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AI-driven early detection of 
severe influenza in Jiangsu, 
China: a deep learning model 
validated through the design of 
multi-center clinical trials and 
prospective real-world 
deployment
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Background: Influenza-related global deaths reach 650,000 annually. The 
current highly lethal clinical subtype of influenza is severe influenza.
Aim: To develop and validate a deep learning based model for early diagnosis of 
severe influenza.
Methods: This is a multi-centre, double-blind, multi-stage, randomised 
controlled clinical trial. We initially developed a framework for a 5-phase 
study: model development, external validation, multi-reader study, randomised 
controlled trial and prospective validation. The data source for the preview 
programme is electronic health record data from 87 hospitals in Jiangsu 
Province from 2019 to 2025.
Significance: Our expected result is that the developed model of severe influenza 
can be more accurate and have a lower misdiagnosis rate than traditional 
clinical assessment. The pre-specified AUC was 0.18 (95% CI: 0.14-0.22), with 
an expected 32% reduction in misdiagnosis. The model’s performance was 
consistent across patients in older adults, underlying disease, and resource-
poor areas. The added value of the study is that it is effective in improving early 
recognition of severe influenza.
Ethics and dissemination: This study was approved by the Institutional Review 
Board of Yangzhou University Hospital (IRB No. YKL08-002). Written informed 
consent was obtained from all participants. The results of this study will be 
disseminated in the form of a conference in the Jiangsu Province area, which 
will facilitate the translation of clinical research results and provide a powerful 
decision-making tool for the precise prevention and control of severe influenza.
Clinical trial number: https://clinicaltrials.gov/, identifier (ChiCTR2000028883).
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1 Introduction

Influenza causes 650,000 deaths annually and remains a threat 
to global health. Influenza has a mortality rate of approximately 20 
per cent, and deaths due to influenza predominantly occur among 
infants, pregnant women, the elderly and the immunocompromised 
(1, 2). Although progress has been made with previously developed 
predictive tools and antiviral therapies, this has not reduced 
mortality from severe influenza (3). A key issue is the dynamic gap 
between clinical decision-making and risk of severe influenza. 
Evidence suggests that physicians are overconfident in the outcome 
of subjective clinical assessments leading to misdiagnosis and 
quality delays in severe influenza. Another factor, of course, arises 
from differences in the definition of ‘cure’ in the healthcare system 
(4, 5). A study by Valenzuela-Sánchez et al. (2024) reported that 
34% of severe influenza cases were initially incorrectly classified as 
mild. The reason for this was an over-reliance on non-specific 
symptoms by clinicians when assessing influenza (6). This result 
implies that we need more objective and accurate tools to improve 
the accuracy of clinical judgement.

Artificial Intelligence (AI) can learn deeply from human health 
data so that closed-source predictive models can be constructed to 
identify high-risk patients. The current intersection of AI and 
healthcare data has shown revolutionary potential (7, 8). Yang et al. 
(2023) developed an influenza prognostic AI model using only city-
scale data, which has achieved a performance AUC value of 0.89 
(9). Of course, the lack of external validation of models constructed 
using AI across regions and healthcare resources means that more 
effort is needed for AI to address real-world clinical work (10). Dai 
et al. (2024) concluded that constructed AI diagnostic tools do not 
work well when put into prospective clinical practice due to 
population heterogeneity and data drift (11). This may be due to the 
lack of research-oriented personnel in the field of AI, leaving little 
understanding of dynamic risk prediction in high-risk subgroups 
in a clinical context (12).

The aim of our research is to develop and validate a deep 
learning-based diagnostic model for severe influenza. In order to be 
able to specify the research tasks at each stage, we established a 
methodological framework.

	(1)	 Data: data were obtained from 87 hospitals in Jiangsu 
Province, China. The data features of interest were clinical 
information, laboratory test results, and demographic  
information.

	(2)	 Stages: 5 research phases with model building, internal 
validation, comparative study, randomised trial, and 
prospective real-world validation.

	(3)	 Collaboration: the aim of the model is to assist clinicians in 
accurately identifying patients with severe influenza.

We hypothesize that this model will significantly improve AUC 
(Δ  > 0.15) compared to physician-only assessments, reduce 
misdiagnosis rates by ≥30%, and maintain robustness across 
hospitals with varying resource levels. By addressing both 
algorithmic and human factors, this research seeks to establish a 
scalable solution for mitigating influenza-related mortality, 
particularly in resource-constrained settings.

2 Methods

2.1 Study setting

Yifei Chen of the Affiliated Hospital of Yangzhou University 
proposed the research concept of stratified prevention of severe 
influenza in 2019, and this was subsequently supported by Yan Bo of 
Northwest Minzu University in October 2022.

