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Public health emergencies (PHEs) pose significant challenges to global urban 
governance systems, necessitating the establishment of more efficient and dynamically 
adaptive response mechanisms. Numerous cases indicate that current urban 
governance still faces the risk of systemic failure under PHE shocks, leading to 
severe socio-economic consequences. Existing studies, based on theories such 
as resilience, emergency management, and risk management, primarily employ 
traditional statistical modeling or single-discipline approaches to explore improvement 
pathways. However, they fall short in cross-system and multi-agent coordination 
mechanisms, as well as data-driven intelligent optimization. Therefore, this project 
draws inspiration from the principles of the human immune system, introduces 
the concept of urban immunity to characterize the level of urban governance 
under PHEs, and follows the approach of “feature decoding → mechanism analysis 
→ spatiotemporal measurement → trend prediction → model optimization → 
decision output.” It refines the theoretical framework of urban immunity, analyzes 
urban immune response mechanisms, develops an immunity indicator system, 
assesses the spatiotemporal patterns of urban immunity, and builds a decision-
making model using intelligent optimization methods to generate optimized 
solutions for different scenarios. Ultimately, the project aims to establish a data-
driven, evidence-based decision-making approach. This project seeks to provide 
a more systematic and operational theoretical framework for urban public health 
governance while promoting the digital and intelligent transformation of public 
health management, thereby enhancing PHE prevention and control capabilities.
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1 Introduction

Although human beings have entered the “Post-Epidemic Era,” public health emergencies 
(PHEs) continue to affect urban governance and global public health security by virtue of their 
strong uncertainty, infectivity, concealment and urgency, and have a great negative impact on 
life, health and economic society (1). On average, the World Health Organization (WHO) 
reports more than 200 PHEs globally each year, and 377 in 2023, with more than 70% of them 
occurring in urban areas, including monkeypox, Ebola, avian influenza, Zika virus, influenza 
A, mass poisoning, and outbreaks of environmental pollution. The annual global economic 
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loss due to infectious disease outbreaks amounts to $600 billion, 
accounting for about 0.7% of the global economy. COVID-19 has 
spread to 213 countries and regions since its outbreak in 2020, with 
more than 700 million cumulative confirmed cases and more than 7 
million deaths, leading to a global economic loss of $22 trillion, which 
accounts for more than 20% of the global GDP.

To this end, governments and organizations around the world 
have formulated framework documents and policies to enhance the 
governance capacity of cities in responding to PHEs, such as: WHO 
issued the “Strengthening health emergency preparedness in cities and 
urban settings” to build a framework and strategy for urban health 
event preparedness, the United States introduced the “Global Health 
Security Strategy” to promote the construction of national health 
security systems and surveillance capacity, and Singapore has 
launched the “Smart Nation” plan to use sensors and data analytics to 
monitor the spread of infectious diseases and optimize resource 
allocation. China released “Sustainable cities and communities—
Guidelines for public-health emergency response in smart city 
operating models,” aiming to realize efficient management of PHEs 
through smart city construction (2).

Meanwhile, scholars from various countries have proposed or 
introduced urban governance-related theories across fields, such as 
resilience theory, complex systems theory, multicenter synergistic 
governance theory, adaptive governance theory, etc., which provide 
unique research perspectives and broad-spectrum solutions for 
research on urban disaster governance and emergency management. 
These theories have been widely applied to different types of disaster 
management such as natural disasters, industrial accidents, and public 
safety crises. However, due to the unique triggering and propagation 
mechanisms of PHEs, there is a risk of governance failure in the 
responses and programs supported by traditional theories when cities 
face the impact of PHEs. For example, in 2012, the outbreak of fungal 
meningitis was caused by the contamination of injections produced 
by the New England Drug Company in the United  States due to 
non-compliance with hygiene standards in the production process, 
loopholes in the regulatory system and the lack of a rapid recall 
mechanism; and in the 2014 Ebola epidemic in West Africa, poor 
public health infrastructure, slow government response, and the 
collapse of public trust led to the Liberian capital Monrovia ‘s failed 
public health governance system; at the early stage of COVID-19 in 
2020, the healthcare system in Lombardy region of Italy collapsed due 
to a combination of imbalanced healthcare resource deployment, poor 
information communication, and ineffective synergy between the 
local and central governments; and the outbreak of dengue fever in 
China’s Guangxi’s Teng County in the second half of 2023 due to 
ineffective vector control, a shortage of primary healthcare resources, 
and a lag in the public disclosure of information.

Urban governance under PHEs is a complex and systematic 
project, and its operation mechanism is highly similar to the 
process of the human immune system against pathogens. Each 
functional department plays a role in the governance system similar 
to that of different types of immune cells in the immune system, 
and through efficient synergy and precise linkage, they work 
together to construct the first line of defense for urban public safety. 
The information transmission between different levels of 
government can be  likened to the signaling of cytokines in the 
immune system. When external threats appear, the governing body 
needs to respond quickly, identify the risks accurately, and 

efficiently integrate and dispatch resources to ensure the timely 
implementation of preventive and control measures. The material 
deployment mechanism is similar to the rapid aggregation and 
targeted response of antibodies and immune cells, aiming at 
guaranteeing the normal operation of key defense and control 
departments and enhancing the overall anti-risk capacity of the city. 
Through this dynamic feedback and resource optimization 
mechanism, the urban governance system continuously strengthens 
its adaptive capacity in the synergistic interaction of multiple 
subjects and levels, and ultimately achieves effective defense and 
rapid recovery from PHEs.

From this association, can we draw on the operating principle of 
the human immune system to put forward the brand-new concept of 
“urban immunity” and apply it to the urban governance under PHEs? 
Compared with traditional concepts or frameworks, the concept of 
urban immunity and its corresponding system have the following 
advantages: (1) a clearer theoretical source, greater situational 
applicability and enhanced relevance, with the three phases of 
“defense, response, and recovery” at its core, emphasizing dynamic 
changes and differentiated strategies at different stages; (2) better 
systematicity and coordination, similar to the synergistic operation of 
human immune cells, emphasizing the coordination ability among 
various systems (medical care, emergency management, community 
organizations), which is especially suitable for multi-sectoral 
cooperation in public health governance; (3) a more reasonable system 
of assessment indexes, which characterizes the level of urban public 
health governance in terms of immunity, and allows for the design of 
quantitative indexes that are more detailed, clearer, and more 
grounded; and (4) creatively introducing the “immune memory 
mechanism” to improve the ability of cities to cope with PHEs in the 
future through experience accumulation of historical events (such as 
policy optimization and technology upgrading).

