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Chemical risk assessment can benefit from integrating informative biomarkers 
in human biomonitoring (HBM). Beyond exposure biomarkers, effect biomarkers 
inform on biological reactions in the body, potentially leading to adverse effects, 
while susceptibility biomarkers address inter-individual variability in exposure. DNA 
methylation of key genes shows promise as an effect biomarker but this epigenetic 
mark remains underexplored in the context of chemicals. Similarly, although 
some genetic polymorphisms are linked to increased chemical susceptibility, 
genetic biomarkers are rarely included in HBM. This mini-review highlights recent 
literature supporting the inclusion of genetic and epigenetic biomarkers in HBM. 
Subsequently, we elaborate on how Oxford Nanopore Technologies as sequencing 
method can efficiently measure these biomarkers simultaneously, even in non-
invasive samples like saliva. Widely used in other fields, this experimental set-up 
could facilitate the design of large-population studies paving the way for a next 
generation risk assessment (NGRA) of chemicals.
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1 Introduction

Some chemicals present in the environment have a high toxicological profile (e.g., 
bisphenols, phthalates, perfluoroalkyl substances, heavy metals and air pollution) and may 
have an impact on human health, with adverse effects at the biochemical, physiological, and/
or behavioral level, potentially leading to diseases (e.g., cancer, neurodegeneration or 
reproduction/growth disorder) (1, 2). It is important to clearly evaluate the risks linked to 
these chemicals, so that prevention and mitigation actions can be taken. Risk assessment is 
generally based on results of in vitro and in vivo (animal models) toxicity tests, epidemiological 
data, and by measuring the presence of chemicals in the environment (1, 3, 4). However, this 
does not give the full picture, as the internal exposure and the subsequent adverse effects in 
the human body are as such not accurately evaluated (3, 4). To address this, human 
biomonitoring (HBM) measures chemicals and their related biomarkers directly in the 
organism, and can therefore be  an important source of additional and more accurate 
information from a public health and regulatory perspective (2, 4). Biomarkers for HBM have 
various types and applications. For instance, the exposure biomarkers, such as urinary levels 
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of phthalate metabolites (5, 6), inform about the internal and 
biological effective dose of chemicals absorbed by the body (7). In 
contrast, effect biomarkers reflect early biological responses to 
chemical exposure, evidencing altered molecular/cellular structures 
and functions such as DNA alteration, enzyme induction/inhibition, 
elevated hormone levels or altered metabolic parameters, which may 
precede the onset of symptoms (7). As such, the exposure can 
be  connected to human health alteration, potentially leading to 
disease. These effect biomarkers are thus informative for risk 
assessment, because they can be linked to toxicological effects, thus 
helping to construct Adverse Outcome Pathways (AOP), as 
conceptualized by the European Human Biomonitoring Initiative 
(HBM4EU) working groups (7) and extended in the Horizon Europe 
funded Partnership for the Assessment of Risks from Chemicals 
(PARC)1 (8). However, for a same level of external exposure, the level 
of internal exposure and effect biomarkers can vary in the population, 
due to differences in the biological reactions of the organism, 
influenced by genetic polymorphisms in the human genome (9), as it 
was already demonstrated for Bisphenol A (BPA) (10) and lead (Pb) 
(11). To account for this variability, susceptibility genetic biomarkers, 
such as specific Single Nucleotides Polymorphisms (SNPs) in genes 
involved in adsorption, distribution, metabolism and excretion of 
chemicals, can be measured to identify people who are potentially 
more susceptible to some adverse effects (11). Ideally, exposure, effect 
and susceptibility biomarkers should be  combined in HBM for 
accurate and improved next generation risk assessment (NGRA) 
(7, 11).