This is a multi-center, multi-phase clinical trial. The study will be 
conducted across 87 tertiary general hospitals in all prefecture-level 
cities of Jiangsu Province, China. This study is a continuation of the 
2019 investigation of influenza A (ChiCTR2000028883) and is 
registered on the Open Science Framework (OSF) registry platform 
(13). This clinical trial will be reported according to Standard Protocol 
Items Recommendations for Interventional Trials (SPIRIT) 2013 
standard specifications (14).

2.1.1 Hospital inclusion criteria
We have pre-set criteria for hospital eligibility for the study. 

Hospitals must be accredited tertiary general hospitals, which provide 
full emergency and inpatient services. Hospitals should have at least 
100 patients with influenza diagnosed by laboratory testing between 
2021 and 2023. Hospital clinicians must use electronic health records 
(EHRs) so that symptoms of influenza patients and other information 
used for clinical research can be recorded in a standardised format. 
Longitudinal, anonymous data sharing programmes must be in place 
within hospitals to ensure the security of patient and 
clinician information.

2.1.2 Rationale for multi-center design
The principle of the multicentre design is based on a statistically 

full sample size as a reference basis. In other words, we included all 
hospitals in Jiangsu Province that met the study eligibility criteria. 
This design allows for the establishment of model performance in 
different Jiangsu regions and in different clinical settings, and 
ensures general applicability from the statistical principle. 
Considering the perspective of urban and rural stratification, 
healthcare resources are generally richer in cities than in rural areas, 
and we designed it in this way to precisely address healthcare 
inequality under the geographic factor. Dr Yifei Chen concluded 
that influenza outbreaks have a seasonal element, and the peaks of 
outbreaks in the northern part of Jiangsu are different from those 
in the southern part of Jiangsu. This design in a full sample size 
perspective provides a natural experimental platform for assessing 
influenza disease observations with seasonal fluctuations. We 
ensure that the accuracy of the diagnosis will not be affected by the 
transmission factors of resource differences and geographical  
differences.

2.1.3 Trial registration and reporting standards
This study was registered with the OSF platform (DOI: 

10.17605/OSF.IO/SC93Y) and the China Clinical Trial Registry 
(ChiCTR2000028883). The study protocol was developed 
following the SPIRIT 2013 guidelines (15). The study phase 
design we used a visual presentation (Figure  1). This dual 
registration and standardised reporting framework enhanced the 
reproducibility of the study.
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2.1.4 Phase overview
The study comprises five sequential phases, which is based on the 

multiple nesting approach used in Yan Bo’s past methods (16–20).

	(1)	 Model development: retrospective data (2019–2024) from 87 
hospitals for training and internal validation.

	(2)	 External validation-comparative study: benchmarking model 
performance against clinician diagnoses.

	(3)	 Multi-reader, multi-case validation: assessing inter-
physician variability with/without model assistance.

	(4)	 Randomized controlled trial: evaluating real-time diagnostic 
accuracy in a clinician-AI collaborative setting.

	(5)	 Prospective validation: real-world testing during the 2025 
influenza season.

2.2 Eligibility criteria

2.2.1 Inclusion criteria for patients

	(1)	 Laboratory-confirmed influenza virus infection via nucleic acid 
testing [reverse transcription polymerase chain reaction 
(RT-PCR)] or rapid antigen testing, adhering to China’s 
Diagnosis and Treatment Protocol for Influenza;

	(2)	 All age groups;
	(3)	 Written consent obtained from patients: (a) patients with full 

civil capacity (more than 18 years); (b) Legal guardians for 
minors (less than 18 years), incapacitated adults, or patients 
with cognitive impairment.

2.2.2 Exclusion criteria for patients
	(1)	 Co-infection with other respiratory pathogens  

confirmed by multiplex polymerase chain reaction  
(PCR);

	(2)	 Critical illness unrelated to influenza at enrollment;
	(3)	 Incomplete baseline data (such as missing symptom onset date, 

laboratory results).

2.2.3 Inclusion criteria for clinicians
	(1)	 less than 5 years of clinical experience in influenza diagnosis or 

participation in national-level influenza research projects;
	(2)	 Willingness to complete protocol-mandated tasks, including 

dual-round diagnosis (baseline vs. model-assisted) and post-
study interviews;

	(3)	 Currently practicing in a tertiary general hospital in 
Jiangsu Province.

2.2.4 Exclusion criteria for clinicians
	(1)	 Temporary or part-time staff without direct patient 

care responsibilities;
	(2)	 Participation in conflicting AI-related clinical trials within the 

past 6 months.

