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Introduction: Infectious diseases pose a significant global health threat,
exacerbated by factors like globalization and climate change. Artificial
intelligence (Al) offers promising tools to enhance crucial early warning systems
(EWS) for disease surveillance. This systematic review evaluates the current
landscape of Al applications in EWS, identifying key techniques, data sources,
benefits, and challenges.

Methods: Following PRISMA guidelines, a systematic search of Semantic Scholar
(2018-onward) was conducted. After screening 600 records and removing
duplicates and non-relevant articles, the search yielded 67 relevant studies for
review.

Results: Key findings reveal the prevalent use of machine learning (ML), deep
learning (DL), and natural language processing (NLP), which often integrate
diverse data sources (e.g., epidemiological, web, climate, wastewater). The major
benefits identified include earlier outbreak detection and improved prediction
accuracy. However, significant challenges persist regarding data quality and bias,
model transparency (the “black box”" issue), system integration difficulties, and
ethical considerations such as privacy and equity.

Discussion: Al demonstrates considerable potential to strengthen infectious
disease EWS. Realizing this potential, however, requires concerted efforts
to address data limitations, enhance model explainability, ensure ethical
implementation, improve infrastructure, and foster collaboration between Al
developers and public health experts.

KEYWORDS

artificial intelligence, public health, disease surveillance, early warning system (EWS),
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1 Introduction

Protecting global populations from the continuing threat of infectious diseases is an
important concern in an increasingly interconnected world (1-3). Several factors increase
the risk of pandemics, including the rising frequency of zoonotic spillovers (4), the growing
challenge of antimicrobial resistance (5), widespread globalization (2), rapid urbanization
(1), and the effects of climate change (6). These factors show the urgent need for strong
surveillance and preparedness strategies (7, 8). In this context, the ability to rapidly
detect and effectively respond to infectious disease outbreaks at their earliest stages is
urgent (9, 10).
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Artificial intelligence (AI) has emerged as a powerful tool
in public health, offering new possibilities to improve infectious
disease surveillance and early warning systems (1, 11, 12).
Its potential to transform early outbreak detection, refine
epidemiological models, and optimize healthcare responses has
received growing attention (13-16). By using advanced algorithms
to process and analyze large datasets from diverse sources, Al can
identify patterns and detect anomalies that may signal emerging
public health threats (1, 17-19).

This review critically examines the current state of Al
applications in early warning systems (EWS) for infectious disease
surveillance. It addresses the following key questions:

1. What are the primary artificial intelligence techniques and
methodologies currently employed in early warning systems for
infectious disease surveillance?

2. What types of data sources are predominantly utilized by these
Al-driven systems?

3. What are the main reported benefits and advantages of applying
Al in this domain?

4. What are the key limitations, and ethical
considerations identified in the literature regarding the

challenges,

use of Al for infectious disease surveillance?
5. What are the emerging trends and future directions for the
development and application of Al in this field?

2 Methods

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (20) to ensure a transparent and repeatable
process. The search strategy, detailed below, was specifically
designed to retrieve studies relevant to the primary research
questions presented in the Introduction.

2.1 Search strategy

The review began by defining four main search topics to
capture the breadth of relevant literature: (1) the application of
artificial intelligence in early warning systems for the detection
and management of infectious diseases; (2) the use of machine
learning techniques to enhance early warning systems for infectious
disease surveillance; (3) the role of deep learning methods in
developing early warning systems for infectious diseases; and (4)
the use of Al-driven early warning systems for infectious disease
outbreaks. These topics were chosen to cover the key technologies
and applications in the field.

Search queries were generated based on these topics and
executed on Semantic Scholar (the primary database used, n = 1 in
the PRISMA diagram). For each topic, three types of queries were
developed: a broad query, a focused query using the “+” operator,
and a related query including additional supporting terms. This
multi-strategy approach was designed to balance the retrieval of
a wide range of studies with the identification of highly relevant
results. Table 1 presents the full set of search queries.
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We selected Semantic Scholar as the primary data source
for this review due to its extensive reach and advanced search
functionalities. It is a free, Al-driven search engine indexing over
200 million academic papers, utilizing machine learning to identify
relevant literature beyond simple keyword matching. Its foundation
on comprehensive knowledge graphs, including the Microsoft
Academic Knowledge Graph and Springer Nature’s SciGraph,
connected with direct partnerships with over 50 publishers
and data providers, guarantees broad coverage of academic
content (21).

2.2 Inclusion and exclusion criteria

To guarantee the relevance and focus of this review, specific
inclusion and exclusion criteria were applied during the study
selection process. Studies were included if they directly addressed
one or more of the four research topics concerning Al, machine
learning, deep learning, and early warning systems for human
infectious disease surveillance.

Only journal articles, conference papers, or studies published
in English from the year 2018 onward were included. Studies were
excluded if they were identified as editorials, commentaries, or
abstracts only; if they did not focus on human infectious diseases
or early warning systems; or if they were not published in English.
A total of 223 reports were excluded during the full-text assessment
stage, primarily because they were not directly relevant to the
research questions.

2.3 Study selection process

The initial search retrieved ~600 records. After removing
303 duplicate records during the identification phase, 297 unique
records remained for screening.

All 297 records were screened based on their titles, abstracts.
No records were excluded at this initial screening stage. The
full texts of all 297 records were then retrieved and assessed
for eligibility according to the inclusion and exclusion criteria
described in Section 2.2. During the full-text assessment, 223
reports were excluded, mainly because they did not meet the
relevance criteria. This process resulted in 67 studies being included
in the final review, as shown in the PRISMA flow diagram
(Figure 1).

3 Results

Following the systematic search and screening process detailed
in the Methods section, a final set of 67 studies met the inclusion
criteria and were included in this review (see PRISMA flow
diagram, Figure 1). A summary of the key characteristics of the 67
included studies is presented in Table 2. This summary highlights
aspects central to our research questions, including the primary
AI/ML techniques employed (Research Question 1), the types of
data sources used (Research Question 2), the main application areas
of the Al systems, and the specific infectious diseases addressed.
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TABLE 1 Search topics and query strategies for the systematic review.

Search topic Broad query

The application of artificial intelligence in early
warning systems for the detection and management
of infectious diseases.

systems infectious diseases”

“Artificial intelligence early warning

10.3389/fpubh.2025.1609615

Focused query Related query

“Artificial intelligence” + “early
warning systems” + “Infectious
diseases”

“Machine Learning” + “Predictive
analytics” + “Epidemiology”

The use of machine learning techniques to enhance
early warning systems for infectious disease
surveillance.

systems infectious diseases
surveillance”

“Machine learning early warning

“Machine learning” + “Early
warning systems” + “Infectious
diseases surveillance”

“Artificial intelligence public health
predictive analytics epidemiology”

The role of deep learning methods in developing

early warning systems for infectious diseases. systems infectious diseases”

“Deep learning early warning

“Deep learning” + “Early warning
systems” + “Infectious diseases”

“Machine learning” + “Predictive
analytics” + “epidemiology”

The use of Al-driven early warning systems for

infectious disease outbreaks. infectious diseases”

“Al-driven early warning systems

“Al-driven” + “Early warning
systems” + “infectious diseases”

“Machine learning public health
disease surveillance”

Identification of new studies via databases and registers

< .
S Records identified from: Records lremoved before screening:
© Duplicate records (n = 303)
=z Databases (n = 1) R d Ked as ineligible b :
= Registers (n = 600) ecords marked as ineligible by automation
& tools (n = 0)
=)
Records screened | Records excluded
(n=297) (n=0)
87
= Reports sought for retrieval | Reports not retrieved
I (n=297) (n=0)
5}
(%]
Reports assessed for eligibility | Reports excluded:
(n=297) Reports excluded (n = 230)
bS] s . .
g New studies included in review
<‘§ (n=67)

FIGURE 1

PRISMA flow diagram illustrating the selection process for studies included in the review.

3.1 The growing need for early warning
systems

The history of global health clearly shows the damaging
impact of pandemics and epidemics, which have caused significant
loss of life and lasting social and economic disruption (1, 2).
Events such as the 1918 influenza pandemic, the 2003 Severe
Acute Respiratory Syndrome (SARS) outbreak, and the recent
COVID-19 pandemic serve as important reminders of the
serious threat posed by infectious diseases (2, 8). These
experiences show the importance of learning from the past
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and continuously improving our ability to detect and respond
to outbreaks more effectively, informed by reviews of early
warning system (EWS) effectiveness and global development
experiences (7, 22, 23).

In addition to these historical lessons, several current global
trends are increasing both the risk and speed of infectious
disease outbreaks (I, 24). The rising number of zoonotic
spillovers (diseases jumping from animals to humans), driven by
factors such as deforestation and habitat loss, contributes to the
emergence of new diseases, demanding integrated One Health
approaches (2, 4). At the same time, the growing challenge of
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TABLE 2 Characteristics of included studies.