Therefore, this study introduces the concept of “urban immunity,” 
inspired by the principles of the human immune system’s response to 
pathogens, offering a novel theoretical framework for urban 
governance. It effectively complements and extends traditional 
theories of resilience governance and emergency management. The 
research integrates system dynamics (SD), agent-based modeling 
(ABM), knowledge graphs, graph neural networks (GNN), graph 
convolutional networks (GCN), and deep q-network (DQN) to 
construct a unified framework for comprehensive simulation, 
evaluation, and optimization of urban emergency response. 
Furthermore, the urban immunization optimization model (UIOM) 
developed in this study is capable of generating specific, actionable 
strategies for various public health emergency scenarios, while 
incorporating social equity indicators to support more inclusive and 
scientifically robust policy formulation.

2 Literature review

The study of urban immunity under PHEs is an intersection and 
extension of theories and methods in multidisciplinary fields such as 
risk management, emergency management, urban governance, public 
health governance, and immunology principles, focusing on both the 
effectiveness of emergency management and the improvement of 
multisectoral collaboration capacity of cities in crises, as well as the 
urban practice of public health governance strategies such as public 
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health resource scheduling, and risk blocking, and also how to bring 
immunity as an interdisciplinary concept into the field of management.

Resilient governance theory, as a mainstream theory of urban 
governance, systematically focuses on how to rapidly recover and 
adapt under external shocks or pressures, emphasizing multi-level 
coordination of the governance system, self-adaptive capacity, and 
long-term planning in the face of future crises (3, 4). The core of 
adaptive governance theory lies in the support of continuous learning, 
adjustment of strategies and cooperation among governance subjects 
in dynamic changes when dealing with complexity and uncertainty, 
which emphasizes cross-level and cross-subject cooperation, real-time 
feedback mechanisms and self-adjustment capabilities to ensure 
continuous optimization of governance in changing environments, 
and focuses on the use of socio-ecological systems to respond to 
changes in environments and to flexibly adjust governance strategies, 
which is suitable for coping with Complex and unpredictable public 
problems (5). Complex systems/network governance theory focuses 
on nonlinear behaviors, self-organization, dynamic changes, and 
interdependence among systems in a system, and achieves governance 
goals through networked cooperation (6–7). Collaborative governance 
theory investigates how to effectively govern and coordinate among 
multiple interacting actors to better address unexpected social 
challenges through the advantages of “weak centrality” such as multi-
actor participation, decentralized decision-making, information flow 
and transparency, flexibility and adaptability (8). Participatory 
governance theory focuses on encouraging all members of society, 
especially groups that are typically excluded from decision-making, to 
participate in the governance process, emphasizing broad popular 
participation to promote more inclusive and equitable social outcomes 
(9). Polycentric governance theory, on the other hand, focuses on the 
dispersion of power and interactions between multiple governance 
levels and subjects, emphasizing that governance should not 
be dominated by a single central government, but rather through 
multiple self-organizing, interconnected governance units (10). Smart 
governance relies more on technology and digital platforms, focusing 
on the use of modern technology to enhance the ability of the 
government and all social parties to deal with complex social 
problems, combining technologies such as information technology, 
artificial intelligence, and the Internet of Things to promote the 
intelligence, synergy, and sustainability of public governance (11). 
Relying on the above theories, a series of emergency response 
frameworks have been formed internationally, the core of which lies 
in optimizing the governance structure so as to achieve multi-level 
collaboration, information sharing and systematic dynamic response, 
and ultimately enhance the overall emergency management capacity 
(12). The experience during COVID-19 has shown that outbreak 
mitigation policies (e.g., maintaining social distance) play a key role 
in reducing the risk of early disease transmission, informing future 
public health event responses (13). For example, the Governance 
Framework for Public Health Pandemics (GGPC) further refines the 
governance process, covering six phases: risk identification, early 
warning response, emergency response, recovery and reconstruction, 
long-term adaptation, and targeted governance, providing systematic 
governance solutions for different countries and regions (14). In 
addition, the United States, Japan, and Germany have established a 
unified command structure in their emergency management systems, 
which enables the government and various social actors to collaborate 
in responding to outbreak challenges (15).

The level of urban governance under PHEs is influenced by the 
dynamic interactions of various factors such as infrastructure, 
economic systems, healthcare and emergency supplies distribution, 
and social networks (16, 17), while the performance of these factors 
in the city’s response to PHEs also determines the level of urban 
governance. For example, the load level of healthcare infrastructure 
during epidemics affects various indicators such as healthcare resource 
allocation, emergency preparedness, and treatment efficiency (18); the 
surge in hospital loads leads to capacity diversion and reduced 
efficiency of municipal functions such as public transportation and 
community services (19); and the blockade policy and stagnation of 
economic activities lead to a dramatic changes in the structure of 
energy demand, which has led to a significant decline in commercial 
and industrial electricity demand and a significant rise in household 
electricity demand (20, 21). With transportation constraints and 
delays in energy and material supply chains, energy supply–demand 
imbalances can trigger logistical disruptions and limited supply chain 
functioning, which puts even more pressure on city operations (22). 
Under PHEs, policy response becomes an important regulatory tool 
for the recovery of the economic system. For example, in the early 
stage of the epidemic, China adopted a strict embargo policy and 
effectively prevented the systemic collapse of the socioeconomic 
system through economic interventions such as industrial support 
and financial subsidies (6). Strengthening cross-sectoral collaboration 
mechanisms and integrating the resources of the government, 
healthcare institutions and community organizations to achieve rapid 
and efficient emergency response and dynamic dispatch (23). Enhance 
grassroots emergency response capacity through efficient emergency 
management mechanisms, including emergency prevention, rescue, 
decision-making, command, learning and accountability (24).

