight fires (135). The development of new protective technologies 
against wildfire combustion pollutants is of vital importance.

Under the influence of multiple pollutants such as PM2.5, PM10, 
O3, NO2, CO, PAHs (Polycyclic Aromatic Hydrocarbons), SPM 
(Suspended Particulate Matter), SO2, NO, radon gas (136–139), multiple 
organ systems such as the cardiovascular system (45), respiratory system 
(48, 140), digestive system (51) nervous system (141–143), eye-related 
diseases (144, 145), urinary system (50, 146), and mental health (147, 
148) are all affected to varying degrees. The air pollution levels in many 
Asian nations, particularly China and India, are far greater than those in 
wealthy nations. In a white paper, the Allergy, Asthma and Clinical 
Immunology Association of Asia-Pacific highlights the current state of 
air pollution in the Asia-Pacific area and urges national and international 
health and environmental organizations to take action (149).

The connection between China and 
international characteristic systemic 
vulnerability diseases

The total length of China’s land borders is approximately 22,000 km, 
making it one of the countries with the longest land borders in the 
world, bordering 14 countries. The “Belt and Road Initiative” has had a 
tremendous impact on trade openness and tourism expansion in recent 
years, which has greatly boosted people’s mobility both domestically 
and globally. Moreover, this has raised the possibility of infectious 
illness transmission. China is not the only country experiencing climate 
change. Some ecosystem-related diseases are determined by the unique 
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geographical location. Therefore, there is a certain correlation among 
global system-related diseases in different countries.

Food security is severely compromised by Schistocerca gregaria, 
which has caused famine, particularly in South Asia, the Middle East, 
and Africa, important regions of the world. The biological behavior of 
locusts is strongly influenced by hydrological and climatic factors, 
with temperature, wind direction, and rainfall all having distinct 
effects (150). Studies have shown that a warmer climate promotes 
locust outbreaks, and new hotspots will emerge in central and western 
Asia. Early cross-regional cooperation is helpful for global coordinated 
control of the food security threat brought by locusts (151). It has been 
identified that the El Niño (Southern) oscillation (ENSO) is the 
primary climate oscillation in southern China. ENSO leads to a higher 
incidence of crop pests. EnSO-driven cyclic patterns identify the pests’ 
source locations, which makes it easier for them to migrate to China. 
Early cross-regional collaboration is beneficial for the global 
coordinated management of pest risks to food security (152).

Measures for responding to vulnerable 
diseases in the Chinese system

Ecological vulnerability and adaptation 
measures

The primary and most obvious effects of climate change in China 
over the last three years have been an increase in yearly precipitation 
and a temperature rise (Figure 2). The incidence of natural disasters 
has increased to different degrees in each region (Table 1). Certain 
areas have put in place specific emergency response procedures and 
precautions for various extreme weather occurrences (Table 2).

Strategies for addressing the gaps in the 
health system and infrastructure

For the outbreak of infectious diseases, not only does the health 
system need to respond actively, but also infrastructure construction 

needs to respond promptly. China has its tailored response strategies 
for communication with the world (Table  3). However, China 
currently lacks extensive practical experience in coping with several 
infectious diseases around the world, and it must continue to learn 
from and draw on other nations’ experiences (Table 4). From the 
standpoint of public health policies, no nation can effectively address 
the issue of global climate change. Thus, international cooperation is 
crucial (153).