References

Zhou et al. (4)

Technique(s) used

Systematic review, multi»trigger
monitor system

Data sources

Community level surveillance
data

10.3389/fpubh.2025.1609615

Focus

Summarize EID surveillance

Disease(s) ‘

Emerging infectious
diseases (EIDs)

Lietal. (22)

Retrospective review, blockchain,
smart contracts, sentiment ana.lysis

‘WanFang Data, CNKI, WoS,
PubMed, Health Depts,
Hospitals, Social Media, Stats
Bureau, Meteo Depts,
wastewater

Review EWS progress

Infectious diseases

Sun (7)

Multi-source data

Enhance surveillance systems (China)

Infectious Diseases, EIDs

Yang et al. (13)

DL (SEAR Model), LR, SVM, RE,
XGBoost, LSTM

ILI surveillance data (China)

Develop DL EWS model (SEAR)

Influenza

Zhang et al. (62)

Medical data (HIS, LIS, PACS,
EMR)

Identify early warning signals in
hospitals

Infectious diseases, EIDs

Fuetal. (59)

Light-controlled capillary NA
separation, PCR, AI monitoring, IoT

POC testing device data

Develop sample-to-answer diagnosis
platform

Emerging infectious
diseases (EIDs)

Panah (1)

Al Data analytics

Multi-source data

Introduce framework integrating Al
with public health Sys

Infectious diseases

Zehnder et al. (58)

Hydraulic modeling, ML (SVM), FFT

‘Wastewater data (simulated),
hydrodynamic models

Develop methodology for rapid
pathogen source tracing

SARS-CoV-2

Javed et al. (29)

Systematic review (Kitchenham), ML,
DL, Federated learning

IEEE, ACM, Springer,
ScienceDirect databases

Review ID recognition & Propose
federated learning framework

General infectious diseases

Meckawy et al. (23)

Systematic review, adapted CASP
Checklist

PubMed, Scopus Databases

Review EWS effectiveness (outbreak
detection)

Infectious diseases
(Pandemic pot.)

Oeschger et al. (2)

AL wastewater epidemiology,
bioaerosol sampling, LFA, NA
amplification

Climate data, health records,
social media, sentinel animals,
wastewater, Bioaerosols

Examine technologies for earlier ID
detection

Emerging infectious
diseases (EIDs)

Huetal. (67)

Summarize EWS definitions, status,
indicators

Infectious diseases

Tian et al. (28)

Blockchain, Al big data, smart
contracts

Multi-party monitoring data

Propose Blockchain EWS technology
& framework

infectious diseases

Morin et al. (6)

Climate forecasting,
exposure-response models

Temperature, precipitation,
environmental data

Review use of climate/weather-driven
EWS

Climate-sensitive IDs
(Dengue, Cholera, RVF)

Bernasconi et al.
249

Data-driven/knowledge-based
analysis (Al implied)

Viral genomes

Develop methods for genomic
surveillance (SENSIBLE)

Viral pathogens
(COVID-19)

Hu et al. (68)

Summarize EWS definitions, status,
models, methods

Infectious diseases

Ibiam et al. (44)

Systematic review (AI, ML, DL)

Review Al in clinical decision support

Infectious diseases (Sepsis)

Singh and Dhiman Al predictive analytics (ML, DL, NLP, EHR, medical imaging, genetic Review Al predictive analytics for Multiple (cancer, CVD,
(17) NN) data, wearables early detection diabetes, neonatal, IDs)
Raja and Sukanya AL ML, DL, NLP Real-time Data, IoT, social Explore Al in public health Infectious diseases

(33) media analytics surveillance (COVID-19)

Zhang et al. (38)

Al (deep learning)

Epidemic data (multi-source)

Develop Al real-time monitoring &
response system

Infectious diseases

Srivastava et al. (3)

Review (AI, ML, DL, Image
Recognition)

Patient data

review Al role in early diagnosis &
Treatment

infectious diseases

Mckee et al. (14)

Al (predictive algorithms)

Social media, meteorological

Explain Al applications for pandemic

Infectious diseases

data, mobile data management (pandemics)
Haval and Ikhar DL (CNN), SEM Tuberculosis case statistics Develop CNN for early ID detection Tuberculosis (TB)
(54) (city) (CNN-IDD-PHE)

Nwankwo et al. (36)

Al predictive analytics, ML

Health records, surveillance
data, environmental

Discuss Al predictive analytics for
rural epidemics

Epidemic diseases

Olaboye et al. (34)

Al predictive models

Mobile health data
(geolocation, apps, wearables)

Explore Al/mobile data for real-time
surveillance

Infectious diseases
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TABLE 2 (Continued)

References

Isiaka et al. (15)

Technique(s) used

Al ML, predictive modeling

Data sources

EHR, social media, historical
data, climate, mobility

10.3389/fpubh.2025.1609615

Focus

Explore AI for early detection &
management

Disease(s)

infectious diseases
(COVID-19)

Langford et al. (43)

Review (AL, ML, DL, LLMs)

Discuss Al disruption in ID workforce

Infectious diseases

Lietal. (11)

Review (AL, DL)

US COVID-19 mortality data
(example)

Overview Al use in IDs (COVID-19
focus)

Infectious diseases
(COVID-19)

Badidi (63)

Review (Edge AL, ML, DL, federated
learning)

EHR, wearable devices,
demographic information

Review edge Al for early health
prediction

Chronic diseases, infectious
diseases

Chuetal. (51)

Al ML, DL

Medical imaging data (clinical
& preclinical)

Assess Al techniques in ID imaging
research

Infectious diseases
(COVID-19)

Wongetl. (5)

Review (AL, ML, GNNs,
Seq-to-Func/Struct, generative)

systems/synthetic biology data,
drug screens

Discuss Al approaches for
detecting/treating/understanding IDs

Infectious diseases (AMR)

Tran et al. (64)

Review (Al, ML, data fusion)

Host-response proteomic data

Overview AI/ML for ID diagnosis
(immunocompromised)

Infectious diseases (sepsis,
COVID-19, Fungal)

Parums (8)

Editorial (Mentions AI/ML, Genome
Seq.)

Update on AT uses/limitations in
surveillance

Infectious diseases
(COVID-19)

Ekundayo (18)

ML (supervised—forecasting,
unsupervised—clustering)

EHR, social media, climate
data, genomic sequences

Predict outbreaks & enhance
surveillance

Infectious diseases
(influenza)

Jaswal et al. (35)

Al ML

Patient data, EHRs

Develop predictive models for early
warning signs

Chronic diseases (diabetes,
HTN, CVD)

Cheng et al. (39)

Spatial autocorrelation, ML (ARIMA,

COVID-19 case data (China),

Analyze spatial patterns & Predict ID

COVID-19, AIDS,

ML/streamlit

ELM, SVR, Wavelet, RNN, LSTM), AIDS, PTB case data trends pulmonary TB
stacking (RBF/PSO)
Manshi (30) ML (time-series forecasting, RE, Public health data (Epi, Demo, Forecast outbreaks using ML models Influenza, dengue,
LSTM) Env, weather, mobility, COVID-19
sentiment)
Bandal (65) ML, streamlit datasets (general) Predict multiple diseases using Chronic diseases, infectious

diseases

Natrayan et al. (37)

ML (SVM, RE K-means), data mining

Enhance ID surveillance & Outbreak
management

Infectious diseases

Towfek and Elkanzi Review (Al, ML, DL, NN) Genomic data, environmental Review ML role in predicting ID Infectious diseases (AMR,
(25) data, patient info. spread TB, Measles, COVID-19)
Mandepudi et al. Al ML (SVM, LSTM), NLP Medical datasets (symptoms, Design Al medical chatbot for Infectious diseases

(45) history, Tx plans) prediction/assistance

Setegn and Dejene
(2025) (56)

ML (RF, bagging, GB, CatBoost,
XGBoost, LGBM), XAI

clinical features dataset
(GitHub)

Develop XAI for symptom-based
detection

Monkeypox

Quigley et al. (2025)
(66)

AT (EPIWATCH system)

Open source data
(syndromic/specific outbreaks)

Assess EPIWATCH as surveillance
tool

Respiratory illnesses,
conflict zone IDs

Kashmar et al.
(2025) (50)

Scoping review (ML models: BERT,
AraBERT, GMDH-NN, LSTM, HMM)

Social media data, climate data,
health data

Analyze use of social media data in
Al-based EWS

Infectious diseases
(COVID-19, Flu)

James et al. (2024)
(16)

Predictive analytics (AI, ML)

Health records, environmental
data, social determinants

Examine predictive analytics role in
surveillance

diseases (general public
health)

Eze et al. (2024)
(19)

Review (AI, ML, NLP, predictive
modeling)

Health data analytics

Explore AI analytics for early ID
detection (US Strat.)