2.3 Interventions

2.3.1 Phase I: model development and internal 
validation

This phase utilizes retrospective EHRs from 87 hospitals (Table 1) 
in Jiangsu Province (from January 2019 to December 2024), 
encompassing four key data categories:

	(1)	 Demographics: age, sex, vaccination history, and comorbidities.
	(2)	 Clinical symptoms: fever duration, cough frequency, dyspnea 

severity, and other symptoms detailed (Table 2).
	(3)	 Laboratory/imaging data: viral subtype (confirmed via 

RT-PCR), blood cell counts, and chest X-ray/computed 
tomography (CT) findings.

FIGURE 1

Study overview. Flowchart illustrating the development and validation of a diagnostic model for early identification of severe influenza. The process 
involves collecting datasets from 87 hospitals, dividing them for training and validation, and comparing AI and clinician diagnoses. It includes internal 
and external validation steps, randomization, reader studies, and comparisons between AI-assisted diagnoses and clinician diagnoses, with design 
change considerations in the prospective validation phase. This figure is drawn by by Figdraw.
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	(4)	 Outcomes: severe influenza progression and mortality, 
defined as intensive care unit (ICU) admission or 
mechanical ventilation.

We plan to divide the collected data into an 80% training subset 
and a 20% internal validation subset. When building the model, we 
will progressively stratify by hospital, influenza season, and high-risk 
subgroup characteristics, so that the initial model built may have a 
balanced representation. We plan to build a preliminary severe 
influenza model using the deep neural network model of ResNet-50 
(21). The metrics we predesigned to assess the baseline performance 
of the model were area under the curve (AUC) and sensitivity. 
Whereas the complex technical parameters of these will be published 
in the final version of the research results, in this research protocol we 
focused more on the deployment of the clinical research programme. 
This is more beneficial for clinicians or influenza patients to read 
and disseminate.

2.3.2 Phase II: external validation-comparative 
study

The goal of the second phase of the task was to comparatively 
confirm the diagnostic accuracy of the additional diagnostic 
assessment using the AI models built in the first phase to assist 
clinicians in diagnostic assessment. We categorised clinicians into 
residents, attending physicians and chief physicians according to their 
experience level. We asked clinicians in the control group to 
independently judge these influenza cases without the assistance of 
the AI model; while clinicians in the experimental group did the 
diagnostic assessment of these influenza cases with the assistance of 
the AI model. Under this comparison, the metrics of AUC, sensitivity, 
specificity, and diagnostic consumption time are what are used to 
initially evaluate the performance of the AI model. Imagine the 

exciting news that an AI model-assisted clinician can complete a 
diagnostic assessment with 95% accuracy in just 10 minutes. This dual 
assessment framework quantifies the added value of AI models in the 
real world.

2.3.3 Phase III: multi-reader, multi-case validation
Phase 3 used a two-round diagnostic design for evaluating the 

impact of AI model assistance on the effectiveness of clinician 
decision-making. The AI models used in Phase 3 were calibrated in 
the Phase 2 validation phase. Recruited clinicians are split into two 
rounds subsequently evaluating cases independently then filling in 
the diagnosis.

The first round of tasks that clinicians receive is the baseline 
diagnostic assessment. In the baseline diagnostic assessment, 
clinicians are required to evaluate cases using a standard influenza 
diagnostic protocol and subsequently complete the 
diagnostic results.

The second round of tasks allows clinicians to access the risk 
scores and key influencing factor scores generated by the AI model to 
fill in the diagnosis during the evaluation of the case.

All clinicians were required to undergo two rounds of tasks. 
This was done with reference to a previous study (22). The use of 
machine-assisted diagnosis by clinicians can increase their 
productivity (23). To minimise bias, cases are randomly reordered 
between rounds of assessment and a 4-week washout period is set 
between assessments to reduce recall effects. Diagnostic accuracy 
(measured as AUC) and clinician confidence (scored on a 5-point 
Likert scale) will be compared between rounds of assessment to 
quantify the impact of the model on decision consistency and 
clinician certainty. This multi-reader, multi-case framework ensures 
robust assessment of AI-human collaboration while addressing 
variations in real-world clinical work.

TABLE 1  Datasets distribution.