A promising prototype effect biomarker is an epigenetic one, i.e., 
DNA-methylation (DNAm) of key genes associated with adverse 
outcomes due to chemical exposure (12). The hyper-methylation of 
DNA, especially in regions rich in CpG dinucleotides (CpG islands) 
and located in genes’ promoter regions, is known to decrease gene 
expression, while hypo-methylation has the opposite effect (13). 
Modifications, triggered by environmental exposure, can occur in 
DNAm levels of CpG islands and this can affect how the genes are 
expressed through epigenetic mechanisms (1, 14, 15). These epigenetic 
modifications can be maintained in the body for a life time, and, if 
occurring in germ cells, even be  transmitted to offspring as 
transgenerational marks (16). A tremendous number of studies on 
epigenetics have demonstrated the key role of DNAm in cancer and 
aging, and this biomarker is now used in precision medicine for 
diagnostic, prognostic and disease prediction (17, 18). Therefore, 
DNAm has also the potential to be used as an effect biomarker in 
HBM studies for chemical risk assessment (1, 12, 19). In addition to 
DNAm, epigenetics encompasses also other layers including histone 
modification or non-coding RNAs (ncRNAs), which might be used as 
effect biomarkers in HBM (1, 20). However, here we  focused on 
DNAm as it is currently the most feasible mark for HBM.

The most common method for DNAm profiling relies on short-
read Next Generation Sequencing (NGS) with the Illumina 
technology, requiring DNA chemical pre-treatment (bisulfite) and 
enrichment using arrays (21). In the past few years, third-generation 
sequencing techniques, such as Oxford Nanopore Technologies 
(ONT), aroused interest as they can simultaneously perform raw 

1 https://www.eu-parc.eu

sequencing of long DNA fragments and detect base modifications 
such as methylation, without pre-treatment (18). During ONT 
sequencing, the ionic current change is measured while the DNA 
strands pass through small protein channels (nanopores) in a flowcell 
(MinION or PromethION). These variations in the electric signal are 
converted into the four nucleotide bases, as well as their modifications 
(22), through machine learning algorithms (basecalling). Among 
these modifications, cytosine methylation is included, but without 
being limited to it. This technology would be ideal to measure both 
DNAm and SNP-based biomarkers in HBM studies.

To have a strong impact and produce robust evidence, HBM 
studies should ideally measure informative biomarkers at multiple 
levels and time points, and encompass a high number of participants. 
However, the design of large-population studies raises a certain 
number of challenges in terms of cost and practical organization, 
which can limit the number of participants and biomarkers 
investigated. To face these challenges, the choice of biomarkers and 
analytical methods are critical (4). In this mini-review, we advocate 
for the inclusion of the measurement of epigenetic (DNAm) and 
genetic (SNP) marks in HBM studies, as effect and susceptibility 
biomarkers, for improved chemical risk assessment. DNAm 
biomarkers showed their potential in other fields, but are still 
understudied in the context of environmental exposure. The same 
observation holds true for susceptibility biomarkers which are not 
often included in HBM. Furthermore, we highlight the use of ONT 
for a simultaneous detection of SNPs and DNAm. Finally, we discuss 
how the advantages brought by this technology for combined 
straightforward genotyping and base modification detection, have the 
potential to address the aforementioned challenges inherent to large-
population studies. To support our proposal, we included Table 1 with 
some examples of HBM studies in the context of chemical exposure, 
investigating DNAm alterations (with or without SNPs typing) 
including a brief description of the methods employed for 
biomarker detection.

2 DNA-methylation: an informative 
effect biomarker to combine with 
genetic background

Ideally, effect biomarkers should meet the following criteria: being 
predictive (biologically relevant), specific (discriminative) and 
sensitive (reliable measurement) (7, 23). Several DNAm alterations 
have been associated to exposure and proved to be valid candidates 
for effect biomarkers (1, 12).

DNAm levels of naturally hypermethylated transposable repetitive 
elements (e.g., LINE-1 and Alu (24–27)) or tumor suppressor genes 
(e.g., CDKN2A (p16) and CDKN2B (p15) (24, 28, 29)) and oncogenes 
(e.g., MAGE-A1, H19, MLH1 and MSH2 (26, 28, 30, 31)) were 
historically used to inform about global methylation modifications in 
the body, and to make the link between exposure and cancer 
development. This was for instance documented in a study reporting 
global methylation changes in blood associated with air pollution (32). 
However, these markers were too general and can be associated to 
various causes. Other studies succeeded to establish a more specific 
link between exposure and DNAm alterations, thus identifying 
informative biomarkers. This was for instance the case with exposure 
to phthalates associated with DNAm in 12 high-confidence CpGs (5), 
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TABLE 1 Examples of epigenetic and genetic biomarkers, and the methods to detect them, in association with chemical exposure in HBM studies.