Regional adaptability ecosystem prediction 
model

Significant temporal and spatial disparities, severe wealth 
disparity, and differing levels of resource usage all make it harder to 
achieve unified governance and increase the ecosystem’s susceptibility 
in China. There are significant disparities in economic status and 
urbanization development between the eastern and western regions. 
Thus, they may face different health issues and ecosystem 
vulnerabilities, and there are also significant differences in the 
emergency response capabilities of the health systems. Based on the 
modified gravity model social network analysis, a study evaluated the 
network structure characteristics of China’s urban ecological resilience 
(UER) and revealed that the economically developed areas along the 
eastern coast had a significant “radiation effect” in spatial correlation. 
Furthermore, they indicated the importance of strengthening 
coordination and cooperation among regions to enhance UER (154). 
Extreme disaster events occur differently in coastal and plain areas due 
to significant climate changes, and each region has different priorities 
for emergency response. A study evaluated the patterns of flood 
resilience over 3 years using ArcGIS software to dynamically track 
each city’s level of resilience. The flood resilience level in the Pearl 
River Delta was very different, with the levels in the central and 
southern cities being higher than those in the eastern and western 
regions. Moreover, an innovative method was constructed to 
comprehensively assess the flood resilience of cities, which is suitable 
for quickly and accurately evaluating the short-term spatial and 
temporal evolution trends of urban flood resilience (155). Further 

FIGURE 2

Annual average precipitation (mm) (A) and temperature (°C) (B) in China in 2023.
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research is needed to confirm that widespread adoption of this 
approach will effectively assess the temporal and spatial evolution 
patterns of floods in each region, improving flood prevention 
capacities, reducing health risks, and minimizing economic losses.

Southwest region
As an ecologically barrier and an underdeveloped area in the 

southwest, Yunnan’s social and economic development mainly 
relies on agriculture. Therefore, its ecosystem is susceptible to 
climate change (such as droughts and floods). However, Yunnan’s 
climate zones are complicated, and its altitude range is broad, 
allowing for exact classification of various places based on 
sensitivity levels. The ecosystem’s high sensitivity could have more 

negative effects. The ecosystem’s risk characteristics must 
be thoroughly evaluated, and appropriate action must be taken to 
guarantee the sustainable development strategy’s seamless 
implementation. A research group constructed a “climate-
livelihood” framework by theoretical integration (IPCC + 
sustainable livelihood + human-environment coupling) and 
indicators localization, to build a vulnerability assessment system 
applicable to rural areas in Yunnan (156). This framework’s 
limitations include the absence of policy frameworks and the 
challenge of gathering subjective data. However, it takes into 
account the comprehensive variables of ecology, livelihood, and 
climate, and hence is appropriate to most rural locations (such as 
the southwestern mountainous regions).

TABLE 1  The manifestations of system vulnerability in some regions of China over the past 3 years due to climate change.

Regions Natural disaster events Coping strategies References

Northeast China

118°-135°05′E, 38°-53°33′N

	1.	 In 2024, the precipitation in 

Liaoning Province reached 883 mm, 

setting a new historical record since 

1951;

	2.	 In 2023, in the southwestern part of 

Jilin Province, due to Typhoon 

Dujuan, the precipitation exceeded 

the historical record;

	3.	 In November 2023, rare heavy snow 

occurred in many places, and the 

temperatures in many areas dropped 

below −40 °C;

	4.	 In 2023, the average temperature in 

Jilin Province was 5.8 °C, which was 

1.1 °C higher than the previous year;

	5.	 In 2024, the average temperature in 

Liaoning Province was 10.3 °C, 

which was 1.3 °C higher than the 

previous year.

	1.	 Upgrading of urban and 

farmland drainage systems (case 

of full-load drainage of irrigation 

canals in Shenyang City in 2024)

	2.	 Reinforcing windproof and frost-

resistant facilities (promoting the 

design of wind-resistant and 

snow-proof greenhouses)

	3.	 Establishing a full-chain 

emergency mechanism covering 

“warning release – disaster 

response – resource allocation – 

post-disaster recovery”

	1.	 https://news.qq.com/rain/

a/20250321A08LWS00?web_channel=wap&open

App=false&suid=&media_id=

	2.	 https://m.yunnan.cn/

system/2024/01/11/032905980.shtml

	3.	 https://finance.sina.com.cn/jjxw/2023-11-06/

doc-imztrmty3805686.shtml?cref=cj

North China

110.22°-119.85°E, 34.58°-42.37°N

In the summer of 2023, the Huang-

Huai region experienced the strongest 

heatwave since 1961, surpassing the 

historical extreme value.