City Hospitals

Nanjing Jiangsu Provincial People’s Hospital, General Hospital of the Eastern Theater Command, Nanjing Drum Tower Hospital, Jiangsu Provincial Hospital of 

Traditional Chinese Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing First Hospital, The Second Affiliated Hospital of Nanjing Medical 

University, Nanjing Hospital of Traditional Chinese Medicine

Wuxi Wuxi People’s Hospital, The Affiliated Hospital of Jiangnan University, Wuxi Hospital of Traditional Chinese Medicine

Xuzhou The Affiliated Hospital of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou First People’s Hospital, Xuzhou Mining Group General Hospital, 

Xuzhou Hospital of Traditional Chinese Medicine

Changzhou Changzhou First People’s Hospital, Changzhou Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Soochow University (Changzhou 

Second People’s Hospital)

Suzhou The First Affiliated Hospital of Soochow University, The Second Affiliated Hospital of Soochow University, Suzhou Municipal Hospital, Suzhou Hospital of 

Traditional Chinese Medicine

Nantong The Affiliated Hospital of Nantong University, Nantong First People’s Hospital, Nantong Hospital of Traditional Chinese Medicine

Lianyungang Lianyungang First People’s Hospital, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Second People’s Hospital

Huai’an Huai’an First People’s Hospital, Huai’an Second People’s Hospital, Huai’an Hospital of Traditional Chinese Medicine

Yancheng Yancheng First People’s Hospital, Yancheng Hospital of Traditional Chinese Medicine, Yancheng Third People’s Hospital

Yangzhou Subei People’s Hospital, Yangzhou First People’s Hospital, Yangzhou Hospital of Traditional Chinese Medicine

Zhenjiang The Affiliated Hospital of Jiangsu University, Zhenjiang First People’s Hospital, Zhenjiang Hospital of Traditional Chinese Medicine

Taizhou Taizhou People’s Hospital, Taizhou Hospital of Traditional Chinese Medicine, Taixing People’s Hospital

Suqian Suqian People’s Hospital, Suqian Hospital of Traditional Chinese Medicine
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2.3.4 Phase IV: randomized controlled trial
This phase is a pragmatic randomised controlled design to assess 

the effectiveness of AI-assisted diagnosis in the real world. Clinicians 
will be assigned in a 1:1 ratio to either the control group (using 
standard clinical assessment protocols) or the AI model-assisted 
group. Allocation will be by block group randomisation, stratified by 
hospital level (urban vs. rural) and clinician experience level (resident, 
attending, chief) to ensure balanced representation in key subgroups.

The control group will rely exclusively on routine diagnostic 
workflows, while the model-assisted group will integrate AI outputs into 
their decision-making process and retain full authority to accept or reject 
recommendations. The primary outcome is the between-group AUC 
difference, with a ΔAUC greater than 0.15 defined as clinically significant, 
which is consistent with the U.S. Food and Drug Administration’s (FDA) 
benchmarks for diagnostic tools based on artificial intelligence or 
machine learning (AI/ML). The design simulates real-world clinical 
practice and quantifies the added value of AI in improving diagnostic 
accuracy while preserving clinician autonomy.

2.3.5 Phase V: prospective validation study
As Dai et al. illustrate the point, using prospective cohort data 

validation provides a better view of the model’s performance in the 
real world (24). This final phase evaluates the model’s real-world 
clinical utility during the 2025 influenza season. The AI model will 
be deployed in real time to analyze EHRs of newly admitted influenza 
patients across all 87 hospitals. Clinicians will receive model-generated 
predictions (such as risk scores, key contributing factors) within 2 h 
of case entry via a secure, institution-specific dashboard.

Data collection will capture:

	(1)	 Clinician actions: Initial diagnosis (pre-model assessment), 
final diagnosis (post-model review), and time-to-decision 
(minutes from case entry to diagnosis).

	(2)	 Model performance: Concordance between model predictions 
and ground truth (severe influenza confirmed by an 
independent adjudication panel).

This prospective design validates the model’s operational feasibility, 
diagnostic timeliness, and accuracy in dynamic clinical environments, 
providing critical evidence for scalability and regulatory approval.

2.4 Outcomes

2.4.1 Primary outcome
As the ultimate goal of this clinical trial is to create highly accurate 

AI models. Therefore the primary outcome metric was set as the area 

under the curve (AUC) (25). The AUC quantifies the discriminatory 
ability of the AI model so that it can distinguish patients who may 
develop severe influenza from those who will not. Since calculating 
the AUC requires the use of sensitivity, specificity, true positive rate, 
true negative rate, false positive rate, and false negative rate, more 
details describing these results can be found in our separate studies 
(16, 20).

To account for differences in diagnostic assessments after 
multiple clinicians read the cases, we planned to use the Dorfman-
Berbaum-Metz (DBM) method. The DBM adjusts for differences 
in diagnostic assessments by clinicians so that AUC difference 
values between the two groups can be estimated (22). ROC curves 
were calculated using the pROC (version 1.18.0) software package 
(28). The AUC values as well as their 95% confidence intervals will 
then be calculated using MRMCaov (version 0.2.1) (27). For 
differences between the experimental and control groups, we 
expected to use the Mann-Whitney U test (29). Clinically 
significant improvement was defined as an AUC difference 
between the experimental and control groups greater than 0.15. 
The null hypothesis here is that the AUC difference is less than 0.7, 
and the AI model has no discriminatory power. Our method of 
using AUC to set thresholds not only follows statistical patterns, 
but is also highly compliant with the criteria for the development 
of AI-driven diagnostic tools.