Study info Epigenetic biomarkers Genetic biomarkers Ref

Chemical Nbr subj Subj type Sample DNAm alteration Marker 
type

Methylation 
detection

Bisul 
conv

Cell 
type

Pathw 
analy

Gene 
expr

SNPs Genotyp 
method

Arsenicuri 202 Women 

(15 - 64)

P blood Hyperm p16 and MLH1 Canc Pyroseq. Yes ND No No AS3MT 

haplotype 1

Sequenom 

MassArray

(28)

Arsenicext 16 Adults (30 - 

70)

P blood Hypom NAPRT1, NT5C3B, and 

NEDD4L; Hyperm RAB11B and 

SLC22A3

Spec Infinium 850 k + 

seq.

Yes ND Yes Yes No - (84)

Arsenicuri, ext 102 Children 

(5 - 16)

P blood Hyperm MLH1 and MSH2; Hypom 

TFAM and PGC1α

Spec, canc MSP Yes ND No No No - (30)

Benzeneext 8 Adult workers 

(34 - 55)

P blood Hyperm PRKG1, PARD3, and EPHA8; 

Hypom STAT3 and IFNGR1

Spec, canc Infinium 450 k + 

seq.

Yes Meas Yes Yes No - (85)

Benzeneext 98 Adult workers 

(mean 30)

P blood Altered DNAm in AMPK signaling 

pathway genes

Spec Infinium 450 k + 

seq

Yes Estim Yes No No - (86)

BPAuri 6 & 146 Mother - 

infants (birth)

Placenta 

tissue

Hyperm HLA-DRB6 Spec Infinium 

450 k + seq & 

pyroseq

Yes ND Yes No No - (87)

BPAuri 309, 156 & 

150

Mother - 

infants (birth, 

9 & 14)

C & P blood Hyperm GRIK1, CXCL14, OXTR and 

AK7; altered DNAm RNF39

Spec Infinium 450 k + 

seq

Yes Estim Yes No No - (88)

Lead (Pb)uri 27 Adult men 

(20 - 40)

Sperm Altered DNAm in neurological system, 

cytoskeleton and Ca pathway genes

Spec MeDIP + seq No Meas Yes No No - (36)

Lead (Pb)blo 30 & 305 Adult workers 

(med 33 & 

38.5)

P blood Hypom RRAGC and USP1 Spec Infinium 

450 k + seq & 

pyroseq

Yes Estim Yes No No - (89)

Flame-

retardanturi

67 Adult men 

(18 - 35)

Sperm Hyperm NDN, SNRPN and GRB10

Altered DNAm of MEG3 and H19

Spec, canc Pyroseq. Yes Meas No No No (31)

Pesticidesext 1,170 Male workers 

(55 - 72)

P blood Altered DNAm in 162 CpGs across 8 

active ingredients

Spec Infinium 850 k + 

seq.

Yes Estim Yes Yes No - (33)

Pesticidesext 218, 222, 572 

& 2,333

Adults (18 – 

75)

P blood Altered DNAm in 50 genes involved in, 

e.g., cell signaling, transcription, 

translation, polyubiquitination, and 

ion/nucleotide transporters

Spec Infinium 450 k & 

850 k + seq

Yes Estim No No PD’s SNPs + 

SNPs 

influencing 

DNAm

Illumina 

NeuroChip 

array

(42)

PFASblo 141 Mother - 

infants (birth)

C blood Hypom of intergenic region chr 22; 

Hyperm of ATG2A, GTPBP3 and 

intergenic region chr 5

Spec Infinium 850 k + 

seq.

Yes Estim Yes Yes No - (90)

(Continued)
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TABLE 1 (Continued)

Study info Epigenetic biomarkers Genetic biomarkers Ref

Chemical Nbr subj Subj type Sample DNAm alteration Marker 
type

Methylation 
detection

Bisul 
conv

Cell 
type

Pathw 
analy

Gene 
expr

SNPs Genotyp 
method

PFASblo 63 Children 

(7 - 11)

P blood Hypermethylation of RASAL2 and 

ITPR1

Hypomethylation of MCF2L,

Spec Infinium 850 k + 

seq.