(186)

Central China

108°21′-116°39′E, 24°38′-36°22′N

In December 2023, a severe cold wave 

hit the Central China region, causing 

snowfall in many areas to exceed the 

historical extreme values for the same 

period.

https://www.mem.gov.cn/xw/yjglbgzdt/202401/

t20240120_475697.shtml

Eastern China

113.55°-122.87°E, 21.9°-38.32°N

	1.	 In the summer of 2023, 

temperatures in Zhejiang, Fujian, 

and other places exceeded 40 °C;

	2.	 The transition of extreme weather is 

accelerating, with hot spells rapidly 

turning into heavy rains, increasing 

the difficulty of disaster prevention.

	3.	 The National Marine Environmental 

Forecasting Center predicts that the 

East China Sea coast may face 4–6 

disastrous typhoons and cold waves 

in 2025.

https://finance.sina.com.cn/jjxw/2023-12-29/doc-

imzzsuqv5663290.shtml?cref=cj

https://m.sohu.

com/a/853547265_121119270/?pvid=000115_3w_a

https://news.qq.com/

rain/a/20250328A098MZ00?web_channel=wap&op

enApp=false&suid=&media_id=
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Central China region
Hunan Province has a subtropical monsoon climate and is situated 

in China’s Yangtze River Basin. This region experiences flooding often 
(on average, 1 to 3 times a year between 2004 and 2011), which is 
followed by a significant rise in infectious diarrhea cases. This also 
seriously threatens the lives, health, and property safety of the people. 
A study found that focusing on precise intervention (water source 
guarantee, sanitation facilities), phased response (during and after the 
flood for 2 weeks), and resource allocation (in economically backward 
areas) can reduce the risk of diarrhea outbreaks after floods (157). 
Although the above research results considers the disease-related risk 
factors, this approach can still be employed in most southern regions. 
Furthermore, the flood resilience assessment system of Lagos 
Metropolis can be borrowed to provide a scientific basis for emergency 
response before and after major floods in various cities (158). Some 
researchers have modeled and conducted dynamic analysis of flood 
events in China and the UK. More real-world experiments and the 
development of flood-health risk warning systems might be required 
in the future to modify the preventative and control tactics on the 
fly (159).

East China region
Shanghai is one of the representative areas of economically 

developed China. Due to urbanization, the population’s morbidity has 
been affected in multiple ways by the extremely hot and muggy 
weather resulting from the combination of high temperatures and 
humidity. Studies have used the wet-bulb globe temperature (WBGT) 
to assess health risks, providing an operational basis for climate 
adaptation strategies (such as warning systems, urban planning) (160). 
For areas with severe, extremely hot, and humid weather (Chongqing, 
Guangdong), the WBGT can be included in the early warning system 
of public health, and the urban heat island effect can be alleviated 
through green space planning and building ventilation optimization 
to adapt to the inevitable climate warming trend in the future. 
However, further scientific investigation is required to validate 
this finding.

China’s strategy and cross-regional 
cooperation strategy

To address the problems caused by the vulnerability of China’s and 
the global public health systems, professionals across China are 
actively seeking, innovating, and optimizing various prediction 
models to formulate strategies that are highly operational and 
beneficial. Currently, initial results have been acquired from areas 
affected by the urban heat island effect, focusing on dengue fever 
prevention and control, as well as flood prevention after heavy rain. 
Other areas of China and other nations can refer to and learn from the 
cross-regional cooperation cases. However, in the face of the 
unpredictability of the future, there is still much room 
for improvement.