Infectious diseases

Abinaya et al.
(2024) (47)

ML (SVM, KNN, LR, DT, RE MLP)

Symptom/prognosis dataset
(Kaggle)

Optimize VBD surveillance with ML
classification

Vector-borne diseases (11
types)

Addaali et al. (2024)
(41)

Review (ML, DL, XAI)

Highlight value of XAI in
predicting/managing IDs

Infectious diseases
(COVID-19)

Chen et al. (40)

ML (RE SVM, etc.)

Nosocomial infection
surveillance (NIS) data,
hospital ops, drug use, temp.

Build risk assessment system using
ML

Nosocomial infections

Morr et al. (9)

Systematic scoping review (AL, ML,
DL, Ensemble)

Assess Al capability in
epidemic/pandemic EWS

epidemics/pandemics
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TABLE 2 (Continued)

References

Zhang et al. (61)

Technique(s) used

Adaptive dynamic threshold method
(ADTM), ML (supervised—MLSM,
unsupervised—MLUM)

Data sources

ILI statistics, Baidu Index,
clinical data (Weifang)

10.3389/fpubh.2025.1609615

Focus

Compare threshold vs. AL EWS
approaches

Disease(s)

Respiratory infectious
diseases (flu, COVID-19)

Garcia-
Vozmediano et al.
(57)

ML (tree regression, RE, GB)

Food safety audits, human case
data (Italy)

Develop ML EWS for foodborne
outbreaks

Salmonella

Wattamwar et al.
(2024) (55)

GIS, ML prediction models, time
series

Present GIS-enabled real-time
surveillance system

Lassa fever

climate, epi)

prediction

El-kenawy et al. ML (linear regression) Dengue cases, vector Predict dengue cases based on climate Dengue
(26) abundance (AB]J), climate data factors
Ningrum et al. (52) AL ML (Extra Trees, CatBoost), LSTM | Spatiotemporal, Develop Al spatiotemporal dengue Dengue
meteorological, surveillance prediction model
data (Semarang City)
Mazhar et al. (69) Review (data-driven ML models) Review data (surveillance, Overview data-driven ML for dengue Dengue

Go (48)

ML (RE, LR, SVM, KNN)

Provincial morbidity data
(Philippines)

Predict disease occurrences using ML

Multiple communicable
diseases (HFMD, Dengue,
Typhoid, Flu, etc.)

Flores et al. (32)

Analysis (focus on NLP algorithms)

Social media data

Explore algorithmic biases in NLP
surveillance

Macintyre et al. (12)

Review (focus on Al-based EWS like
EPIWATCH, HealthMap)

Review data (open source data)

Summarize Al potential in epidemic
intelligence

Epidemic diseases

meteorological data (Brazil)

dengue cases

Gairola and Kumar ML (CNN features + classifiers: DT, RGB image dataset (open Develop ML method for image-based Monkeypox

(49) KNN, NB, LR, RE, SVM), DL (CNNs: source) diagnosis
AlexNet, GoogleNet, VGG16), fusion

Wang et al. (53) DL (MSRD based on RNN), SVM, Hospital reported case data, Develop MSRD model for Multiple IDs (HFMD,
Lasso, Bayesian weather data fine-grained hospital EWS Influenza)

Roster et al. (27) ML (RE, GB, FNN, SVR) Epidemiological & Develop model to forecast monthly Dengue

Arslan and Benke
(10)

Al, Data science

Online search queries, social
media posts

Discuss Al/telehealth potential for
early warning

Epidemics (COVID-19
context)

Apolinario-Arzube
etal. (60)

DL, infodemiology

social networks, public reports,
citizen input

Present collaborative infodemiology
platform

Zika, dengue, chikungunya,
influenza

Guo et al. (42)

AI (ANN—RTRL, EKF)

Notifiable disease case data
(China)

Establish ANN model for early
warning signals

Respiratory & Digestive IDs

Peterson (31)

Discuss ML/predictive analytics in
clinical practice

Clinical outcomes (general)

Lietal. (46)

ML (logistic, Naive Bayesian, SVM),
SVM-RFE

Patient prognosis data
(hypertension cohort)

Establish risk early warning model

Cardiovascular diseases
(stroke, heart/renal failure)

antimicrobial resistance is making the treatment of common
bacterial infections more difficult, a problem that Al is being used to
address (5, 25).

Globalization, driven by international travel and trade, enables
pathogens to cross borders rapidly, increasing the potential for
worldwide spread (1, 2). Urbanization leads to higher population
densities, creating environments where diseases can spread more
easily (1, 24). Furthermore, climate change is changing disease
patterns and migration routes by expanding the habitats of
disease vectors such as mosquitoes, making prediction and control
more difficult and driving the need for climate-informed early
warning systems (6, 26, 27). Together, these factors create a more
complex and unstable environment for disease emergence and
spread (1, 24).

Frontiersin Public Health 06

In this changing situation, early warning systems (EWS) for
epidemics are essential tools for preventing the rapid spread of
infectious diseases and reducing their impact on public health
(4, 12). These systems act as proactive defenses, allowing faster
and more targeted responses to protect communities and save lives
(16, 23). The ability to detect and understand outbreaks in their
early stages is important for implementing timely interventions,
such as quarantine measures, vaccination campaigns, and public
education efforts, which can significantly change the course of an
outbreak and lessen its overall burden (2, 13).

Early warnings offer a valuable window of opportunity to
control an outbreak before it overwhelms healthcare systems
and spreads further (10, 28). This emphasizes the importance of
rapid, informed decision-making based on accurate and timely
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data-a challenge that modern technologies, particularly artificial
intelligence, aim to address (29, 30).

3.2 How Al powers early warning systems

Addressing the challenges of modern disease surveillance
requires tools capable of handling large and varied information;
artificial intelligence (AI) offers such capabilities (1, 5). AI has
become a powerful tool for processing and analyzing large datasets
from diverse sources for infectious disease surveillance, operating
at scales far beyond human capacity (16, 19, 31). It can analyze
information from sources such as medical records, social media
posts, news reports, and environmental monitoring devices (9, 10,
32). By analyzing these large volumes of varied data, Al applications
in public health offer a more complete and timely understanding of
disease dynamics (8, 33, 34).

Al detects early warning signals of infectious disease outbreaks
through several mechanisms. It can identify anomalies—deviations
from expected patterns—that may signal emerging public health
threats (18, 19). AI algorithms are also capable of finding
patterns in data that suggest the onset of a disease outbreak,
allowing faster recognition of potential threats (1, 17, 35). For
example, Al might detect an unusual spike in online searches
for specific symptoms combined with increased social media
posts about illness in a particular city, potentially indicating an
outbreak days before official case counts rise (10, 12). Machine
learning models are essential for finding correlations within large
datasets that may indicate emerging outbreaks, enabling timely
interventions (17, 36, 37).

Furthermore, Al is used in predictive modeling. Al-driven
predictive analytics have played an important role in monitoring
epidemiological trends, enabling public health officials to better
anticipate and respond to potential outbreaks (16, 17, 35, 36). By
creating predictive models, Al improves efforts in contact tracing
and surveillance, helping to understand and control the spread of
infectious diseases (11, 18, 38). Using historical data, environmental
factors, and real-time surveillance information, machine learning
models can forecast the spread and impact of infectious diseases
with increasing accuracy (14, 27, 30, 39), enabling proactive
resource allocation and more targeted public health measures (40).

The integration of Al into early warning systems significantly
improves the speed and efficiency of outbreak detection and
prediction compared to traditional methods (12, 38). By rapidly
processing large amounts of data, AI can identify potential
outbreaks much faster than conventional systems relying on
manual data collection and analysis (1, 10, 41). This increased
speed and efficiency support more timely and effective public health
responses (9, 42).

However, it is important to recognize that Al serves
as a valuable tool that supports and enhances, rather than
replaces, traditional epidemiological methods and public health
infrastructure (8, 12, 43). Al systems work alongside human-
led efforts, providing new insights that help health professionals
make better-informed decisions during outbreaks (31, 43, 44). The
specific computational techniques that enable these functions are
explored in the following section.
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3.3 Artificial intelligence techniques and
methodologies employed in early warning
systems

Addressing the first review question, this section details
the primary artificial intelligence techniques and methodologies
employed in early warning systems for infectious disease
surveillance, based on the reviewed literature. For readers
interested in more detailed descriptions of these techniques,
including their core principles and typical applications in the

context of infectious disease EWS, please refer to Appendix A.