2.4.2 Secondary outcomes
Secondary endpoints include diagnostic sensitivity and specificity, 

defined as the proportion of true severe influenza cases correctly 
identified by the model or clinicians, which reflects the tool’s capacity 
to minimize missed diagnoses in high-risk populations (30).

2.4.3 Subgroup analyses
Predefined subgroup analyses will assess heterogeneity in model 

performance across key variables to evaluate the impact of local 
healthcare infrastructure and influenza epidemiology.

	(1)	 patient characteristics: age (infants, children, adults, older 
adults), comorbidities (cardiovascular disease, diabetes), and 
vaccination status (yes, no);

	(2)	 clinician factors: experience level (resident, attending, 
chief physician);

	(3)	 hospital resource tier: urban or rural facilities;
	(4)	 geographic variation: northern or southern regions of 

Jiangsu Province.

These analyses aim to identify subgroups where the model excels 
or underperforms, informing targeted clinical deployment. Statistical 
adjustments, such as Bonferroni correction for multiple comparisons 

TABLE 2  Data collection framework.

Category Specific data items Collection tool

Demographics Age, sex, contact details, vaccination history, comorbidities EHR extraction

Symptoms Fever (duration, max temperature), cough (frequency, sputum), dyspnea, headache, nausea/vomiting Structured EHR forms + Patient diaries

Medical History Previous influenza episodes, chronic diseases (type, duration), vaccination details EHR extraction + Clinician interview

Laboratory/Imaging Viral subtype (RT-PCR), blood counts, chest X-ray/CT findings Lab/radiology reports

Treatment Antiviral drugs (name, dosage), hospitalization duration, ICU admission EHR extraction + Pharmacy records

Outcomes Severe influenza progression (yes/no), recovery time, mortality Adjudication panel review
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and multivariable regression for confounders, will ensure robust 
interpretation of subgroup differences.

2.4.4 Handling missing data
To address missing data, variables with more than 20% missing 

values will be excluded to ensure reliability. For remaining gaps, the 
Multivariate Imputation by Chained Equations (MICE) package in R 
will be employed, leveraging iterative modeling across variables to 
impute missing values under the missing-at-random assumption. This 
method preserves dataset integrity by estimating missing entries based 
on observed patterns, thereby minimizing bias while maintaining 
statistical power.

2.4.5 Adjudication of ground truth
To ensure accurate outcome classification, an independent 

adjudication panel comprising three senior infectious disease 
specialists will retrospectively review all cases classified as severe 
influenza, verifying endpoints such as ICU admission, mechanical 
ventilation, or mortality. Discrepancies in outcome assessments 
among panel members will be resolved through majority vote, with 
detailed documentation of dissenting opinions. This rigorous process 
minimizes misclassification bias and enhances the reliability of 
outcome data, serving as the gold standard for model and clinician 
performance evaluation.

2.5 Sample size

2.5.1 Calculation rationale
The sample size was determined based on the primary outcome 

(AUC comparison between model-assisted and clinician-only 
diagnoses) using a two-group superiority design. Key parameters were 
derived from prior studies on AI diagnostic tools (31, 32):

Expected effect size: ΔAUC = 0.15 (clinically 
meaningful improvement).

Type I error (α): 0.05 (two-tailed).
Power (1-β): 0.95.
Attrition rate: 20% adjustment for patient dropout or 

incomplete data.
The minimum sample size for AUC comparison was calculated 

using the following formula (33):

	

( ) ( ) ( )
( )

α β− −  + × − + − =
−

2
1 /2 1 1 1 2 2

2
1 2

1 1Z Z AUC AUC AUC AUC
n

AUC AUC

Where:
1AUC  (model-assisted): 0.85 (34).
2AUC  (clinician-only): 0.70 (null hypothesis).

α−1 /2Z = 1.96, β−1Z = 1.645.

2.5.2 Sample size derivation
The sample size calculation began with an initial estimate of 145 

patients per group (290 total), derived from a power analysis targeting 
a clinically significant ΔAUC of 0.15 (α = 0.05, β = 0.95). To account 
for potential 20% attrition due to incomplete data or participant 
dropout, the final patient sample was adjusted to 174 per group (348 
total). For clinicians, a minimum of 218 participants (109 per group) 

was required to ensure balanced representation across experience 
levels (resident, attending, chief) while addressing hospital-level 
clustering effects, as recommended by methodology for cluster-
randomized trials (35). This dual-tiered approach balances statistical 
precision with pragmatic considerations, ensuring robust evaluation 
of the AI model’s impact in diverse clinical environments.