Blue-green spaces (BGS)
Extreme weather events, such as droughts, high temperatures, and 

floods, are increasingly common due to the urban heat island effect 
and global warming, significantly impacting the lives and health of 
local communities. Studies have shown that blue-green spaces (BGS) T
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and urban green spaces (UGS) can mitigate the adverse effects of 
extreme climates on the urban environment. Research in Changchun 
and Ningbo of China indicates that UGS have a strong cooling effect 
on the surrounding environment, which is concurrent with the 
increase in Land Surface Temperature (LST) (161, 162).

Yunnan has a suitable climate and has natural simulated 
BGS. Furthermore, this region has large bodies of water, which 
increases air humidity through evaporation and controls temperature 
by absorbing heat waves. The forest coverage rate in Yunnan exceeds 
60%, and tropical rainforests, evergreen broad-leaved forests, and 
other vegetation release water through transpiration, maintaining air 
humidity, absorbing dust, and purifying the air. It is one of the zones 
with the highest worldwide climate diversity and species richness 
because of the proper proportion of BGS that act in concert to prevent 
the extreme heat in the low latitudes and to reduce the extreme cold 
at high elevations.

All regions around the world have recognized that BGS offers 
multiple benefits, including reducing floods and heat, and increasing 
biodiversity. The potential of blue-green infrastructure (BGI) to 
convert urban areas into sustainable and adaptable environments can 
be observed in several projects in Spain (163). Governments in regions 
affected by extreme climates can formulate targeted measures based 
on these research findings, such as increasing vegetation, maintaining 

green areas, optimizing green space forms, and paying attention to the 
ratio of BGS.

The prevention and control project for dengue 
fever

By 2023, there had been several dengue fever outbreaks in China’s 
Guangdong and Yunnan provinces. Incomplete statistics show that 
there were 114,853 instances in total, including cases that were 
imported and those that were transmitted locally (164). The prevalent 
dengue virus serotypes include DENV-1, DENV-2, DENV-3, and 
DENV-4. Furthermore, the diversity of virus types has also presented 
a great challenge for disease prevention and control (165). Despite the 
difficult path of dengue prevention and control, China still perseveres. 
The Ministry of Health and the Chinese Center for Disease Control and 
Prevention published the crucial document “Dengue Fever Monitoring 
Plan (Trial) and Dengue Fever Prevention Technical Guidelines” 
following the main “Healthy China” policy. The central and local 
governments jointly formulated the “National Dengue Fever Prevention 
and Control Guidelines.” During the outbreak of the epidemic, the state 
and various administrative departments demonstrated extraordinary 
leadership, immediately activating the emergency response mechanism 
and organizing multi-departmental coordination and cooperation. 
Multiple department levels demonstrated exceptional coordination 

TABLE 3  China’s countermeasures for diseases related to system vulnerabilities.

Disease 
threat

China References

Dengue Early warning system, interdisciplinary cooperation, environmental and ecological intervention measures, 

scientific research, and the adoption of the “Health One” approach

(166)

Schistosomiasis 	1.	 Design of the South-to-North Water Diversion Project for Control of Schistosomiasis: River hardening, 

facilities for trapping and blocking schistosomes, and sedimentation ponds;

	2.	 Regional strategies such as the “Elimination of Schistosomiasis in Hunan Province (2016–2025)” plan;

	3.	 The implementation of the “Snail Elimination – Water Improvement – Health Education” tripartite strategy 

in endemic areas.

https://www.gov.cn/jrzg/2007-08/08/

content_709291.htm

Variant virus Vaccine research and development in the Guangdong-Hong Kong-Macao Greater Bay Area, specifically in 

Shenzhen and Zhuhai, are laying out mRNA vaccine production bases.

(191)

Helopyra Carry out cross-border malaria monitoring in cooperation with other countries (such as the “Lancang-Mekong 

Malaria Control Project” in Yunnan Province)

Influenza Establishment of an early warning system for airborne infectious diseases

Significant nonlinear and delayed associations between ambient temperature and the incidence of influenza

(192)

TABLE 4  Countermeasures in other areas for diseases related to system vulnerabilities.