The empowerment of digital technology and the application of 
information technology has become an important transformational 
direction for urban governance, focusing on key areas such as policy 
formulation, drug development, and dynamic tracking (25). It also 
provides key support in terms of assessing and even predicting the 
risk of catastrophic events (26), which enhances the ability of cities 
to regain equilibrium after crisis disruptions by accurately identifying 
threats and optimizing resource allocation (27). For example, digital 
technological indicators (e.g., travel cards, health codes, and accurate 
community categorization) play an important role in pandemic 
prevention and control, providing technical support for accurate 
tracking and risk assessment (28, 29). It is widely used in the field of 
epidemic risk assessment in conjunction with machine learning and 
deep learning methods, and its efficient prediction capability and 
explanatory analysis help provide a scientific basis for emergency 
decision-making (30). By simulating the interactions among 
individuals, organizations, and environments, multi-intelligence 
body simulation dynamically analyzes the implementation effects of 
different governance strategies and evaluates the impact of these 
strategies on resource allocation and policy implementation efficiency 
(8). In addition, database system theory provides stable support for 
big data management and improves data storage and query efficiency 
(31). In terms of emergency decision optimization, Bayesian network-
based scenario derivation methods have performed well in dealing 
with emergency strategy formulation under uncertainty and limited 
resources (32). Real-time data collection and sharing techniques have 
drastically reduced the early warning and response time of 
emergencies and improved governance efficiency (33). Geographic 
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information system (GIS), as an important tool for epidemiological 
analysis, can be used to analyze epidemics from multiple dimensions, 
such as time, population, space, region, pathogen category, and 
quality of case reports, and provide a scientific basis for making 
precise defense decisions (34). With the arrival of the 5G era, the 
wide application of information and communication technologies 
will further enhance the resource scheduling efficiency and public 
health emergency decision-making capability, providing stronger 
technical support for the development of digital governance 
system (35).

“Immunity” refers to the physiological function of a living 
organism to maintain homeostasis through the recognition of self and 
foreign antigens by the immune system and a series of immune 
response mechanisms to remove potential threats. As the concept of 
immunity gradually expands to the fields of social immunity, 
economic immunity and organizational immunity, the field of 
management science also tries to find new research perspectives for 
risk management and emergency response through this concept. The 
managerial application of the immunity principle is based on the high 
similarity between the biological immunity mechanism and the 
organizational management system, which can effectively guide 
organizations on how to cope with external threats and maintain the 
normal operation of internal functions, as well as help them to classify 
and judge risks so as to select appropriate countermeasures through 
the crisis management, risk assessment, and early warning 
mechanisms (36). In recent years, the concept of immunity has been 
gradually demonstrated in the study of cities’ response to external 
crises, emphasizing rapid response, social stability, resource 
deployment, and post-disaster recovery, and the formation of an 
“immune response network” through policy iteration and resource 
integration to enhance the city’s defense and response capabilities 
against emergencies and cyberattacks (37), ensuring the resilience and 
sustainability of cities in complex systems (38, 39). Meanwhile, 
research perspectives and strategies such as the construction of urban 
herd immunity, identification of and response to immune blindness, 
considering social distancing and other preventive measures as “urban 
antibodies,” and enhancing artificial immunity through exercises 
further enhance the resilience of cities in complex environments 
(40, 41).

In summary, the current research related to urban governance 
under PHEs and the cross-disciplinary migration of the concept of 
immunity provides an important theoretical basis and practical 
guidance for exploring urban immunity, which is mainly reflected in 
the following aspects:

 (1) Multidisciplinary cross-fertilization provides the research basis 
for this study. Urban immunity research under PHEs has 
gradually shown a trend of multidisciplinary cross-fertilization, 
covering a variety of fields such as risk management, emergency 
management, urban governance and public health governance. 
This interdisciplinary convergence has provided a theoretical 
basis for understanding the adaptability, resilience and 
emergency response of cities in public health crises, as well as 
promoted the application of related technologies in governance 
practices. This study will integrate and systematically model 
existing theories on the basis of interdisciplinary convergence 
to explore a more systematic and synergistic urban immunity 
governance framework.

 (2) Multidimensional development of urban governance theory 
provides the theoretical foundation for this study. Urban 
governance theory has gradually transformed from the 
traditional linear management mode to the complex system 
management mode. Resilient governance emphasizes the 
adaptability and resilience of the system, evidence-based 
governance focuses on data-driven scientific decision-
making, and collaborative governance emphasizes the joint 
participation of multiple subjects. Different theoretical 
frameworks have different application scenarios in urban 
governance, and the response to PHEs requires the integrated 
application of these theories to build a more dynamic, 
flexible and efficient governance system. This study will 
explore the applicability conditions of different governance 
modes and propose a more adaptable and dynamically 
adjustable theoretical system in combination with the 
real needs.

 (3) The application of intelligent technology in urban governance 
provides a means of realization for this study. The application 
of big data, artificial intelligence, GIS and other intelligent 
technologies in urban governance and public health 
management has been deepening, improving the response 
speed and decision-making precision of emergency 
governance. These technologies play an important role in 
epidemic spread prediction, resource deployment optimization 
and risk assessment, making urban governance evolve 
gradually from traditional empirical decision-making to data-
driven intelligent decision-making. This study will explore how 
to build a governance model of cross-technology integration 
and systematization with the support of intelligent technologies 
to improve the science and applicability of 
emergency governance.

 (4) The interdisciplinary application of the concept of immunity 
provides an innovative perspective for this study. The concept 
of immunity has been extended from biology to management 
science, and has been applied to some extent in risk 
management, quality management, emergency management, 
etc. It provides an analogous analytical framework for 
understanding how complex systems resist external shocks and 
restore stability. However, current research focuses on 
theoretical discussions and lacks quantitative assessment 
methods and systematic analytical tools, resulting in the 
concept of immunity being applied in practice in a more 
abstract way and not yet resulting in actionable policy tools. 
Based on the logic of management application of immunity, 
this study will explore more specific governance mechanisms 
under this conceptual framework to promote the deepening 
and practical application of immunity theory in the field of 
urban governance.