3.3.1 Natural language processing (NLP)

Natural language processing (NLP) is important to analyze
unstructured text data to detect early signals of infectious disease
outbreaks (17, 32). AI systems use NLP to process large amounts of
open-source data, including news reports and social media posts,
to identify early warning signs of potential epidemics (12). NLP
techniques can analyze user-generated content, detecting mentions
of symptoms, self-reported illnesses, and concerns about disease
spread in specific geographic areas, thus providing valuable real-
time intelligence (19). Moreover, NLP has been applied within
tools like medical chatbots (45) and to electronic medical record
data to identify and characterize a broad range of symptoms
associated with infectious diseases, improving the detail and speed
of surveillance compared to structured data alone. By extracting
relevant information from large amounts of online textual data,
NLP enhances early outbreak detection, often identifying signals
before official health notifications are released.

3.3.2 Machine learning (ML)

Machine learning (ML) algorithms are widely used for pattern
recognition, classification, and prediction in infectious disease
surveillance (25, 37). These algorithms analyze structured and
unstructured data from various sources to detect early warning
signals of outbreaks (30). A variety of ML techniques are
applied in epidemic and pandemic early warning systems. Among
the most frequently employed are classification algorithms such
as Support Vector Machines (SVM) and tree-based methods
including Decision Trees (46-48), along with instance-based
models like K-Nearest Neighbor (KNN) (37, 48), linear models like
Logistic Regression (46, 48), and probabilistic classifiers such as
Naive Bayes (46, 49). Several studies have shown that comparing or
combining multiple ML techniques often improves the prediction
of infectious disease incidence and trends, demonstrating their
potential for forecasting disease dynamics (37, 48). Ensemble
methods, a powerful ML extension, are discussed further in
Section 3.3.5.

These
unsupervised, and reinforcement learning, serving distinct

algorithms are categorized into supervised,
roles in early warning systems (EWS) for infectious diseases.
Supervised learning is the most commonly applied paradigm
in the reviewed literature. These algorithms train on labeled
data, where each instance is associated with a known outcome,

enabling the model to predict outcomes for new, unseen inputs.
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In infectious disease surveillance, supervised learning is widely
used to predict the likelihood or timing of future outbreaks based
on epidemiological histories, climate patterns, and population
mobility data; to classify cases or regions into predefined risk
categories (e.g., high-risk vs. low-risk); and to support disease
diagnosis using symptomatic data or medical imagery. Techniques
such as SVM, Decision Trees, Logistic Regression, and Naive Bayes
are frequently used within this framework.

Unsupervised learning, by contrast, works on unlabeled data
and seeks to discover hidden structures, anomalies, or groupings
without predefined outcomes. In EWS applications, it is commonly
employed for anomaly detection (e.g., identifying unexpected
spikes in symptom-related social media activity), clustering cases or
outbreaks to uncover transmission dynamics, and topic modeling
of text data to detect emerging public health concerns or novel
symptom profiles.

Reinforcement learning (RL) involves an agent that interacts
with an environment to learn optimal decision strategies through
trial and error, aiming to maximize a cumulative reward over
time. Although RL is less frequently applied in operational
EWS compared to the other methods, it holds considerable
potential. Notable applications include optimizing public health
interventions, such as determining when and where to deploy
vaccines or allocate resources, and developing adaptive control
policies that respond quickly to evolving surveillance data. These
applications, however, are more complex to implement and remain
largely at the exploratory stage.

These learning paradigms provide an adaptable and growing
toolkit for enhancing infectious disease EWS across a range of
predictive and decision-support tasks.

3.3.3 Deep learning (DL)

Deep learning (DL) techniques, a subset of ML utilizing
neural networks, are increasingly recognized for their ability
to handle complex, high-dimensional data in surveillance tasks
(11, 41). Common architectures include Recurrent Neural
Networks (RNNs), particularly Long Short-Term Memory (LSTM)
networks, and Transformer models like Bidirectional Encoder
Representations from Transformers (BERT) (50). DL models
have shown great success in improving diagnostic accuracy and
forecasting outbreaks by analyzing large datasets and recognizing
complex patterns (3, 51). LSTM networks are especially well-
suited for modeling time-based disease trends because they can
retain information over long sequences (39, 52, 53). Transformer
models like BERT are used for the classification and prioritization
of textual information, such as news articles or social media
posts, allowing faster and more efficient identification of outbreak-
relevant data (12, 50). Other DL architectures found in the reviewed
literature include Convolutional Neural Networks (CNNs), often
applied to image data but also used in prediction models (49, 54),
and custom networks like the Self-Excitation Attention Residual
Network (SEAR) designed for influenza surveillance (13).

3.3.4 Time series analysis
Time series analysis methods are frequently used to predict
disease incidence and trends based on historical data patterns

Frontiersin Public Health

10.3389/fpubh.2025.1609615

(37, 55). Statistical approaches, such as the Auto-Regressive
Integrated Moving Average (ARIMA) model and its seasonal
variants (SARIMA), consider trends, seasonality, and random
fluctuations in time series data (39). These models are useful for
tasks like predicting seasonal flu peaks or modeling reported case
counts over time. Deep learning methods, particularly LSTMs
(discussed in Section 3.3.3), are also commonly applied to time
series forecasting in this domain (30, 52), alongside other neural
network approaches (42).

3.3.5 Ensemble learning

Ensemble learning techniques aim to improve the accuracy,
robustness, and reliability of predictions by combining the
outputs of multiple individual models (18). Common ensemble
methods include Random Forest, which aggregates predictions
from multiple decision trees (40, 56, 57), and various Boosting
algorithms (such as Gradient Boosting, XGBoost, CatBoost, and
LightGBM) that build models sequentially, with each new model
correcting errors made by previous ones (13, 52, 56, 57). Another
powerful ensemble technique is Stacking, where predictions from
several different base models (e.g., ARIMA, SVM, LSTM) are used
as inputs for a higher-level meta-learner to produce the final output
(39). These ensemble methods often outperform single models by
reducing variance and bias, leading to more reliable predictions for
complex tasks like outbreak risk forecasting.

3.3.6 Hybrid models

Finally, hybrid models that integrate different AI techniques
or combine AI with statistical methods or domain-specific
models are increasingly being explored to enhance early warning
systems (9). By combining methods, hybrid approaches aim to
leverage the different strengths of each component-balancing the
interpretability of statistical models with the predictive power
of deep learning algorithms or integrating physical models with
machine learning (58). Examples include combining CNNs with
Structural Equation Models (SEM) (54), using stacking ensembles
as described above (39), or integrating Internet of Things (IoT)
data streams with AI analysis platforms (59). These approaches
create more powerful and flexible systems for infectious disease
surveillance and prediction.

3.4 Data sources for Al-driven surveillance

To answer the second research question concerning data
utilization, this section outlines the different data sources mainly
used by these Al-driven systems. As shown in Table 3, common
data sources for Al-powered infectious disease surveillance include
news reports, social media platforms, electronic health records,
environmental monitoring data, and official health notifications.

3.4.1 Digital and publicly available data

Open-source internet data provides a rich source of early
outbreak signals, including news reports, social media activity,
blogs, and health forums (12, 60). The internet serves as an
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TABLE 3 Common data sources for Al-powered infectious disease surveillance.

Data Source Description

News Reports Online articles from various media outlets

Utility in EWS

Early detection of unusual health events, identification of potential outbreaks

Social Media Posts and trends on platforms like Twitter,

Facebook

Real-time public sentiment and discussion about symptoms and illnesses,
early signals of outbreaks

Official Health Notifications Reports from WHO, CDC, and other public

health agencies

Confirmed case data, epidemiological trends, official alerts and guidance

Search Engine Queries
terms

Aggregated search patterns for health-related

Indicator of public health concerns and potential increases in illness
prevalence

Mobile Health & Wearable Data
from devices

Physiological data (temperature, heart rate, etc.)

Early detection of individual and population-level health changes, potential
early warning signs of infection

Environmental & Climatic Data
etc.

Temperature, precipitation, humidity, air quality,

Understanding environmental factors influencing disease transmission,
predicting suitable conditions for vector-borne diseases

Travel Data & Mobility Patterns

Airline passenger data, mobile phone location data

Tracking the movement of people and potential spread of diseases across
regions

Genomic Data Genetic sequences of pathogens

Identification of specific pathogens, tracking viral mutations, understanding
pathogen evolution

Wastewater Surveillance Analysis of sewage water for the presence of

pathogens and their genetic material

Early detection of pathogens in a community, providing an unbiased
measure of infection levels, including asymptomatic cases

extensive, real-time repository where public concerns, discussions
about symptoms, and early reports of illness can emerge before
official health notifications (10). Analyzing trends in social media
posts [e.g., from platforms like Twitter (32, 50)], internet searches
for health-related terms [e.g., using Baidu Index or Google Trends
(61)], and online news articles can offer leading indicators of
disease outbreaks.