Disease threat Other areas References

Monkeypox On September 20, 2022, a total of 19,827 confirmed cases were reported by 29 European Union countries.

Countermeasures: Vaccine genetic engineering

(184, 193)

Cholera Since 2023, large-scale cholera outbreaks have continued to occur in the armed forces of Sudan.

Countermeasures: The single-dose kOCV vaccination campaign is combined with the WASH (Water, 

Sanitation, and Hygiene) program.

(194–196)

H5N1 and other avian 

influenza strains

As of January 13, 2025, the Centers for Disease Control and Prevention (CDC) of the United States 

reported 1,410 cases;

Countermeasures: Update the “Global Influenza Control Framework,” multi-sectoral collaboration, and 

research and reserve antiviral drugs.

(197–199)

Pest management Environmental DNA (eDNA) has emerged as a potent tool for the rapid and precise identification of 

individual organisms and species assemblages across various matrices, including air and soil.

(200)
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capabilities: disease control departments at all levels improved case 
management and epidemic monitoring, ensuring that higher-level 
departments were able to rapidly grasp epidemic trends and make real-
time adjustments to prevention and control strategies while also 
providing front-line staff with professional knowledge, guiding vector 
control, and educating the public about health issues. Furthermore, 
various medical and health departments responded quickly, assembling 
medical staff and medical supplies to support the epidemic front, as 
well as expert teams conducting disease research, creating guidelines 
for diagnosis and treatment, developing detection techniques, and 
developing therapeutic drugs. Moreover, other community 
administration departments carried out their assigned tasks, 
guaranteeing the smooth operation of food, hygiene, and transportation 
while supporting pertinent agencies with health education and 
epidemic surveillance. The inspection and quarantine departments 
collaborated to improve the screening and monitoring of imported and 
exported goods, as well as border ports, circulating goods, and mobile 
personnel for diseases. The financial department also ensured the 
support of epidemic prevention funds, and people from all walks of life 
and various fund organizations assisted, ensuring sufficient epidemic 
materials and funds (166).

China has achieved considerable progress in controlling dengue 
fever, as evidenced by the fact that, from 2005 to 2023, the country 
reported only 15 dengue fever-related deaths, with a fatality rate of 
fewer than 0.01 cases per 100,000 people (167). When the COVID-19 
pandemic broke out in 2019, successful practical experience led to the 
“dynamic zero case” of the epidemic. The lessons that can 
be drawn include:

	(1)	 The government’s capable leadership: In addition to swiftly 
creating workable policies, plans, and action plans, the 
government was able to temporarily designate responsible 
individuals to oversee cross-departmental cooperation and 
successfully execute reward and punishment systems. These 
departments included public security, health, finance, and 
social welfare organizations.

	(2)	 Community organizations are strong forces for control and 
prevention: Community organizations can achieve a role 
transformation from passive acceptance of policies to active 
guidance of residents in prevention and control, with high 
efficiency in vector control and strong acceptability of health 
education, which can fully mobilize the enthusiasm of the 
masses to make up for the shortage of professional personnel.

	(3)	 Innovation in vector control: Based on traditional human 
trapping and light trapping, innovative measures such as 
chemical, biological, and environmental control are adopted to 
reduce mosquito density, interrupt virus transmission, 
including remote sensing and geographic space analysis (168).

Because of the significant experience in prevention and control, 
the epidemic has been effectively controlled. However, there are still 
many areas that require improvement and the adoption of advanced 
international technologies and experiences. Although the disease 
control department places a high priority on vector control 
management, and public awareness of mosquito prevention has 
grown, human health is still seriously threatened by mosquito-borne 
diseases. A recent study shows that using Wolbachia bacteria may 
inhibit the vectors or reduce their ability to spread various 

vector-borne viruses through solutions that induce conditional egg 
infertility and compete for survival with wild-type male mosquitoes 
(169). This novel modeling is crucial for the current global context of 
health issues.