Yes Estim Yes No No - (91)

PFASblo 182 Male workers 

(25 - 49)

P blood Altered DNA methylation in  

HAS2-AS1, NSMCE2, LINC00824, 

FAM49B, ASAP1 and intergenic 

regions in chromosome 8.

Spec Infinium 

450 k + seq & 

pyroseq

Yes Estim No No No - (61)

Phtalatesuri 64 Mother - 

infants (birth)

C blood Altered DNAm in PA2G4, HMGCR 

and XRCC6

Spec Infinium 

450 k + seq & 

pyroseq

Yes Estim Yes No No - (6)

Phtalatesuri 74 & 78 Mother - 

infants (mean 

2.88 months)

P blood & 

buccal cells

Altered DNAm in endocrine hormone 

activity, immune pathways, DNA 

damage and neurodevelopment genes

Spec Infinium 450 k + 

seq

Yes Estim Yes No No - (5)

The table lists examples of DNA-methylation (DNAm) and Single Nucleotide Polymorphism (SNP) biomarkers identified in human biomonitoring (HBM) studies in context of exposure to chemicals. The exposure to chemicals was assessed either by measurement of 
internal exposure biomarkers in urine (uri) or blood (blo), or by external exposure (ext) estimation. The type of subjects (“subj type”) is followed by the age range (in years if not stipulated) of the study population between brackets. When the range was not communicated, 
the age mean or median (“med”) is given. In case of mother - infants pairs, chemical exposure was assessed for the mother during pregnancy and DNAm was measured for the infant at birth and/or in the first months/years of life. “Samples” to measure effect 
biomarkers were mostly blood from peripheral (“P”) or cord (“C”) origin. “DNAm alterations” were detailed for key genes that can potentially be used as effect biomarkers. If no key genes were highlighted by the study authors or if they were too many to be listed in the 
table, information about the potentially impacted biological functions is given instead. The DNAm biomarkers were classified as being broadly related to cancer/tumors (“canc”) or specific (“spec”) of the investigated exposure. DNAm was detected with PCR followed by 
pyrosequencing (“pyroseq”), with methylation specific PCR (“MSP”) followed by electrophoresis, with Methylated DNA immunoprecipitation (“MeDIP”) followed by Illumina sequencing (“seq”), with Infinium HumanMethylation450 (“Infinium 450 k”) or with 
Infinium MethylationEPIC (“Infinium 850 k”) arrays followed by Illumina sequencing (“seq”). Cellular variability (“cell type”), influencing DNAm measurement, was accounted for by experimental measurement (“meas”) of the sample cellular composition, by 
estimation (“estim”) using DNAm data and deconvolution methods, or was not determined (“ND”). Some studies conducted pathway analysis (“pathw”) using gene annotation and/or enrichment with for instance Gene ontology or Kyoto encyclopedia of genes, to link 
identified DNAm alteration with biological functions. Gene expression (“Gene expr”) analysis was sometimes performed to investigate if DNAm alterations could be linked to modification in transcription of the corresponding genes. In the studies (87) and (89), EWAS 
was performed on a small subset (first number in “Nbr subj”) of the study population using Infinium arrays and later replicated in an independent experiment with more subject (second number in “Nbr subj”) using pyrosequencing. In study (42), replication of the 
results was performed with publicly available DNAm data (the 3 last numbers in “Nbr subj”). In the same study, monogenic mutations associated with Parkinson disease (PD’s SNPs) were measured. In study (88), the 3 numbers in “Nbr subj” corresponds, respectively, 
to the infants followed at birth, 9 and 14 years old. In study (61) pyrosequencing was used for a better resolution of repetitive elements (not possible with Infinium arrays). In study (5), the 2 numbers in “Nbr subj” correspond to the number of participants for which 
peripheral blood and buccal cells have been collected for comparison in this study, respectively.
Nbr: number; subj: subject; Bisul conv: bisulfite conversion; periph blood: peripheral blood; Hyperm: hypermethylation; hypom: hypomethymation; cord blood: umbilical cord blood; chr: chromosome; Genotyp: genotyping.
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with active ingredients from pesticides associated with unique 
differentially methylated CpGs (33) and DNAm alteration of the 
AHRR gene in the context of tobacco-smoking (34, 35). These 
associations were sometimes replicated with independent analyses 
using a different study population, confirming the discriminatory 
power of the biomarker candidates (Table 1).