3.4.2 Health system and personal health data

health
notifications and reports issued by organizations such as the
World Health Organization (WHO) and national health agencies
(e.g., the Centers for Disease Control and Prevention, CDC) are

Traditional epidemiological data from official

important to train and validate AI models (48). This includes
specific datasets such as influenza-like illness (ILI) reports (13, 61),
mandatory case reporting for diseases like dengue (27, 52), and
hospital records, including electronic health records (EHR),
laboratory information systems (LIS), and picture archiving and
communication systems (PACS) (46, 62). Additionally, broader
public health surveillance system data is frequently used (40).
The emerging role of mobile health (mHealth) technologies and
wearable device data offers a continuous stream of physiological
indicators suitable for surveillance (29, 34, 63), although practical
applications are still developing (17, 64).

3.4.3 Environmental and contextual data
Environmental and climatic data, including temperature,
humidity, and precipitation patterns, are important factors
influencing the transmission of many infectious diseases,
particularly vector-borne illnesses (6, 26, 27, 53). Travel data and
human mobility patterns provide valuable insights into tracking
and predicting the geographical spread of infectious diseases
across regions (14, 15). Genomic data also plays an important
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role in identifying specific pathogens, tracking their evolution,
and understanding potential changes in their characteristics
(5, 8, 24). Finally, wastewater surveillance has emerged as a novel
and unbiased data source for monitoring infection levels at the
community level, capturing even asymptomatic cases (2, 22, 58).

3.4.4 Integration of data sources

The integration of different data sources empowers Al-
powered systems to achieve a more comprehensive and timely
understanding of infectious disease threats (9). The ability to
combine and analyze these varied datasets, often referred to as
multi-source or multi-channel surveillance (7), is an important
strength of Al in this domain (18, 38). Combining different data
streams often provides a more robust and earlier signal than any
single source alone (57), creating a synergistic effect for outbreak
detection and prediction.

However, integrating such diverse datasets presents significant
challenges, notably data heterogeneity, where information from
various origins (e.g., structured climate data, unstructured social
media text, epidemiological case counts) differs in format,
scale, temporality, and reliability. Addressing these challenges is
important for the effective application of Al in EWS.

For instance, in the surveillance of respiratory illnesses
like influenza or COVID-19, many studies attempt to combine
meteorological data (e.g., temperature, humidity) with indicators
derived from web sources such as social media posts (for symptom
mentions or public sentiment) or search query trends, alongside
official epidemiological reports (18, 30, 50).

Successfully harmonizing these disparate data types typically
involves several key steps.

3.4.4.1 Temporal alignment

Datasets are often collected at different frequencies. A common
approach is to aggregate them into consistent time units, such as
daily or weekly summaries. For example, daily climate readings
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might be aligned with weekly aggregated social media sentiment
scores and official case counts.

3.4.4.2 Spatial aggregation

Information needs to be linked to common geographical units
(e.g., city, county, or specific health districts). This might involve
averaging climate data over a region or linking geolocated social
media posts to defined administrative boundaries.

3.4.4.3 Feature engineering

Raw data often requires transformation into formats suitable
for AI model input. For social media, this could involve using
natural language processing (NLP) to extract sentiment scores,
topic frequencies, or mentions of specific symptoms. Climate
variables might be used directly or transformed into anomaly
indices (e.g., deviations from seasonal norms).

3.4.4.4 Normalization and scaling

To prevent features with larger numerical values from
disproportionately influencing model training, numerical data
from different sources (e.g., temperature values ranging from
—10 to 40°C and sentiment scores from —1 to 1) are typically
normalized or scaled to a common range (e.g., 0 to 1 or z-scores).

Beyond harmonization, addressing the heterogeneity of
combined data often relies on robust preprocessing pipelines to
handle missing values and outliers, and the strategic selection of
AT models. For example, ensemble methods like Random Forests
have shown efficacy in managing complex datasets with a mix of
structured (e.g., climate data) and unstructured (e.g., text-derived
features) data (30). Furthermore, multimodal deep learning
architectures are increasingly being explored for their capacity
to learn joint representations from different data modalities
simultaneously, offering a sophisticated approach to leveraging
heterogeneous information for improved prediction accuracy
in EWS.

3.5 Benefits of Al in infectious disease
surveillance

This section addresses the third research question by
summarizing the main reported benefits of applying artificial
intelligence (AI) in infectious disease surveillance, based on the
reviewed literature.

One of the key advantages of using Al in this field is its ability
to enable earlier and faster detection of outbreaks compared to
traditional surveillance systems (10, 12, 38). As noted in Section
3.1, speed is critical for effective response, and Al can reduce
the delays associated with conventional methods by identifying
epidemic signals much earlier (1, 23). A famous example is the
BlueDot platform, which detected early signs of the COVID-19
outbreak before official reports were released (12).

This speed advantage is partly due to AI’s ability to efficiently
process and analyze large volumes of diverse data relevant to public
health surveillance, as discussed in Section 3.4 (1, 16, 31). Al
systems can handle data from sources such as medical records,
laboratory results, social media, and environmental sensors (14,
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18), extracting meaningful insights from information that would
be too large or complex for human analysts to manage.

By processing this wide range of data using the techniques
described in Section 3.3, Al can also improve the accuracy
and precision of outbreak prediction and forecasting (13,
53). This leads to better-informed public health decision-
making. Predictive analytics powered by Al have been important
for monitoring epidemiological trends, allowing more accurate
anticipation and faster responses to potential outbreaks (27, 30, 39).
Studies show that AI and machine learning (ML) models often
achieve higher performance metrics, such as accuracy, sensitivity,
and lower error rates, compared to baseline or single-model
approaches (40, 48, 52, 54).

Improved predictions also help optimize resource allocation
and strengthen pandemic preparedness (6, 14). Al tools can analyze
population health data to predict disease risk and spread, guiding
the efficient distribution of resources such as hospital beds, medical
supplies, and healthcare workers to areas of greatest need (15, 36).
Timely and accurate predictions allow public health authorities
to implement proactive measures, identify high-risk regions, and
reduce the impact of outbreaks (27, 37, 48).

Furthermore, AI shows potential to address challenges in
resource-constrained settings. In low-income countries, where
human resources for traditional surveillance are limited, Al can
automate processes and offer cost-effective solutions (12, 27).
Technologies such as Edge AI can enable local analysis where
centralized infrastructure is unavailable (63), and Al-powered
point-of-care diagnostics can improve access to timely information
(59). Al may also help overcome issues like data censorship
by identifying signals from alternative sources, offering a more
objective view of disease activity. However, the effectiveness of
early warning systems can vary significantly between high- and
low-resource settings (23).

3.6 Limitations and challenges of Al in
infectious disease surveillance

Addressing the fourth review question, this section discusses
the key limitations, challenges, and ethical considerations identified
in the literature regarding the use of artificial intelligence (AI) for
infectious disease surveillance.

3.6.1 Data quality and biases

Despite its advantages, the use of Al in this field has important
limitations. One major concern is the quality, completeness,
and consistency of the data used to train and operate Al
models (9, 63). Inaccurate, fragmented, or missing data can
lead to unreliable outputs and poor model performance (19).
Moreover, biases present in the data-such as underrepresentation
of certain demographic or linguistic groups or lack of properly
encoded information-can result in AI models that perform
poorly for those groups, potentially worsening health inequities
(11, 14, 32). Ensuring that datasets are comprehensive and
representative is therefore critical to avoid biased outcomes (5,
17). Some models may also fail validation when applied to
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new datasets, showing issues with generalizability and potential
overfitting (31, 51).

3.6.2 Lack of transparency and understandability
("black box" problem)

Another critical issue is the lack of transparency in many
advanced AI models, particularly deep learning algorithms, often
referred to as the “black box” problem (9, 41). These systems often
generate results without a clear explanation of how conclusions
were reached (25, 65). This lack of understandability makes it
difficult for public health professionals and clinicians to confirm,
trust, or troubleshoot model outputs (31). Ongoing research in
explainable AI (XAI) aims to address this challenge (41, 44, 56).
Without understanding the reasoning behind AI predictions, it
becomes difficult to correct errors or explain decisions based
on them.

3.6.3 The necessity of human expertise and
oversight

While AT tools can process and analyze data at scale, human
oversight remains essential for interpreting results and making
appropriate public health decisions (14, 43). AI systems are best
used as complementary tools alongside traditional epidemiological
methods, rather than as replacements (8, 12). Human expertise
is necessary to validate findings, evaluate anomalies, contextualize
AT outputs, and ensure that insights are appropriately applied in
complex real-world situations (1, 31).

3.6.4 Challenges in integrating Al into existing
infrastructure

Integrating Al into existing public health infrastructures
presents significant technical and organizational challenges (1, 44).
These include issues with the interoperability of different systems,
where varying data formats and protocols restrict the seamless
exchange of information needed for comprehensive Al analysis (19,
63). Other challenges involve inconsistent data-sharing protocols
(7), the need for robust local data infrastructure (36), and limited
workforce training or expertise to utilize Al tools effectively (1).
Maintaining data security and confidentiality while ensuring data
availability for real-time processing is also a significant operational
concern (63). Difficulties in enabling distributed, collaborative
decision-making across different platforms or institutions have also
been noted (28).