Joint prevention and control project for 
flood-affected areas

In 2020, severe rainstorms occurred frequently in some areas of 
China, and a total of 37 floods were recorded (170). The regulation of 
water conservation facilities in urban areas is frequently restricted due 
to the dense population, flat terrain, and limited living environment 
in China’s vast territory, as well as the disparate economic development 
of different cities and significant geographical differences. To 
effectively reduce flood risks, it is crucial to develop a well-coordinated 
joint flood regulation model in cities, which is highly challenging. 
However, Chinese water experts are still actively analyzing the 
temporal and spatial clustering characteristics of China and 
formulating a storage and drainage joint regulation model suitable for 
urban areas in China’s plains.

To evaluate the flood storage and discharge management models 
of cities and to distribute the urban flood risk levels and storage-
discharge capabilities of cities, recent studies presented a unique 
concept based on “jointly regulated urban agglomerations” by building 
multi-layer tree rules (171). The research results is as follows: First, 
risk assessment of jointly regulated urban agglomerations. A thorough 
evaluation of flood hazards is carried out, and the flood risk levels of 
cities are categorized based on the features of the regulating cities and 
their surrounding cities. The cities’ capacity to store and release 
floodwaters is fully understood. Second, analysis of flood coordination 
models. Through multi-layer tree rules, the storage-after-release (SD), 
release-after-storage (DS), and release-and-storage-at-the-same-time 
(DWS) models are allocated. For instance, a city with a large water 
storage capacity can use the SD model to reduce regional flood 
pressure while ensuring its own low risk. The DS model should 
be  utilized to reduce flood pressure in towns with strong storage 
capacity, whereas the DWS model should be adopted for cities with 
weak storage capacity. Coastal cities can adopt the DS model to assist 
neighboring cities with high flood risks, while non-coastal cities can 
adopt the DWS model. Furthermore, the role of the urban 
agglomeration needs to be  adjusted in real time according to the 
precipitation characteristics in the early, middle, and late stages of the 
rainstorm to better coordinate the flood diversion pressure. Third, an 
innovative management model. As a novel approach to rainwater 
management, green infrastructure (172) creates thorough and long-
lasting evaluation metrics to address urban flooding and 
climate change.

For floods, different countries have proposed plans and policies 
that are suitable for them. For instance, Japan has constructed the 
world’s largest drainage channel to regulate floods (173). The urban 
area control policies of different countries vary, and to improve the 
flood control models, we should share and learn from one another.

Cross-regional joint ecological vulnerability 
response strategies

China-Myanmar border: Based on China’s “Malaria Elimination 
Action Plan (2010–2020)” and the actual needs of Myanmar, Health 
Poverty Action (HPA) was established in the border area of Yunnan 
Province. In the border region of Yunnan Province, a sustainable 
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network for malaria prevention and control has been established 
thanks to the HPA’s tripartite model of multi-level management, local 
implementation, and cross-border cooperation (7). However, political 
unpredictability, poor staff subsidies, significant family responsibilities, 
and a lack of professional technical experience in multi-drug resistant 
malaria all have an impact on sustainability because HPA relies on 
outside funding; its work is extremely challenging. This model can 
serve as a valuable guide for future international cross-border health 
collaboration, but it must address problems, such as technical 
sustainability, staffing, and funding.