DNAm is linked to gene expression and can explain the early 
biological mechanisms triggered by chemicals. Using gene annotation, 
gene enrichment, pathway and gene expression analyses, it is possible 
to make the link between differential DNAm of genes involved in key 
cellular functions, and the adverse effects associated with exposure 
(Table 1). For instance, in studies about sperm quality in relation with 
lead and phthalates exposure (36, 37), DNAm alterations were 
identified in genes involved in cytoskeleton formation, which plays a 
critical role in sperm motility and fertilization. Another study 
identified DNAm patterns in genes related to endocrine activity in 
subjects exposed to phthalates, known to interfere with hormonal 
regulation (5). Establishing a link with biological effects is even more 
critical in epigenome-wide association studies (EWAS), where dozens 
to hundreds of differentially methylated regions are reported, and the 
most relevant ones must be  identified. Although these biological 
associations need further validation at the analytical, toxicological, 
and physiological levels, they help to select informative effect 
biomarkers based on their biological relevance, and contribute to 
the AOP.

The DNAm alterations in response to chemicals can vary in the 
population because of inter-individual genetic variability (38). Indeed, 
particular SNPs were associated with slower metabolization of 
chemicals (39, 40), resulting in higher internal dose of metabolites in 
the body and prolonged adverse effects, as it was demonstrated for 
BPA (10) and lead (Pb) (11). Moreover, genetic polymorphisms can 
influence how the body reacts to exposure and how biomarkers are 
produced (41). Finally, some people have higher chances to develop 
non-communicable diseases because of their genetic background (42). 
Several studies and reviews listed genetic variations associated with a 
higher susceptibility to a.o. arsenic (43), lead (Pb) (11, 44), phthalates 
(45), mercury (46), benzene (47) and pesticides (48, 49). This genetic 
variability introduces potential bias and confounding factors in the 
measurement of exposure and effect biomarkers. Additionally, SNPs 
in metabolism-related genes are particularly of health concern as they 
can increase the duration of the adverse effects. While it appears 
relevant to include genotyping of susceptibility biomarkers in HBM 
for more accurate interpretation, we found only two DNAm studies 
including SNPs measurement in this context (Table 1). In one study 
(28), genotyping of AS3MT was performed in parallel with DNAm 
analysis, as its haplotype 1 is constituted of several polymorphisms 
associated with a slower arsenic metabolism. The genetic component 
of Parkinson disease was taken into account in another DNAm study 
(42), by excluding participants having higher chances to develop the 
disease because of specific polymorphisms, and investigating for the 
remaining ones the cross effect of genetic background and pesticide 
exposure on DNAm. As shown in this section, several associations are 
being established in the scientific literature between genetic 
polymorphisms (in coding and non-coding regions) and susceptibility 
to chemicals. Even more genetic data is available in the genome wide 
association study (GWAS) catalog and will continue to be added (50). 
Therefore, including genotyping of critical SNPs (selected from 
existing publicly available data) in HBM should be considered, to 

account for variation in people’s susceptibility and internal exposure 
dose, and combined with other informative biomarkers such as 
DNAm, to contribute to improved risk assessment. To achieve this, 
new methods are required for adequate and routine inclusion of 
genotyping in DNAm studies, as already suggested almost a decade 
ago in the context of smoking DNAm biomarkers influenced by 
SNPs (35).

3 The ideal technique for measuring 
both genetic and epigenetic markers: 
Oxford Nanopore sequencing holds 
promise

The genotyping methods for SNP analysis are well established and 
were commonly used in studies investigating for genetic predisposition 
to non-communicable diseases. If few polymorphisms are targeted, 
they can be detected using real-time polymerase chain reaction (qPCR) 
(41). If more targets are to be screened for, arrays are preferably used 
(42). Finally, for new marker discovery in GWAS, high-throughput 
sequencing methods are chosen for an untargeted approach (51).