Building upon this foundation, this study further refines the 
concept of “urban immunity,” constructs a theoretical framework, 
integrates a robust methodological system, develops assessment tools, 
and provides policy recommendations. These efforts aim to drive the 
transformation of urban governance from traditional emergency 
management to intelligent and resilient governance, offering a novel 
perspective on the sustainable development of cities and the 
safeguarding of public health.
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3 Methods

From the perspective of the intersection of system science and 
public health governance, and with reference to the operation 
principle of the human immune system, this study innovatively 
puts forward the concept of “urban immunity,” which compares 
the response ability of cities in PHEs to the immune function of 
the human body, and constructs a dynamic conceptual framework 
that covers the threat identification, alert dissemination, 
emergency response, monitoring and repair, and memory 

feedback. At the same time, this study takes data-driven as the 
core, integrates multi-source data and artificial intelligence 
technology, systematically constructs a quantitative assessment 
and intelligent optimization system of urban immunity, and 
promotes the transformation of the governance scheme from 
empirical judgment to precise intervention; and promotes the 
transformation of the governance of PHEs from passive response 
to active adaptation and long-term optimization according to the 
three steps of “decode-evaluation-promotion,” as shown in 
Figure 1.
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3.1 Step 1: decoding urban immunity

By comparing the human immune system with the urban 
governance system under PHEs, (1) we  construct the theoretical 
framework of urban immunity, and (2) analyze the full-cycle response 
process of urban response to PHEs, so as to lay the theoretical 
foundation for the subsequent research on the assessment and 
enhancement of urban immunity.

3.1.1 Theoretical framework of urban immunity
First, according to the operation law of the human immune 

system and the urban public health governance process, the 
conceptual, connotative, functional, logical and other mapping 
relationships between the city and the human immune system are 
clarified, as shown in Figure 2. For example, the health service stations 
and big data center find epidemic analogous to macrophages and 
dendritic cells recognizing pathogens; the emergency command 
center coordinates multi-departmental responses, releases risk 
information, and activates the urban emergency response plan 

analogous to the immune system releasing inflammatory mediators, 
triggering local inflammation, and attracting immune cells to reach 
the site of infection; after the emergency is over, the city summarizes 
the emergency response experience and builds long-term governance 
capacity analogous to the human body initiating specific immunity 
and forming immune memory, etc. This mapping is not only a 
functional analogy, but also a systematic representation based on the 
interaction mechanisms between different entities (e.g., government, 
medical institutions, communities) and immune cells within the 
immune system. Through this mapping, the dynamic feedback 
mechanism of the immune system can be clearly explained in terms 
of its correspondence to coordinated responses, information transfer, 
and resource allocation in urban governance. Then, we define five core 
functional modules of the urban immune system, such as threat 
identification, alarm dissemination, emergency response, monitoring 
and repair, and memory feedback, and sort out the key elements such 
as the task behavior and information transmission path of the 
stakeholders of each module, so as to construct the theoretical 
framework of urban immunity. For example, in the threat 
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Conceptual mapping relationship between human and urban immunity.
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identification module, hospitals adjust the detection rate and report 
case data in a timely manner after monitoring abnormal cases; in the 
emergency response phase, the government deploys resources and 
mobilizes supplies. In the model design, we ensured that the decision 
paths in each segment could be  clearly explained, and provided 
explicit feedback mechanisms for decision-makers to help them 
understand how to respond based on different input factors. Finally, 
the historical cases of typical cities responding to PHEs are used as an 
entry point to check the cross-regional applicability of the urban 
immunity mapping relationship by combining the level of urban 
development, zoning and resource distribution, etc. The mapping 
relationship is validated and the theoretical framework is optimized 
for different urban characteristics to enhance its applicability in a 
variety of urban governance scenarios.

3.1.2 Mechanisms of the urban immune response
The urban immune response can be divided into two stages: the 

intrinsic immune response and the adaptive immune response. The 
former is a rapid, basic, and non-specific defense mechanism 
spontaneously activated at the beginning of PHEs to achieve effective 
containment of early risks; the latter complements the intrinsic 
immune function through precise analysis, hierarchical management, 
resource integration, and the establishment of long-term memories to 
form specific, systematic, and long-term coping capacity. Based on the 
functional mapping relationship and theoretical framework of urban 
immunity, this part adopts SD to construct the feedback regulation 
mechanism of the urban immune system, and uses ABM to simulate 
the behavior and decision-making modes of different subjects, and the 
two are integrated to construct the urban immune response 
mechanism, and explore the interaction relationship between the 
functional modules at different stages, as shown in Figure 3. First, this 
study defines shared state variables (e.g., healthcare resources, 
infection rate) and synchronizes them between SD and ABM via a 
graph database, so that the intelligent body behavior influences the SD 
variable update, and SD feeds back the global state to constrain the 
intelligent body decision. Second, match the computational methods. 
The SD uses differential equations to simulate continuous variable 
changes, the ABM drives intelligent body behaviors based on rules or 
reinforcement learning, and sets a time-step coordination mechanism, 
e.g., the SD is updated on a daily basis, and the ABM simulates 
individual decisions on an hourly basis. This design ensures 
consistency between the two modeling approaches at both the time 
and decision levels, thereby enhancing the applicability and accuracy 
of the model in real-world scenarios. Finally, optimize the operational 
logic. Bidirectional interaction is realized through the trigger 
mechanism (e.g., ABM adjusts the policy when medical resources are 
below the threshold, and SD dynamically adjusts the infection rate 
after the upgrading of prevention and control measures), and during 
such interactions, the adjustments and outcomes of each decision are 
communicated to the decision-makers in a timely manner through a 
feedback mechanism, helping them understand the rationale behind 
the changes and ensuring the model’s adaptability and transparency. 
The details are as follows:

Threat identification: Its logic is analogous to the process of 
pathogen identification by the human immune system, aiming to 
analyze how cities can achieve early detection of risks such as 
epidemics, pollution, shortage of medical resources, through multi-
source data monitoring (hospitals, centers for disease control and 

prevention, environmental monitoring stations, etc.), and improve the 
dynamic perception of potential threats. Among them, the SD model 
is used to establish the risk accumulation-propagation feedback 
mechanism, portray how risk factors spread in time and space, and 
express the coupling relationship between different monitoring points 
to optimize the risk identification accuracy; the ABM model is used 
to simulate the behavioral decision-making patterns of the 
government, hospitals, communities and other subjects in the process 
of risk perception, and to analyze the way different subjects interact 
with information in risk identification and their sensitivity to 
policy adjustments.