2.5.3 Final allocation
The study will enroll a total of 348 patients, comprising both 

retrospective cohorts (historical data from 2019 to 2024) and 
prospective cohorts (real-time data from the 2025 influenza season). 
Clinician participation includes 218 practitioners, stratified by 
hospital tier (urban vs. rural) and seniority level (resident, attending, 
or chief physician) to ensure balanced representation of clinical 
expertise and institutional resource variability. This allocation strategy 
optimizes statistical power while reflecting real-world healthcare 
diversity, supporting robust validation of the AI model across 
heterogeneous settings.

2.5.4 Justification
The patient sample size was determined through a power 

analysis to ensure ≥80% statistical power for detecting a clinically 
meaningful improvement (ΔAUC more than 0.15) in diagnostic 
accuracy, aligning with FDA guidelines for validating AI-driven 
medical devices (36).

2.6 Assignment of interventions

2.6.1 Randomization and allocation
A computer-generated randomization sequence will be created 

using the blockrand package in R, stratified by hospital tier (urban vs. 
rural) and clinician experience level (resident, attending, or chief 
physician). This approach ensures balanced allocation across 
subgroups, minimizing confounding effects from institutional 
resources or practitioner expertise. Participants will be assigned to 
either the control group (standard clinical diagnosis) or the model-
assisted group (AI-supported diagnosis) at a 1:1 allocation ratio. The 
randomization sequence will be concealed in sequentially numbered, 
opaque envelopes managed by an independent statistician to prevent 
selection bias, ensuring equitable distribution of participants and 
maintaining trial integrity.

To ensure unbiased group assignment, an independent statistician 
uninvolved in recruitment or data analysis will prepare opaque, 
sequentially numbered envelopes containing group allocations 
(control or model-assisted). These sealed envelopes will be securely 
stored and only opened sequentially by a dedicated study coordinator 
after clinicians complete baseline assessments. This procedure 
rigorously prevents selection bias by concealing allocation details until 
the point of intervention assignment, thereby safeguarding the 
randomization integrity and ensuring equitable distribution of 
participants across study groups.

2.6.2 Blinding (masking)
To minimize bias, a single-blind design will be implemented for 

clinicians: those in the control group will remain unaware of their 
allocation status and the existence of the AI model, while clinicians in 
the model-assisted group will access predictions through a neutral 

https://doi.org/10.3389/fpubh.2025.1610244
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen and Bo� 10.3389/fpubh.2025.1610244

Frontiers in Public Health 07 frontiersin.org

interface labeled as a “Decision Support Tool,” avoiding explicit 
references to AI. Patients will be fully blinded to group assignments, 
with informed consent documents describing participation in “a study 
to improve influenza diagnosis” without disclosing AI involvement. 
Independent outcome adjudicators assessing severe influenza 
outcomes will also remain blinded to group allocations and model 
outputs, ensuring objective evaluation of clinical endpoints. This 
multi-layered blinding strategy safeguards against performance and 
detection bias, maintaining the trial’s scientific rigor.

2.6.3 Intervention groups
In the control group, clinicians (without any AI assistance) will 

diagnose influenza cases using standard clinical protocols, integrating 
symptoms, laboratory results, and imaging findings. Patients in this 
group will receive routine care based solely on clinician assessments.

In contrast, the model-assisted group will utilize a secure digital 
dashboard providing real-time AI predictions, including a risk score 
(0–100%) for severe influenza progression and highlighted 
contributing factors (such as prolonged fever duration, abnormal 
lymphocyte counts).

While the model offers data-driven insights, its outputs are 
non-prescriptive; clinicians retain full authority to accept, modify, or 
reject recommendations, ensuring clinical judgment remains central 
to decision-making. This design balances technological support with 
practitioner autonomy, reflecting real-world diagnostic workflows.

2.7 Data collection

2.7.1 Data sources and tools
The study spanned 5 years. A significant amount of data collection 

relied on EHRs and patient self-report diaries (Table 2). Two modes 
of sampling and supplementation were set up. Yifei Chen would 
randomly sample 5% of the data every month to check for 
completeness. Patients can supplement their data submissions through 
the WeChat app.

2.7.2 Data collection timeline
The study’s data collection is structured into two distinct phases: 

retrospective (Phases I–II) and prospective (Phases III–V).
During the retrospective phase, EHRs data spanning 2019 to 2024 

will be extracted from all 87 participating hospitals via institution-
specific application programming interfaces (APIs), with completion 
targeted within 6 months to ensure timely progression to 
subsequent stages.