Environmental safety in the karst border region between Guangxi 
and Vietnam: The Ecological Security Pattern (ESP) solves the three 
main problems of ecological connectivity, human activity interference, 
and cultural adaptability in delicate ecological areas like karst by 
combining scientific quantification (such as the MCR model, circuit 
theory) with traditional ecological knowledge (TEK) (174). In cross-
border ecological governance, the optimized “technology + tradition” 
model (such as the “three axes, two belts, six zones” framework in 
Guangxi) provides a reusable paradigm for the karst regions 
worldwide. ESP needs to seek a balance between “ecological rigidity 
protection” (such as the core area of karst) and “development elasticity 
demand” (such as border trade), and cross-border coordination and 
the modernization of TEK are the core levers to solve the problem. In 
the ecological security patterns study, the Minimum Cumulative 
Resistance (MCR) model and the Gravity model are the core methods 
for identifying and screening important ecological corridors. In 
addition to offering cross-regional coordination solutions, the MCR 
model also gives “physical connectivity” and “functional importance” 
based on the “physical connectivity” it provides. By combining the 
two, ecological corridors can be precisely screened, and vulnerable 
areas (like the Xiliu Ditch in the Yellow River Basin, China) can 
receive scientific support for ecological restoration (175).

Recommendations

Recommendations on the vulnerability of 
the health system

The urban public health system (U-PHS) vulnerability is a 
complex system that requires a comprehensive and holistic 
assessment. The recent study employed a combined assessment 
model that integrates the “human-machine-environment-process” 
four-dimensional framework and the “Bayesian best-worst method 
(B-BWM) + cloud model” to comprehensively evaluate factors 
that affect the vulnerability of U-PHS, and identified 18 factors. 
Among these, the most significant issues are the poor coordination 
and cooperation among personnel, insufficient information 
assurance, low public awareness, and low competence among 
employees of relevant departments and institutions (176). In the 
Southwestern region of China (especially Yunnan), infrastructure 
construction is challenging, the information network is not 
complete, the public health system is vulnerable, and health 
vulnerability is significant due to the underdeveloped economic 
level, complex geographic environment and climatic conditions, 
and a lack of public awareness and cognition. Yunnan’s flora and 
animal resources are abundant. According to an analysis of the 
public health system’s vulnerability issues, the frequent occurrence 

of wild mushroom and snake-bite poisoning incidents is attributed 
to the joint effect of the “human-machine-environment-
management” four-dimensional factors. Currently, our other team 
members are thoroughly studying the two scientific research 
directions of snake bites and mushroom poisonings via 
epidemiological investigations, clinical treatment challenges 
analysis, networked construction to improve treatment levels and 
public cognition, and by establishing clinical prediction models, 
etc. We  hope that future research successes can provide new 
scientific evidence for the challenges of ecosystem vulnerability 
in Yunnan.

Recommendations on systemic vulnerable 
diseases

Zoonotic diseases
Formulate corresponding laws and regulations: Strengthen the 

reporting, control, and implementation of emergency response plans 
for zoonotic infectious diseases (177).

Upgrade the infectious disease reporting system: Various 
organizations, including hospitals, community health centers, the 
Ministry of Health, the Ministry of Forestry, and the Ministry of 
Agriculture, should work together and exchange information online 
to respond to infectious disease emergencies effectively and efficiently 
(178, 179).

Implementation of special projects for major infectious diseases: The 
effective integration of technology sharing platforms, professional 
academic alliances, typical demonstration areas, and high-quality 
forces can establish a multi-link network technology system and a 
strong support system for infectious disease prevention and control, 
as well as improve the emergency response capabilities for infectious 
diseases (180).

Monitoring of abnormal diseases: The monitoring of cross-border 
transmission of exotic diseases should be strengthened, and a cross-
border animal disease control joint mechanism should be established 
between China and neighboring countries (181).

Emphasize interdisciplinary and international cooperation: An 
international early warning system should be established to timely 
monitor unknown infectious diseases in international public 
health (182).

Health education: Living habits should be  changed, the living 
environment should be  improved, and public awareness should 
be increased (183).

Common systemic vulnerable diseases

Strengthening the monitoring and early warning system

	(a)	 Climate Adaptation Warning: The climate model predictions 
should be  combined to forecast the risk of vector-borne 
diseases (such as the early warning system for African malaria).