Alarm dissemination: Its logic is analogous to the inflammatory 
signal release and immune cell activation mechanism of the human 
immune system, aiming to analyze the transmission mechanism of 
risk information among multiple subjects such as the government, 
healthcare institutions, and the community, to explore the efficiency 
of information transmission, coordination of decision-making, and 
timeliness of response, and to simulate the transmission path of the 
alarms in the urban crisis management to ensure that the critical 
information reaches the decision-making level quickly. Among them, 
the SD model is used to construct the information dissemination-
response feedback mechanism, analyze the timeliness of information 
flow in different transmission structures (e.g., hierarchical and flat), 
and the hierarchical response mode of the governmental decision-
making chain; the ABM model is used to simulate how subjects such 
as the government, healthcare institutions, and communities receive, 
filter, and transmit the alert information, and to simulate the 
information turnover rate and information decay phenomenon under 
different governance structures.

Emergency response: Its logic is analogous to the human immune 
system’s process of clearing pathogens and regulating immune 
responses through immune cells and complement proteins, aiming to 
study the urban emergency response strategy in emergencies, optimize 
medical resource allocation, material dispatch, traffic control, and 
social prevention and control measures to ensure that the optimal 
strategy is adopted at different risk levels, while balancing the short-
term prevention and control effects with the long-term socio-
economic impacts. Among them, the SD model is used to establish a 
dynamic adjustment mechanism for the supply and demand of 
emergency resources, simulate the time dynamics of key elements 
such as medical resources, emergency materials, and traffic scheduling, 
and design the resource allocation strategy; the ABM model is used to 
simulate the behavioral rules of the government, hospitals, 
communities and other subjects in the emergency response, analyze 
how the resource allocation strategy affects the social stability, and 
assess the roles of different governance subjects in the preventive and 
control measures, and design a mechanism to match the supply and 
demand of resources.

Monitoring and restoration: This process is analogous to human 
cytokines regulating immune responses while activating the adaptive 
immune system, aiming at exploring the urban recovery process after 
emergencies, establishing the path of socio-economic restoration and 
how to gradually lift the state of emergency, restore the economy, 
optimize the mental health interventions to ensure a stable transition 
of the society, and form a long-term adaptive immune mechanism. 
Among them, the SD model is used to construct an adaptive immune 
feedback mechanism for the recovery process, simulate the city’s 
economic recovery speed, mental health indicators, resource supply 
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pressure and other key factors in different recovery stages, and design 
the adjustment strategies in the restoration process; the ABM model 
is used to simulate the behavioral adjustment patterns of enterprises, 
governments, medical institutions, and citizens in the process of 
epidemic recovery, and to analyze the impact of key decision-making 
variables (e.g., financial subsidies, psychological intervention policies) 
on the speed of social recovery to ensure the efficiency and 
sustainability of the recovery mechanism.

Memory feedback: This process is analogous to the immune 
memory and dynamic adaptive capacity of the human immune 
system, aiming to study how cities summarize their experiences, 
optimize their governance model, enhance their resource reserve 

capacity, and establish a long-term immunity enhancement 
mechanism after experiencing PHEs, to ensure a faster response, more 
precise policy implementation, and stronger social adaptive capacity 
in future emergencies. Among them, the SD model is used to 
construct a long-term feedback mechanism of emergencies-policy 
response-social recovery-experience summarization, and analyze the 
government’s decision-making adjustment mode after multiple 
rounds of events; the ABM model is used to simulate the learning 
process of the government, healthcare institutions, and citizens in 
long-term immunity enhancement, and to analyze the changes in 
social acceptance of epidemic prevention policies and the effectiveness 
of long-term health governance strategies.

FIGURE 3

Mechanisms of the urban immune response.

https://doi.org/10.3389/fpubh.2025.1609641
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cui et al. 10.3389/fpubh.2025.1609641

Frontiers in Public Health 09 frontiersin.org

During the construction of the model, data from historical 
PHEs, such as emergency response data from influenza and SARS, 
are used to initially calibrate the model. Key parameters, including 
the infection rate, transmission rate, and resource consumption 
rate, are adjusted based on actual conditions. By comparing the 
model’s output with historical data, the model parameters are 
optimized to minimize the error between the model predictions 
and the actual emergency response data. To ensure the stability 
and reliability of the calibrated model, a cross-validation method 
is employed, where the dataset is divided into a training set and a 
test set to evaluate the model’s performance across different 
datasets and confirm its validity and stability under 
various scenarios.

3.2 Step 2: urban immunity assessment

(1) Draw the knowledge map as the indicator system for urban 
immunity assessment, (2) use deep learning technology to build a 
quantitative urban immunity assessment model, (3) Input the 
collected and preprocessed data into the model for training, and (4) 
Present and analyze the assessment results in time and 
space dimensions.

3.2.1 Urban immunity assessment index system
Based on the elements of each functional module in the urban 

full-cycle immune response mechanism, the knowledge graph is used 
to construct the urban immunity assessment index system. Firstly, 
various types of intelligences, such as medical institutions, 
government departments, environmental monitoring systems, 
communities, are taken as the entity nodes of the knowledge graph, 
and the interactions of medical resource supply, epidemic spread, 
policy implementation, resource flow, and medical service distribution 
are taken as the relationship edges between the nodes, to form a graph 
network reflecting the interaction structure of the key functional 
modules of the urban immune system. In constructing the indicator 
system, particular attention must be given to the needs and equity of 
different social groups to ensure fairness in the distribution of 
resources and the implementation of policies, thereby preventing the 
neglect of vulnerable groups in the emergency response process. 
Secondly, semantic modeling is carried out by combining 
heterogeneous data from multiple sources, such as policy documents, 
medical data, epidemic reports, social media information, and 
unstructured information is transformed into a standardized 
knowledge graph structure through entity recognition and 
relationship extraction, and using graph databases to store and 
manage graph-structured data. On this basis, the Knowledge Graph 
Embedding (KGE) algorithm is used to vectorize the representation 
of entities and relationships, so that the immunity-related metrics 
(e.g., number of hospital beds, policy implementation rate, pollutant 
concentration) of each node can be efficiently quantified in the form 
of feature vectors, thus mapping the high-dimensional graph structure 
features of the urban immune system to a low-dimensional vector 
space. These embedded vectors will be used as high-quality inputs for 
downstream machine learning and deep learning tasks, effectively 
improving the accuracy and interpretability of urban immunity 
assessment and prediction, and supporting further structured analysis 
and decision optimization.