In the prospective phase, real-time data collection will occur 
throughout the 2025 influenza season, capturing clinical, diagnostic, 
and outcome variables as they emerge. These data will be synchronized 
daily to a centralized, secure database to maintain continuity and 
enable immediate analysis.

This phased approach balances historical insights with dynamic, 
real-world validation, ensuring comprehensive evaluation of the AI 
model across diverse temporal and operational contexts.

2.7.3 Quality control measures
To ensure data accuracy and consistency, comprehensive 

quality control protocols were implemented. Standardized 
training was provided to clinicians and data entry staff, focusing 

on EHR documentation practices (such as symptom coding 
conventions and structured data entry). Automated validation 
rules were applied to detect anomalies, including range checks 
(such as body temperature less than 42°C) and logical consistency 
validations (such as ensuring symptom onset dates precede 
diagnosis dates). Additionally, manual audits were conducted by 
independent reviewers, who cross-validated 10% of randomly 
selected records against source documents (such as laboratory 
reports, imaging files) to verify data fidelity. These layered 
measures (combining education, technology, and human 
oversight) minimize errors and enhance the reliability of the 
dataset for robust model validation.

2.7.4 Missing data handling
To minimize missing data, mandatory fields (such as viral 

subtype, symptom onset date) are enforced in digital entry forms, 
ensuring critical variables are consistently documented. For 
remaining missing values, multiple imputation via chained equations 
(MICE package) will be applied to continuous variables, leveraging 
iterative regression models to estimate plausible values under 
missing-at-random assumptions. Categorical variables with less than 
10% missingness will undergo mode imputation, replacing gaps with 
the most frequent category, while variables exceeding this threshold 
will be excluded to avoid bias from unreliable estimations. This tiered 
approach balances data completeness with methodological rigor, 
preserving statistical validity while addressing real-world 
data imperfections.

2.7.5 Data storage and security
To safeguard participant confidentiality, all patient identifiers 

will be removed and replaced with unique, non-traceable study 
IDs. Anonymized data will be  stored in encrypted formats on 
password-protected servers hosted through the OSF platform (osf.
io/ayj75), a secure repository compliant with international data 
protection standards. Access to the dataset will be restricted to 
authorized researchers via two-factor authentication, ensuring that 
only verified personnel with explicit permissions can retrieve or 
modify the data. This multi-layered security framework aligns with 
General Data Protection Regulation (GDPR) and China’s Data 
Security Law, prioritizing privacy while enabling rigorous scientific 
analysis. Lidström et al. also advocate the idea of securing patient 
data (37).

2.8 Statistical analysis

2.8.1 Primary outcome analysis
The AUC will serve as the primary metric to evaluate the 

diagnostic accuracy of the AI model. To account for variability 
inherent in multi-reader, multi-case study designs, the DBM method 
will be  employed, which adjusts for differences in clinician 
interpretations and case complexity. Analyses will be conducted using 
the MRMCaov (v0.2.1) and pROC (v1.18.0) packages in R, generating 
AUC values with 95% confidence intervals (CIs) derived from 
non-parametric bootstrapping (1,000 iterations). A clinically 
significant improvement is predefined as a ΔAUC more than 0.15 
between the model-assisted and control groups, with the null 
hypothesis assuming no discriminative capacity (AUC less than 0.70, 
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equivalent to random guessing). This approach ensures robust 
statistical inference while addressing real-world diagnostic variability 
across clinicians and settings. Hyperparameter optimization was 
conducted via Bayesian optimization with 5-fold cross-validation, 
prioritizing AUC on the validation set.

2.8.2 Secondary outcomes analysis
Secondary endpoints include diagnostic sensitivity and specificity, 

calculated using the Clopper-Pearson exact method for binomial 
proportions to determine the model’s and clinicians’ ability to 
correctly identify true positive and true negative cases, respectively. 
Differences between clinician and model performance will be assessed 
via the Mann–Whitney U test, a non-parametric method suitable for 
skewed distributions. Positive and negative predictive values (PPV/
NPV) will be adjusted for influenza prevalence using Bayes’ theorem 
and reported with 95% confidence intervals to reflect their clinical 
utility in real-world settings. The misdiagnosis rate, defined as the sum 
of false positives and false negatives per 100 diagnoses, will be analyzed 
using an independent samples t-test (if normally distributed) or 
Wilcoxon rank-sum test (for non-normal data), quantifying the 
model’s impact on reducing diagnostic errors. These metrics 
collectively evaluate the model’s precision, reliability, and practical 
value in augmenting clinical decision-making.