Improving the healthcare system

	(a)	 Resource Fair Distribution: Vaccine coverage should 
be improved in low-income countries through international 

https://doi.org/10.3389/fpubh.2025.1609377
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Teng et al.� 10.3389/fpubh.2025.1609377

Frontiers in Public Health 13 frontiersin.org

assistance (Global Alliance for Vaccines and 
Immunization, GAVI).

	(b)	 Innovative Health Financing Mechanism: Disease burden 
should be  included in major policy evaluation systems by 
controlling the Health Impact Assessment (HIA) system. The 
primary barriers to action are a lack of resources and a shortage 
of workers. It is recommended that climate change be integrated 
into the development of primary health care, and that 
sustainable government should provide funding and 
resource support.

	(c)	 Primary Service: The community medical worker model (such 
as the “Health Promotion Program” in Ethiopia) should 
be promoted.

	(d)	 Integrate Traditional Chinese and Western Medicine: The 
prevention and treatment integration training bases should 
be established in regions with abundant traditional Chinese 
medicine resources (such as Gansu and Guangxi).

Cross-sectoral collaborative governance

	(a)	 (a)Environmental and Health Linkage: Sanitation facilities 
should be improved (such as the “Clean India Movement” in 
India to reduce waterborne infectious diseases), environmental 
pollution during urbanization should be  controlled, and 
meteorological and health data should be  integrated to 
establish an early warning system.

	(b)	 Economic Policy Intervention: The risk of infectious diseases 
should be reduced through poverty reduction (United Nations 
Sustainable Development Goal SDG1).

Public health education and behavioral intervention

	(a)	 Health Education: The public should be educated on mosquito 
prevention measures, safe drinking water, and vaccination.

	(b)	 Chronic Disease Control: High-risk behaviors should 
be  changed through taxation (Mexican “Sugar-Sweetened 
Beverage Tax Law”) and legislation (anti-smoking policies).

Climate adaptation and resilience building

	(a)	 Climate-Sensitive Disease Response: Adaptive technologies 
such as heat-resistant vaccines and anti-malaria nets should 
be developed.

	(b)	 Disaster Emergency Response: A rapid response mechanism 
for cholera after floods (such as the case in Bangladesh) should 
be established.

Technological innovation and application

	(a)	 Digital Healthcare: Artificial intelligence (AI) to predict 
disease outbreaks (such as modeling by Metabiota in the 
United  States), mobile healthcare to cover remote areas, 
AI-assisted drug resistance prediction, microfluidic chip 
rapid detection, etc., should be  employed to improve 
diagnosis efficiency, establish an environment-genome 
monitoring database, and promote region-specific disease 
prevention and control plans.

	(b)	 Genetic Technology: Genetic editing should be performed to 
control malaria transmission (such as Targe Malaria).

	(c)	 Application of Geographic Information Technology: A 
Geographic Information System (GIS) should be adopted to 
draw disease risk maps, such as the malaria transmission risk 
spatial model established by the Chinese Center for Disease 
Control and Prevention.

Global cooperation
Chinese experience in chronic disease prevention and control 

should be  promoted, international vaccine distribution and 
monitoring network governance measures should be established, 
and guidelines by the WHO and Global Infectious Disease 
Monitoring Network (GOARN) should be  followed to share 
epidemic data, such as virus genome tracking observed during the 
COVID-19 pandemic.

Future challenges

Ecosystems are changing due to climate change, and the 
effects of this change on human health are profound and 
far-reaching. Monitoring across time and space, using predictive 
models, studying the influencing mechanisms, formulating 
response strategies, implementing feasible plans, and achieving 
desired results are all lengthy and complex processes. Disease 
distribution occurs because of natural, economic, and social 
factors, and the policy response should integrate the concept of 
“One Health” (human-animal-environmental health integration) 
(184, 185), and achieve comprehensive management through 
multidisciplinary cooperation, international assistance, and 
localized deployment strategies. Therefore, establishing a more 
resilient public health system to meet the long-term challenges of 
climate change would require multifaceted and cross-scale 
structural adjustments.
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