3.2.2 Urban immunity assessment model
Based on the knowledge graph, GNN are used for immunity 

assessment modeling, and GCN deep learning is selected as the core 
of the model, which is used to learn the correlation between urban 
immunity indicators and extract the intrinsic links between node 
features. Feature extraction and aggregation of graph data is 
performed by multilayer convolutional operations to predict the 
immunity level of the nodes and perform a comprehensive score as 
shown in Figure 4. First, aggregating neighbor node information and 
learning urban immunity features enable the model to predict the 
immunity scores of urban functional modules. Second, a neighbor 
matrix is constructed in the model training design to quantify the 
strength of ties between nodes, and a normalization matrix is used for 
preprocessing to stabilize the feature propagation. Further, the urban 
function module immunity score is used as the target variable in the 
supervised learning task to guide the optimization process of the 
model. Finally, the loss function is used to measure the deviation 
between the predicted value and the true value, and this is used to 
optimize the algorithm, correct the network weights, and dynamically 
adjust the model parameters to improve the convergence speed of 
training and prediction accuracy.

3.2.3 Multi-source data collection and processing
First, a data framework encompassing the dimensions of 

healthcare, economy, environment, and social governance is 
established, and the sources and methods of obtaining each type of 
data are clarified. For example, healthcare data include hospital 
capacity, healthcare worker density, and vaccination rates, while 
economic data encompass community collaboration levels and 
economic growth rates. Data sources include hospital management 
systems, government statistical departments, environmental 
monitoring platforms, public health databases, policy documents, and 
community management platforms. To ensure the timeliness and 
applicability of the data, special consideration must be given to both 
the data timeframe and the frequency of updates. The data timeframe 
spans from 2018 to 2023 and includes several PHEs (e.g., the 2019 
influenza outbreak and the 2020 COVID-19 epidemic). The data are 
typically updated monthly; however, during major PHEs, relevant data 
(e.g., outbreak transmission and healthcare resource utilization) are 
updated more frequently, even on an hourly basis, based on real-time 
surveillance results. Second, a systematic data preprocessing process 
is implemented to ensure data quality, feature validity, and applicability 
for subsequent modeling. The specific steps are as follows:

(1) Data Cleaning and Anomaly Detection: The Z-score statistical 
method and Isolation Forest algorithm are employed for outlier 
identification, and extreme values (e.g., abnormal case growth, 
abnormal resource flow) are either eliminated or corrected. (2) 
Missing Value Processing: For missing data, imputation is performed 
using K-Nearest Neighbors Imputation (KNN), with K = 5, meaning 
that each interpolation is based on the five nearest neighbor 
observations. (3) Data Normalization: To eliminate differences in the 
scale of various indicators, Min-Max Normalization is applied to 
linearly compress all numerical features into the [0,1] interval, 
unifying the feature scale. This normalization improves the 
convergence speed and prediction accuracy of the deep learning 
model. (4) Time Series Denoising: For time series data, such as case 
growth and medical resource utilization, Wavelet Transform is utilized 
for denoising and trend extraction. (5) Feature Extraction and 
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Dimensionality Reduction: For high-dimensional data, Principal 
Component Analysis (PCA) is used for dimensionality reduction, 
retaining the principal components that account for more than 95% 
of the cumulative variance. This ensures that the original information 
is preserved to the greatest extent while reducing dimensionality, 
avoiding redundancy and covariance, and enhancing the efficiency 
and stability of model training. (6) Multi-Source Data Fusion and 
Storage Management: Knowledge graph technology is employed to 

fuse medical, socio-economic, and policy data, constructing an urban 
immunity graph centered on nodes (e.g., hospitals, communities) and 
relationships (e.g., resource flows, policy transmission). This graph is 
then transformed into model inputs through KGE. A graph database 
and distributed storage system (Hadoop) are utilized to manage 
heterogeneous data from multiple sources, supporting efficient 
querying and subsequent GCN modeling tasks. (7) Data Annotation: 
Manual or semi-automatic labeling is performed for data on policy 

FIGURE 4

Urban immunity assessment framework.
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responses, resource allocation, and other factors to train supervised 
learning models.

3.2.4 Data input and model training
First, after completing data collection and preprocessing, the 

structured data are input into the GNN model, and the adjacency 
matrix is constructed by using the adjacency relationship between 
urban functional modules. Second, the city immunity data are 
converted into a format suitable for graph neural networks, and the 
node feature matrix is constructed so that the model understands the 
city immunity features. Further, the training set and test set are 
defined, and the GCN is trained through supervised learning so that 
it can recognize the key features that affect the immunity results, and 
the model performance is verified on the test set. Then, the cross-
validation technique is used during the training process to prevent 
overfitting while enhancing the predictive ability of the model through 
hyper-parameter optimization (e.g., adjusting the learning rate, the 
number of hidden layers, and the activation function). Finally, 
through multiple rounds of training and iterative optimization, the 
GCN is able to fully learn the structural features of urban immunity 
and is able to generate high-quality urban immunity scoring results.

3.2.5 Presentation of spatial and temporal 
dimensions of assessment results

GIS and its related data visualization techniques are used to 
present the results of urban immunity assessment in an intuitive, 
multi-dimensional and multi-scenario manner. On the one hand, 
based on geospatial data, a spatial–temporal dynamic map is 
constructed on the urban scale, showing the differences in 
comprehensive immunity levels among cities and city groups, the 
differences in  local immunity in phases and modules, and the 
differences in immunity-specific indexes (e.g., healthcare resources, 
the number of risk monitoring points, etc.). On the other hand, 
combined with the results of time-series data analysis, a dynamic 
trend map is drawn to show the changes in urban immunity at 
different time stages of PHEs, as well as the impact of major policies, 
measures and other factors on urban immunity.