3.6.5 Ethical considerations

The use of Al in infectious disease surveillance raises numerous
ethical challenges (15, 16, 65). Data privacy and security are top
concerns, given the sensitivity of personal health information (8,
11). This requires robust governance frameworks and privacy-
preserving techniques (14). Technologies such as federated
learning, which allow model training on decentralized data without
sharing raw information, are being explored to mitigate these risks
(29, 63). Questions remain regarding who controls health data, how
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consent is obtained [especially when using public data sources like
social media (50)], and how to ensure responsible data use (11).

Additionally, AI systems may continue or even worsen
existing social inequities when trained on biased data, resulting
in unfair treatment or exclusion of disadvantaged groups (25,
32, 44). The issue of accountability is also important: when
AT systems support public health decisions, it is important to
define who is responsible, particularly when errors occur (11).
Finally, ensuring equitable access to Al technologies and their
benefits for all populations is essential to avoid large global health
disparities (36, 44).

3.7 Existing and proposed Al-based early
warning systems for infectious diseases

Despite the challenges mentioned in the previous section,
several Al-based early warning systems have been developed
and deployed, demonstrating the practical application of these
technologies (38, 55). These systems vary in their approaches, data
sources, and specific techniques employed. To better understand
the operational characteristics of some of the Al-enhanced EWS,
Table 4 provides a comparative summary of the three main
systems (i.e., HealthMap, BlueDot, and EPIWATCH) showing their
input data, Al approaches, output features, and aspects related
to latency.

3.7.1 Systems primarily using web and public
data sources

Several systems focus on using open-source internet data for
early detection of signals. HealthMap is a fully automated system
that monitors health events, including infectious diseases, by using
natural language processing (NLP) to analyze real-time data from
web sources such as news reports and health forums, providing
a global view (12). EPIWATCH is another Al-based system that
generates automated early warnings by analyzing open-source data
with techniques like NLP and named entity recognition (NER) (12).
It has been used, for example, to study the effects of conflicts on
disease epidemiology and to track respiratory illness trends (66).

Epitweetr, developed by the European Center for Disease
Prevention and Control (ECDC), specifically monitors tweets
related to infectious diseases, allowing filtering by location and
time (12). An earlier example, Google Flu Trends, attempted
to predict influenza prevalence using search query data (12).
While pioneering, it faced challenges related to accuracy, including
matching noise instead of true signals (overfitting) and seasonal
biases. Other research continues to explore the utility of social
media platforms like Twitter (50) and search engine query data
(10, 61) for surveillance.

3.7.2 Systems integrating diverse data sources
Other systems aim to integrate a wider variety of data sources

to improve predictions and address limitations such as reporting

delays. BlueDot, a well-known Canadian platform, gained attention
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TABLE 4 Comparison of selected Al-based early warning systems.

Feature

Primary input data

HealthMap

News media (Google News, etc.),
official reports (WHO, ProMED-mail),
web sources (blogs), social media,

user eyewitness reports

BlueDot

Official health notifications (WHO),
news articles, animal/plant disease
networks, travel data (airline ticketing),
remote sensing data, client-provided
government data

10.3389/fpubh.2025.1609615

EPIWATCH

Curated sources (WHO, CDC,
Outbreak News Today), non-curated
(Google News with >4,000 search
terms), social media (Twitter, future)

AT techniques used

Automated classification (Fisher-
Robinson Bayesian filtering), NLP
(text processing algorithm for
identifying, classifying, mapping)

AI (NLP in 65 languages), human
moderation, transport network
modeling, clustering tools for hotspot
identification

Al-based event filtering, NLP (BERT
for article classification & prioritization
with 88.2% accuracy for relevance),
named entity recognition, human
review

Key output features

Geographic mapping of events,
linked reports, alerts by disease/
syndrome, timelines, mobile app
(“Outbreaks Near Me”)

Alerts to clients, hotspot
identification, risk analysis (details often
proprietary)

Public dashboard with searchable/
sortable outbreak reports, GIS
mapping, analytics, risk analysis

tools (EPIRISK, FLUCAST, ORIGINS)

Reported latency

Hourly data collection. Detected
COVID-19 signals on Dec 30, 2019
(1 day before official Chinese
acknowledgment)

Near real-time analysis. Identified
undiagnosed pneumonia (COVID-19)
on day of WHO declaration

(Dec 31, 2019)

Curated sources: near real-time;
Non-curated: daily. Detected
COVID-19 signals on day of WHO
announcement

System-specific

Reports all health events, not
specific to epidemics. Accuracy of
automated categorization reported
as 84% in earlier literature

Commercial system; specific
accuracy metrics for outbreak
prediction not publicly detailed
in the comparative review

Reported 88.2% accuracy for Al
(BERT) in assessing article relevance
to outbreaks. Focus on infectious
diseases and syndromes

for its early detection of the COVID-19 outbreak (12). It uses
Al to analyze diverse global data, including airline ticketing
data and official reports, demonstrating how combining non-
traditional sources can potentially overcome delays or censorship
in official reporting.

The Global Biosurveillance Portal (GBSP) is a web-based
system that integrates data from multiple web applications
and government sources for timely responses, using Al-based
predictive analysis (12). The Metabiota Epidemic Tracker
uses big data analytics and cloud computing to simulate
epidemic events and conduct risk analysis across numerous
pathogens (12).

Beyond these named platforms, many studies describe
frameworks or models that integrate multiple data streams. These
include systems that combine: (1) community-level or hospital
surveillance data (such as influenza-like illness reports, case
notifications, and electronic health records) with external factors
like weather or web data (4, 40, 53, 61, 62); (2) vector surveillance
data with climate parameters and case data, especially for diseases
like dengue (26, 27, 52); (3) food safety surveillance data with
human case data for foodborne illnesses (57); (4) data from
networked point-of-care testing devices using Internet of Things
(IoT) technology (59); (5) wastewater-based epidemiology data
with hydraulic modeling (58); and (6) inputs from social networks,
public reports, and direct citizen participation (60).

Many proposed systems emphasize multi-source, multi-
channel, or multi-point trigger approaches to improve sensitivity
and robustness (7).

These examples show the diverse approaches and data
sources used by existing and proposed Al-powered early warning
systems. While some systems show significant promise, ongoing
development and refinement are important for improving their
accuracy, reliability, and acceptance by public health authorities
(9, 22, 67, 68).
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3.8 Al applications in specific infectious
diseases

The practical application and impact of artificial intelligence
(AI) in early warning and disease management have been
demonstrated across several major infectious disease outbreaks and
surveillance efforts, as illustrated by the following examples.

3.8.1 COVID-19

During the recent pandemic, Al played several important roles
(8, 41). Platforms like BlueDot provided early detection of the
outbreak, demonstrating the benefits discussed in previous sections
(12). Al-supported radiology tools aided diagnosis through the
automated analysis of medical images such as CT scans (51).
Social media and search query data were analyzed using Al to
track the virus’s spread and monitor public sentiment (33). Al
models also predicted COVID-19 spread based on mobility data
and other factors (1). Furthermore, tools like EPIWATCH analyzed
the impact of global events on disease epidemiology (66), and other
AT models were developed using COVID-19 case data to improve
forecasting and understand transmission patterns (11, 39, 61).

3.8.2 Influenza

Influenza surveillance has also benefited significantly from Al
applications. Google Flu Trends represented an early attempt to
predict influenza activity using search queries, illustrating both
the potential and limitations related to data quality and accuracy,
as discussed in previous sections (12). More recently, tools like
EPIWATCH have included components for predicting flu season
severity (66). Deep learning models, including custom attention-
based networks, have been developed specifically for influenza
surveillance using influenza-like illness (ILI) data, demonstrating
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strong early warning performance in some settings (13, 61). Al-
driven analysis of search queries and other data sources continues
to be explored for forecasting influenza trends (30, 42).

3.8.3 Ebola

During the 2014 West Africa outbreak, Al algorithms were
applied to analyze large datasets to track virus spread and
predict potential hotspots, reportedly aiding more efficient resource
allocation and containment efforts. Platforms such as HealthMap,
BlueDot, and Metabiota included Ebola in their monitoring
activities (12). While detailed examples specific to Ebola were less
prominent in the reviewed literature compared to COVID-19 or
influenza, the event shows the potential for predictive models in
outbreak response.

3.8.4 Dengue fever

Given its significant global burden, dengue fever is another
area where AI and machine learning (ML) models are actively
being developed and applied. Research focuses on forecasting
dengue cases or outbreaks using epidemiological surveillance
data combined with climate or meteorological variables (26, 27,
69). Al approaches, including spatiotemporal models, are being
designed specifically for dengue early warning systems (52).
Systems may incorporate vector surveillance data alongside case
and climate information (26), or integrate data from platforms
involving citizen participation (60). The goal is to provide timely
predictions to support public health interventions and vector
control efforts (6, 48).