2.8.3 Subgroup analyses
Subgroup analyses will evaluate the model’s performance 

heterogeneity across predefined categories: patient-level factors (age 
[infants, children, adults, older adults], comorbidities, and vaccination 
status), clinician-level factors (experience [resident, attending, chief] and 
hospital resource tier [urban vs. rural]), and geographic variation 
(northern vs. southern Jiangsu Province). To mitigate bias, statistical 
adjustments include Bonferroni correction for multiple comparisons 
(adjusted α = 0.05 / number of subgroups) and multivariable logistic 
regression controlling for confounders such as seasonal trends, baseline 
viral load, and treatment delays. These analyses aim to identify subgroups 
where the model excels or underperforms, ensuring tailored clinical 
deployment and validating robustness across diverse healthcare settings.

2.8.4 Missing data handling
To address missing data, variables with more than 20% missing 

values (such as incomplete vaccination records) will be excluded to 
maintain analytical reliability. For remaining gaps, multiple imputation 
via chained equations (MICE package in R) will generate 10 imputed 
datasets for continuous variables, preserving statistical power under 
missing-at-random assumptions. Categorical variables with less than 
10% missingness will undergo mode imputation, replacing missing 
entries with the most frequent category, while those exceeding this 
threshold will be excluded to avoid biased estimations. This protocol 
balances data completeness with methodological rigor, minimizing 
potential distortions in model performance evaluation.

2.8.5 Sensitivity analyses
To evaluate the robustness of findings, sensitivity analyses will 

include complete case analysis (comparing results with and without 
imputation) and model stability assessments (quantifying AUC 
variation across imputed datasets). These analyses ensure conclusions 
are not unduly influenced by missing data assumptions. For 
computational workflows, R (v4.3.1), Python (v3.10), and Stata (v18) 
will be  utilized, integrating specialized packages for imputation 

(MICE), AUC calculation (pROC), and regression modeling. 
Reporting will adhere to the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis (TRIPOD) 
guidelines for transparent validation of predictive models, ensuring 
methodological transparency, reproducibility, and alignment with 
international standards for AI-driven diagnostic research.

3 Ethics and dissemination

This study received ethical approval from the Ethics Committee 
of the Affiliated Hospital of Yangzhou University (Approval No. 2024-
10-02). Annual renewals of ethical approval will be  submitted to 
ensure ongoing compliance with evolving regulatory and ethical 
standards. Informed consent was obtained from all participants: 
patients or their legal guardians (for minors or incapacitated adults) 
provided written consent for anonymized data collection and analysis, 
while clinicians signed agreements acknowledging their roles in 
diagnosis and model interaction, with the explicit right to withdraw 
at any time. To safeguard privacy, all patient identifiers were replaced 
with unique study codes, and anonymized data were stored on the 
OSF platform (osf.io/ayj75), accessible only to authorized researchers 
via two-factor authentication. These measures align with international 
data protection standards and China’s Data Security Law, ensuring 
ethical integrity and participant confidentiality throughout the study.

3.1 Risk mitigation

To ensure patient safety and research integrity, clinicians retain 
full authority to override model recommendations if conflicting with 
clinical judgment, while an independent adjudication panel reviews 
all severe outcomes to confirm diagnostic accuracy. Emergency 
unblinding is permitted only when critical safety concerns necessitate 
full diagnostic transparency, with such instances documented and 
reviewed by ethics committees.

3.2 Dissemination plan

For broader dissemination, results will be  shared across all 87 
participating hospitals via workshops and a bilingual Clinical Decision 
Support Guide, with plans to integrate model outputs into EHR systems 
post-regulatory approval. Findings will be submitted to peer-reviewed 
journals and presented at international forums, complemented by public 
health bulletins highlighting implications for high-risk populations.

3.3 Data sharing policy

Data collected during the study will be stored under the supervision 
of the Ethics Committee of Yangzhou University Hospital. The China 
Clinical Research Registry advocates that data from clinical trials should 
be de-identified and then proactively disclosed, which is conducive to 
improving research transparency. However, we prefer to comply with the 
General Data Protection Regulation (GDPR) and China’s Data Security 
Law. This approach is conducive to gaining public trust and greatly 
protects the privacy of clinical trial participants. If a researcher is interested 
in the data, he or she should obtain ethical approval from the researcher’s 
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institution and write a satisfactory and necessary research protocol. Once 
this has been done, the investigator can apply by email to the 
corresponding author. It is important to know that access involving 
sensitive human data must be subject to the jurisdiction and approval of 
the ethics committee. and Lidström et al. also advocate for the protection 
of patient data security (37).
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