3.3 Step 3: urban immunity optimization

Based on the aforementioned theoretical foundation and 
assessment results, (1) establish UIOM based on deep learning 
prediction and reinforcement learning optimization, (2) design 
simulation scenarios and output interventions, and (3) provide policy 
recommendations for stakeholders based on the interventions.

3.3.1 Overall model architecture design
The model consists of five core modules, including a data fusion 

layer, a dynamic modeling layer, a strategy optimization layer, a 
scenario simulation layer, and a decision support layer, as shown in 
Figure 5. (1) The data fusion layer is responsible for integrating the 
historical data of PHEs and embedding the urban immunity 
assessment index system, covering different dimensions such as threat 
identification, emergency response, and resource deployment, and 
establishing the urban immunity system intelligences to simulate the 
behavior, information flow, and resource flow of subjects such as the 
government, hospitals, community, and residents. (2) The dynamic 

modeling layer is based on the evolution process of urban immunity 
SD and the behavior of ABM subjects, and incorporates LSTM deep 
learning model to predict the future immunity strength and epidemic 
development trend. (3) The strategy optimization layer defines the 
regulation path of urban immunity through states, actions and reward 
mechanisms under the framework of Markov Decision Process 
(MDP), and optimizes the interventions of the urban immune system, 
such as resource allocation and policy adjustment, using DQN 
reinforcement learning algorithms, so that the cities to dynamically 
adjust their coping strategies under different scenarios. (4) The 
scenario simulation layer simulates different scenarios in the virtual 
environment to test the adaptability and effectiveness of different 
strategies and iteratively adjust the optimization scheme. Eventually, 
(5) the decision support layer presents the optimization results based 
on GIS to present the most intuitive urban immunity data for 
policy makers.

3.3.2 Deep learning-based prediction module 
design

This module uses deep learning models to predict future 
immunity strength and epidemic trends. Firstly, preprocessing and 
constructing training sets for multi-source data, and using LSTM for 
time series modeling. Second, the historical PHEs data are input to 
output the future urban immunity prediction results. Further, the 
prediction results are compared with the expected target value, and if 
it is lower than the threshold value, the model will automatically 
trigger the immunity enhancement mechanism to enter the strategy 
optimization layer, which adjusts the prevention and control measures, 
such as optimizing the resource deployment and increasing the 
vaccination efforts, by intensively learning the time series information 
such as the historical epidemic data, the use of healthcare resources, 
and the social mobility. Finally, the new strategy is evaluated in the 
scenario simulation layer to predict the inflection point of epidemic 
development, medical resource demand, and the impact of different 
prevention and control measures on urban immunity.

3.3.3 Reinforcement learning based strategy 
selection module design

Based on the LSTM prediction results, this module searches for 
the optimal immunity enhancement scheme through reinforcement 
learning under the MDP framework. First, state sets are defined, 
which describe the variables of the current state of the urban immune 
system, such as the availability of medical resources, the spread of 
epidemics, and social mobility. Second, design the action set, set the 
interventions that can be taken, such as medical resource reallocation, 
vaccination promotion, blockade policy adjustment, etc. Further, 
determine the transfer probability, which is used to characterize how 
the state of the urban evolves after executing a certain action, and is 
usually estimated based on data-driven infectious disease modeling, 
urban mobility analysis, or historical experience. Then, set the reward 
function, which is used to measure the effect of different interventions, 
such as reducing infection rates, reducing healthcare resource 
overload, and safeguarding economic stability. Next, introduce 
discount factors, which is used to weigh the short-term and long-term 
benefits. Finally, with the DQN reinforcement learning algorithm, 
different strategies are tried in a simulated environment and 
interventions are continuously optimized to maximize long-term 
cumulative rewards.
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3.3.4 Scenario simulation and data output
This module simulates and calculates and verifies the optimization 

scenarios by constructing different contingency scenarios to ensure 
the adaptability and feasibility of the strategies. First, three types of 
scenarios are constructed, (1) long-term optimization strategies, i.e., 
no major emergencies, simulating long-term immunity building, such 
as healthcare infrastructure optimization, public health interventions, 
resource reserve management, etc.; (2) emergency response strategies, 
simulating major epidemics or natural disaster outbreaks, testing the 
effectiveness of different intervention strategies, such as vaccination 
promotion, blockade policy adjustments, and optimization of 
healthcare resource allocation, etc.; (3) Damage recovery strategies, 
for cities to recover after an emergency, including financial subsidies, 

mental health interventions, and healthcare system reconstruction. 
Then, the model parameters are changed according to different 
scenarios, such as risk propagation speed, crowd mobility, policy 
intervention intensity, and resource allocation methods. Finally, the 
output results are presented on a GIS platform, while sensitivity 
analysis is performed on the decision-making parameters and the set 
of interventions is generated.

3.3.5 Data-driven policy making
This section adopts the Evidence-Based Policy Making (EBP) 

methodology to develop a scientific, objective, and pragmatic urban 
immunity enhancement policy, following the process of problem 
identification, data analysis, policy experimentation, policy evaluation, 

FIGURE 5

Urban immunity optimization model (UIOM).
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implementation optimization, and long-term impact assessment. 
Initially, the vulnerabilities of cities in PHEs are analyzed from a 
realistic perspective, addressing issues such as insufficient healthcare 
resource allocation, delayed policy response, and weak community 
mobilization capacity. Subsequently, based on the results of scenario 
simulations, the effectiveness, cost-effectiveness, and socio-economic 
impacts of various policy options will be comprehensively assessed. 
During this assessment, the potential impact of administrative barriers, 
social resistance, and economic constraints on policy effectiveness will 
be considered. Finally, specific policy recommendations for public 
health governance will be made, taking into account feedback from 
multiple stakeholders, including government entities, healthcare 
organizations, and communities. However, the implementation of 
these policies may face administrative coordination challenges, 
particularly communication issues and resource deployment difficulties 
between different levels of government and departments, which could 
hinder the efficiency of emergency responses. To address this, resource 
allocation can be streamlined and response efficiency improved by 
establishing cross-departmental emergency working groups and 
adopting centralized decision-making platforms. Additionally, social 
acceptance remains a critical challenge during policy implementation, 
particularly when mandatory measures (e.g., quarantine, vaccination) 
encounter public resistance. To overcome this issue, it is essential to 
enhance policy transparency, upgrade public education efforts, and 
promote community participation, thereby gaining broad public 
support. Regarding economic resources, particularly in cases of 
insufficient funding, the effectiveness of policy implementation may 
be compromised. In such cases, funding pressures can be alleviated by 
collaborating with the private sector, seeking international assistance, 
and providing financial subsidies to ensure smooth policy execution.