3.8.5 Other infectious diseases

Al and ML techniques are also being applied to a growing
range of other infectious diseases beyond the major examples
above. In response to the monkeypox outbreaks, researchers have
developed machine learning models for diagnosis, using either
clinical symptom data-sometimes incorporating explainable AI
(XAI) techniques to improve trust and transparency (56)-or
analyzing image data of lesions to aid detection (49).

Applications in tuberculosis (TB) surveillance include using
machine learning to predict the risk of relapse in patients and
exploring the transferability of predictive models trained on
other respiratory illnesses, such as COVID-19, to forecast TB
case numbers (25, 39, 54). For foodborne illnesses, tree-based
machine learning algorithms have been applied to integrated food
safety surveillance data and human case reports to predict the
spatiotemporal patterns of salmonellosis outbreaks (57).

Nosocomial (hospital-acquired) infections represent another
area where machine learning methods are used on hospital
surveillance data, incorporating factors such as antibiotic use and
operational metrics to assess risks and predict infection incidence
(40). Furthermore, AI models are being developed for broader
categories, such as classifying various vector-borne diseases based
on symptomatology (47) or using neural networks for early
warning across multiple notifiable respiratory and digestive tract
diseases (42, 48).
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Specific applications also include surveillance systems for
outbreaks like Lassa fever (55) and predicting trends for diseases
such as hand, foot, and mouth disease (53).

3.9 Future trends and advancements in Al
for early detection of infectious disease
outbreaks

Finally, addressing the fifth research question, this section
explores the emerging trends and future directions for the
development and application of artificial intelligence (AI) in this
field, as suggested by the reviewed literature.

3.9.1 Data integration and algorithm
improvement

Future developments will involve enhanced integration of
diverse data sources, including real-time streams from social
media, wearable devices, environmental sensors, wastewater
monitoring, and genomic sequencing (16, 50, 59). There is an
increasing emphasis on combining multi-sectoral data under
frameworks such as One Health (4), and integrating clinical
information with external factors like climate patterns or web
searches (22, 53).

At the same time, AI models will continue to evolve, with
the development of more advanced and accurate algorithms. This
includes further refinement of deep learning models and ensemble
techniques, aimed at improving predictive capabilities (5, 38, 46).
These advancements are expected to enhance the reliability of
AT systems and address challenges related to data quality and
completeness (9). Continuous model updating and optimization
through iterative feedback and expert judgment will be essential for

maintaining model relevance and performance (13).

3.9.2 Enhanced transparency and privacy

Addressing ethical concerns will remain important. A growing
focus on explainable AI (XAI) is anticipated to improve
transparency and trust in Al-driven systems (25, 41). XAI directly
tackles the “black box” challenge discussed in Section 3.6.2,
allowing stakeholders to better understand the reasoning behind AI
predictions (5, 50, 56).

Several specific XAI techniques are gaining importance for
their utility in interpreting complex models, thereby enhancing
practical relevance. For example, Local Interpretable Model-
agnostic Explanations (LIME) offers a method to explain the
predictions of any machine learning model by approximating its
behavior with a simpler, interpretable model (e.g., a linear model)
locally around a specific instance being predicted (70). In the EWS
context, LIME could thus help public health officials understand
why an otherwise opaque Al system flagged a particular region or
time point as high-risk for an outbreak.

Another widely adopted technique is SHapley Additive
exPlanations (SHAP), which utilizes a game theory approach,
specifically Shapley values, to assign an importance value to
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each feature for a particular prediction (71). This value indicates
the feature’s contribution to the model’s output, allowing for a
quantitative assessment of how different data inputs (e.g., specific
symptoms reported on social media, recent mobility patterns, or
prevailing climate conditions) contributed to an AT model’s forecast
of increased disease incidence.

Furthermore, particularly for deep learning models such as
Transformers and some Convolutional Neural Networks (CNNs),
Attention Visualization provides valuable insights by allowing
for the inspection of internal attention mechanisms. These
visualizations can reveal which parts of the input data the model
focused on most when making a decision (72). For instance, in
an EWS processing news articles or social media posts, attention
weights could identify specific keywords or phrases that triggered
an alert; similarly, in time-series forecasting, such visualizations
could identify which historical data points were most influential for
a given prediction.

The adoption and further development of these and other
XAI methods are crucial for building trust and facilitating
the practical deployment of AI in critical public health
decision-making  processes. Ongoing research  continues
to refine these techniques and develop new ones tailored
to the complexities of AI in healthcare and infectious
disease surveillance.

In parallel, emerging privacy-enhancing technologies such as
federated learning (29, 63), which allows AI models to be trained
on decentralized data without sharing raw sensitive information,
will be equally important.

The promise of federated learning (FL) in the EWS context
primarily derives from its ability to train robust AI models
collaboratively across multiple entities (e.g., hospitals, clinics,
individual wearable devices) without the need to centralize sensitive
raw patient data, thus directly addressing critical data privacy
and security concerns (29, 63). The reviewed literature describes
conceptual architectures for FL in health surveillance. For instance,
Javed et al. introduce a framework leveraging FL with data
from wearable health monitoring “gages” for the early diagnosis
of infectious diseases like COVID-19, dengue, and tuberculosis,
emphasizing its potential for lower power consumption on
distributed devices (29). Tian et al. (28) propose an FL-based
“alliance monitoring” module specifically for medical institutions
as part of a broader blockchain-enabled EWS, facilitating secure
inter-institutional data sharing and collaborative model building.
These architectures typically involve local model training on
decentralized datasets, with only aggregated parameters or model
updates being shared, often via a central server (though serverless
peer-to-peer models are also conceived), to build a more
generalized global model.

Regarding technical feasibility, while FL offers significant
advantages for privacy and access to diverse data, its practical
implementation in EWS is subject to several considerations
identified in the literature. Benefits include the potential for
more accurate and generalizable models from varied data
sources (29) and reduced latency when combined with edge
computing (63). However, significant challenges persist, including
managing statistical heterogeneity (non-IID data) across different
participating nodes, the communication overhead required for
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transmitting model updates, ensuring the security and privacy
of the model updates themselves against inference attacks, the
computational demands on local devices or institutions, and the
complexities of system interoperability and integration into existing
public health infrastructures (63).

While comprehensive case studies detailing the large-scale
deployment and empirical performance of FL-based EWS for
specific infectious diseases were still emerging within our review
period (2018-onward), the reviewed literature strongly advocates
for its potential and outlines numerous proposed applications.
Beyond specific disease mentions by Javed et al. (29), the
general applicability of FL is highlighted for scenarios requiring
collaborative analysis of distributed health data while preserving
privacy, which is fundamental for effective and equitable EWS.
Overcoming the identified technical and logistical hurdles is crucial
for transitioning FL from a promising concept to a widely adopted,
impactful technology in routine public health surveillance for
infectious diseases.

Blockchain technology is also being explored for secure
data sharing and smart contract applications (22, 28). These
technologies are expected to support collaborative AI development
while safeguarding data privacy and security.

3.9.3 Broadening scope: novel threats and
personalization

Advancements are anticipated in the real-time monitoring and
early detection of novel and emerging infectious diseases (EIDs)
(7, 8, 24). Al systems will increasingly focus on detecting unusual
symptom clusters through syndromic surveillance, potentially
identifying new or unexpected infectious threats before their causes
are fully understood (23).

At the same time, the application of AI in personalized
and precision public health is expected to expand (3, 31).
Future strategies could involve customizing warnings or preventive
advice based on individual risk profiles derived from data from
wearable devices, genomic information, or particular clinical
factors (17, 43, 44).

3.9.4 Global collaboration and standardization

Increased global collaboration and data sharing will be
essential to enhance pandemic preparedness (16, 25). Developing
standardized Al tools and data protocols will facilitate more
effective global disease surveillance and response (8), helping to
overcome integration challenges and reducing data biases described
in previous sections.

Establishing
health agencies, healthcare providers, academic institutions,

cross-sectoral  partnerships among public

and technology developers will be critical for sharing expertise,
co-developing solutions, and fostering innovation (5, 19, 32).

4 Limitations of this review

This
comprehensive overview of the

systematic review, while aiming to provide a

recent landscape of Al
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applications in EWS for infectious diseases, is subject to several
methodological limitations that should be considered when
interpreting its findings.

Firstly, the scope of our literature retrieval was primarily based
on the Semantic Scholar database. Although Semantic Scholar is
an extensive, updated, Al-driven platform indexing an extensive
number of academic papers, the dependence on a single primary
database, despite our structured search strategy, may mean that
some relevant studies indexed exclusively in other databases (e.g.,
Web of Science, Scopus, PubMed Central for specific biomedical
aspects) might have been missed. This could potentially introduce
a degree of selection bias.