4 Anticipated results

4.1 Result 1: theoretical framework 
construction and immune response 
mechanisms

This study will propose and refine the theoretical connotation and 
extension of urban immunity, clearly define its key elements and 
operational mechanisms, and form a dynamic theoretical framework 
that includes threat identification, alarm dissemination, emergency 
response, monitoring and repair, and memory feedback, so as to 
provide a clear and operable conceptual model for urban governance. 
At the same time, a two-level immune response mechanism of 
“inherent immunity-adaptive immunity” will be constructed to clarify 
the division of labor and collaboration among urban governance 
bodies. In addition, a standardized and replicable analytical 
methodology and operational process guide will be formed to guide 
the construction and practical application of the immune mechanism 
in different types of cities.

4.2 Result 2: assessment and presentation 
of results in spatial and temporal 
dimensions

This study will systematically construct a set of quantitative urban 
immunity assessment index system based on knowledge map, 

covering medical, economic, social and environmental fields, which 
includes key indicators such as efficiency of medical resources 
allocation, timeliness of epidemic monitoring and early warning, 
speed of government decision-making response and degree of 
community participation. At the same time, it will explicitly analyze 
the characteristics of the spatial and temporal distribution of urban 
immunity and its dynamic trend in different scenarios, and form 
intuitive spatial difference visualization results such as “spatial hotspot 
map of urban immunity” and “map of risk-sensitive areas” by GIS 
technology. In addition, a replicable standardized process manual for 
urban immunity assessment will be output, providing methodological 
reference and practical guidance for immunity assessment in other 
regions or cities.

4.3 Result 3: optimization of decision 
modeling and multi-scenario decision 
output

This study will establish a UIOM, integrating LSTM network 
prediction and DQN dynamic intervention strategy optimization 
methods, to explicitly output the specific effects and cost-effectiveness 
of interventions, such as vaccination and medical resource 
deployment. At the same time, this study will provide data-driven 
optimization scenarios for the three governance scenarios of long-
term construction, short-term emergency response, and damage 
recovery, including specific action recommendations such as the 
layout of medical facilities, early warning of outbreaks, and community 
mobilization mechanisms. In addition, a detailed cost–benefit analysis 
report of the interventions will be  generated, and standardized 
decision support tools and operational processes will be provided to 
assist the public health sector in effective policy formulation and 
precise interventions.

5 Discussion

Against the background of the frequent occurrence of PHEs and 
the inadequacy of the traditional governance model in terms of 
dynamic response and intelligent decision-making, this paper 
innovatively proposes the conceptual framework of “urban immunity,” 
which is modeled on the principle of the human immune system, with 
the aim of enhancing the resilience and adaptability of the urban 
governance system in risky environments. Specifically, this study 
designs a three-step technical path of “assessment-prediction-
optimization”: first, a quantitative assessment system of urban 
immunity is constructed through a data-driven approach to identify 
the vulnerable links of the current urban immune system; second, a 
deep learning model is used to predict the dynamic trend of immunity 
change and the effect of risk propagation; finally, intelligent decision-
making optimization models are constructed based on reinforcement 
learning to realize dynamic resource deployment and policy 
intervention. This study integrates social equity and ethical 
considerations into the development of decision-making frameworks 
for enhancing urban immunity. The construction of the urban 
immunity assessment indicator system not only considers the city’s 
resource allocation and policy response but also places significant 
emphasis on achieving equity among diverse groups, particularly in 
ensuring that disadvantaged groups receive additional attention when 
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resources are limited. In implementing specific policies, it is essential 
to account for the unique needs and risks of different groups, with 
policy priorities adjusted according to the principle of social equity to 
ensure timely and effective protection of vulnerable populations. 
Furthermore, when employing a data-driven approach to 
policymaking, the fairness and social impact of various policy options 
will be regularly evaluated, and necessary adjustments will be made 
based on the results. This approach ensures that the study not only 
provides scientifically grounded, data-driven policymaking support 
but also fosters the social acceptability and sustainability of the policies 
during implementation.

This study theoretically promotes interdisciplinary innovation in 
urban governance and public health emergency management, 
proposes a new paradigm of urban public health governance that is 
more systematic and dynamic, and makes up for the deficiencies of 
traditional governance theories in whole-life-cycle management, 
multi-body synergy, and feedback mechanisms. In practice, it has 
significant theoretical and practical value to provide cities with 
scientific basis and technical support for accurate identification of 
immunization shortcomings, optimization of public resource 
allocation and intelligent decision support, and to promote the 
transformation of urban public health governance to digitalization 
and intelligence.

This study has several limitations. First, challenges in data 
acquisition and data quality may affect the accuracy and reliability of 
the assessment and prediction models. Second, potential variations in 
model applicability across different cities and national governance 
systems must be further verified through regional simulations and 
cross-city empirical studies. Specifically, the impact of differences in 
data standards, policy-making patterns, and psychosocial acceptance 
on model outputs should be  considered. Additionally, the 
interpretability of deep and reinforcement learning models still needs 
to be further strengthened, which may affect the trust of decision 
makers and the public in the results. Finally, the urban governance 
system is subject to complex constraints, including data privacy 
protection policies, coordination barriers between governance levels, 
varying public acceptance of government interventions, and resource 
allocation conflicts, all of which must be fully considered in policy 
formulation and model implementation.

Future research can further strengthen cross-regional or cross-
country empirical comparisons to validate the universality of theories 
and methods; at the same time, improve the transparency and 
credibility of the models by introducing interpretable artificial 
intelligence techniques; and explore the combination with digital twin 
technology to develop real-time decision support systems. In addition, 
the multidisciplinary integration of urban immunity theory with other 
urban governance theories should be  promoted, and the 
comprehensive assessment of socio-economic and ethical impact 

dimensions should be added, so as to realize a more comprehensive, 
precise and socially acceptable public health governance.
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