Secondly, our review included a language restriction,
focusing only on studies published in English. This was a
practical decision to ensure consistent interpretation and
data, but it inevitably excludes research published in other
languages. Therefore, valuable insights and AI applications
developed or reported in non-English literature, particularly
from regions where English is not the primary language
of scientific publication, may not be represented in our
synthesis, potentially skewing the geographical representation of
research activities.

Thirdly, as with most systematic reviews, there is a potential for
publication bias. Studies reporting positive, novel, or statistically
significant findings are often more likely to be published than
those with null, negative, or inconclusive results. This could
lead to an overrepresentation of successful Al applications or an
underestimation of the challenges and failures in the field of AI
for EWS.

Fourthly, the timeframe for our search (2018 onwards)
this
rapidly growing field. While this provides a contemporary

was chosen to focus on recent advancements in

overview, it means that foundational or earlier relevant
studies published before 2018 were not included in this
specific review.

Finally, the significant heterogeneity observed across the
67 included studies in terms of AI methodologies, specific
diseases, datasets, and evaluation metrics made it challenging to
conduct a direct quantitative comparison or meta-analysis of the
performance of different AI approaches. Our review, therefore,
primarily provides a qualitative synthesis and mapping of the

reported landscape.

5 Discussion

Historical pandemics and contemporary factors such as
globalization, climate change, and zoonotic spillover (diseases
transmitted from animals to humans) show the urgent need to
enhance global preparedness against infectious diseases (1, 2,
4, 6). In response, this systematic review evaluated the current
state of the use of AI in early warning systems (EWS) for
infectious disease surveillance, summarizing findings from 67
relevant studies. Specifically, it addressed five research questions
related to: primary AI methods, data sources, perceived benefits,
significant challenges, and future trends. One consideration is
that our review was based on literature retrieved from Semantic
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Scholar. Although this database covers a broad spectrum of
scientific publications, it may not include all relevant studies
indexed in other sources such as Web of Science or Scopus.
However, given its integration of diverse publication sources
and strong coverage of peer-reviewed literature, we believe
this approach was appropriate for the scope and objectives
of our review. Overall, the findings suggest that AI has the
potential to transform infectious disease surveillance from reactive
approaches into proactive, data-driven predictions, although
several technical, practical, and ethical barriers still limit its
general implementation.

Regarding the first research question on primary AI methods,
the reviewed studies show a clear shift from traditional statistical
methods toward more advanced machine learning (ML) and deep
learning (DL) techniques. ML classifiers, such as support vector
machines (SVM), logistic regression, and k-nearest neighbors
(KNN), remain popular for disease prediction and classification
tasks (46, 48). Ensemble methods, particularly Random Forests,
consistently achieve strong performance in predicting hospital-
acquired infections (40), forecasting communicable diseases (48),
and identifying foodborne illness outbreaks (57). Additionally,
DL models that capture temporal patterns, such as Long Short-
Term Memory (LSTM) networks, have proven particularly effective
for forecasting diseases like influenza and Dengue fever (52,
53). Innovations in customized DL architectures, demonstrated
by attention-based SEAR networks for influenza surveillance
(13), further illustrate the evolution of the field. Meanwhile,
natural language processing (NLP) techniques have become
important for extracting insights from unstructured text in news
articles, social media, and clinical reports, enabling real-time
tracking of public sentiment and symptom reporting (10, 12, 32).
Hybrid approaches, combining multiple algorithms or integrating
AT with traditional epidemiological models, are increasingly
adopted to improve overall predictive accuracy and system
robustness (39, 58).

In addressing the second research question about data sources,
modern Al-driven EWS emphasize the integration of diverse and
large-scale datasets. While traditional epidemiological sources—
such as case reports, influenza-like illness (ILI) counts, and
hospital records-remain important (13, 62), the full potential
of AT appears through combining these traditional sources with
non-traditional datasets. Web-based data, including news articles,
social media platforms [e.g., Twitter (50)], and search engine
queries [e.g., Baidu Index (61)], offer real-time indicators of
emerging health concerns. Environmental and climatic datasets
are important for forecasting vector-borne illnesses like Dengue
fever (26, 27), as well as other weather-sensitive diseases (6).
Emerging data sources, such as wastewater surveillance, provide
unbiased, community-level indicators of disease activity (22, 58),
and genomic sequencing enables precise identification and tracking
of pathogens (8, 24). Mobile health technologies and wearable
devices offer future potential for personalized health monitoring,
although their integration into broader public health surveillance
remains limited at this time (29, 34, 63). The integration of such
diverse data enhances predictive accuracy but also introduces
substantial challenges related to data quality, consistency, and
interoperability (9, 63).
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Furthermore, a significant overarching challenge implicitly
and ethical

considerations is the generalizability of AI models, particularly in

linked to data quality, model transparency,
the context of cross-region or cross-population applications. Our
review notes that issues with model generalizability and the risk
of poor performance when applied to new, distinct datasets are
recognized limitations in the field (as discussed in Section 3.6.1).
While the concept of transfer learning between different diseases
was noted in some reviewed literature (Section 3.8.5), a deep,
specific exploration into the methodologies, comparative
effectiveness, and challenges of cross-region transfer learning
(e.g., adapting models developed in one continent for robust
application in another with different demographic, environmental,
or healthcare system characteristics) was beyond the defined scope
of our primary research questions. Our review aimed to provide a
broad assessment of the current landscape of Al techniques, data
sources, reported benefits, and broadly identified challenges within
EWS for infectious diseases. The complexities of developing,
validating, and implementing effective and equitable cross-region
transfer learning strategies represent a substantial and critical
research domain in their own right.

Regarding the third research question (benefits), Al-based
early warning systems primarily enhance the time and accuracy
of outbreak detection. Multiple studies and real-world systems,
such as BlueDot’s early identification of COVID-19 (12), illustrate
how AI can detect outbreaks sooner than traditional surveillance
methods (10, 38), thus enabling faster and more effective public
health interventions (23). Improved predictive accuracy further
supports health authorities in allocating resources and responding
effectively to outbreaks (14, 27, 36, 48, 52, 54). Additionally,
Al-driven automation of data processing may offer cost savings,
particularly in resource-limited settings (12), although equitable
access to these advanced technologies remains an important
concern (23).

Despite these clear benefits, the fourth research question
identifies substantial limitations. The quality, completeness, and
representativeness of input data determine AI performance;
thus, poor data quality inevitably leads to unreliable predictions
(“garbage in, garbage out”) (9). Biases inherent in data collection
processes—such as underreporting or limited digital access—can
result in biased AI outputs that intensify existing health inequities
(11, 14, 32). The “black box” nature of complex DL models,
characterized by their lack of transparency, also represents a
significant barrier to clinician and public health official adoption
(31, 41). While Explainable AI (XAI) methods are emerging
to address this challenge, they remain underdeveloped (5, 56).
Additional challenges include technical difficulties in integrating
Al systems into existing public health infrastructure, along with
complex ethical considerations around privacy, consent, fairness,
accountability, and potential misuse of data (11, 14, 19, 32,
50, 63). Finally, human expertise continues to be essential for
interpreting Al-generated insights and making important public
health decisions (8, 43).

Considering future trends (fifth research question), the
field is moving toward integrating diverse datasets, developing
adopting
privacy-preserving technologies such as federated learning and

more sophisticated, transparent algorithms, and
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blockchain (3, 5, 16, 28, 29, 41). However, achieving these goals
will require global collaboration, standardized data practices,
sustained investment in infrastructure and workforce training, and
clear ethical frameworks to guide responsible AI development and
deployment (1, 8, 14, 19).

6 Conclusion

This systematic review shows the growing importance and
rapid development of artificial intelligence (AI) in early warning
systems for infectious diseases. AI methods have the potential to
greatly improve the speed, accuracy, and effectiveness of outbreak
detection and prediction. By analyzing large and varied data
sources, ranging from traditional health records to digital media,
environmental measurements, and wastewater surveillance, Al can
provide earlier and more precise warnings. This advantage has been
clearly demonstrated for diseases such as COVID-19, influenza,
and Dengue fever.

However, significant challenges remain, preventing Al from
being widely implemented. Issues related to data quality, missing
or biased data, and transparency in complex AI (“black box”)
models must be carefully addressed. The need to explain how Al
reaches its conclusions (“explainable AI”) is necessary to build
trust among healthcare professionals and public health authorities.
Additionally, there are technical difficulties in combining and
managing large datasets, and ethical concerns about privacy,
fairness, and accountability. It is also important to ensure that Al
systems support human decision-making rather than replace it.

While AT offers great promise for improving infectious disease
surveillance and global health preparedness, achieving these
benefits requires a coordinated effort. Continued investment in
developing transparent, fair, and ethical Al technologies is needed,
along with improvements in data management, training of health
workers, and international cooperation.
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