The detection of DNAm requires other techniques, which in 
comparison with genotyping, are usually less straightforward and 
involve several steps. Indeed, the most common procedure for the 
detection of methylated CpGs consists of a chemical DNA treatment 
with bisulfite, to convert unmethylated cytosines into uraciles (later 
transformed into thymines following subsequent PCR) while the 
methylated cytosines remain unchanged. Subsequent detection 
techniques are then used to discriminate the converted cytosines from 
the unconverted ones. Among those techniques, methylation-specific 
PCR (MSP) followed by electrophoresis, or PCR followed by 
pyrosequencing, can be  used if few CpGs are targeted (21, 52). 
Nowadays, hybridization capture with Illumina DNA methylation 
BeadChips followed by short-read high-throughput sequencing, 
enriching for more than 450,000 (Infinium HumanMethylation450) 
or 850,000 (Infinium MethylationEPIC) CpG sites (52) and covering 
96% of the human CpG islands, is usually preferred to maximize the 
number of detected targets, especially in EWAS (Table 1). Nevertheless, 
the aforementioned sequencing techniques and the MSP have one 
major drawback coming from the bisulfite conversion. This chemical 
treatment can be harsh, introducing DNA damage, and does not lead 
to a 100% DNA conversion, leading to variability and hampering the 
accuracy of the method (53). As an alternative, selective enrichment 
of CpGs can be performed with Methylated DNA immunoprecipitation 
(MeDIP), which will capture the methylated DNA using specific 
antibodies (52, 53), allowing selective sequencing of methylated sites 
(Table 1). Although easy, specific and sensitive, this method can only 
identify the overall methylation status and is biased toward rich CpGs 
regions, requiring normalization.

A promising method for DNAm analysis is the Reduced-
Representation Methylation Sequencing (RRMS) from ONT. This 
approach allows the direct sequencing of raw DNA, as well as 
methylation detection, without harsh chemical pre-treatment and 
PCR amplification, making also the analysis less complex and time 
consuming. ONT is theoretically able to detect any DNA adducts, 
as long as a specific basecalling algorithm has been trained to 
detect the related modification, which is already the case for 
(hydroxy)methylated cytosine, methylated adenine and other 
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proofs of concept (54, 55). Moreover, to produce comparable 
performance as the Infinium sequencing technology, ONT adaptive 
sampling (AS) is used to selectively sequence regions (customized 
in a database) containing CpG islands, while the other sequences 
are rejected by the nanopores and not sequenced (Figure 1) (56). 
As such, RRMS using AS with one single MinION flowcell 
(theoretical output capacity 50 Gb) aims to cover 100% of the 

human CpG islands with high sequencing depth (>15-20x), 
allowing accurate data interpretation with high confidence (57, 
58). A recent study (59) concluded that ONT yielded better 
sensitivity, specificity and consistency, when compared to the gold 
standard Infinium MethylationEPIC array. Moreover, another 
comparison study showed that ONT long-read sequencing 
improved both the spatial resolution of DNAm and the discovery 

FIGURE 1

Next generation chemical risk assessment with Oxford Nanopore Technologies for analysis of genetic (SNP) and epigenetic (DNAm) biomarkers from 
non-invasive samples in HBM. Oxford Nanopore Technologies (ONT) is suggested for the simultaneous analysis of DNA-methylation (DNAm) and 
Single Nucleotide Polymorphisms (SNPs) from non-invasive samples (e.g., urine, semen, etc., and illustrated for saliva) for cost efficiency and facilitating 
organization and design of human biomonitoring (HBM) studies with large populations. “Adaptive sampling included,” in the Reduced-Representation 
Methylation Sequencing (RRMS) from ONT, consists of the real-time comparison of the 400 first bases sequenced in the nanopore, with Regions of 
Interest (ROI) stored in a database (DB). If these first bases match a ROI, the rest of the DNA strand is sequenced. If not, the strand is rejected from the 
pore allowing another DNA fragment to be tested. With the by default RRMS protocol from ONT including targeted ROI, this allows for the enrichment 
for 100% of the human CpGs, with depletion of non-human bacteria from the salivary microbiome, leading to accurate and high coverage detection of 
DNA-methylations. Nonetheless, this technology is scalable as the ROI stored in the DB can be customized by the user. As such, selective enrichment 
for SNPs can also be done if target polymorphisms are included as ROI in the DB. To maximize the use of the flowcell’s sequencing resources, a two-
step strategy is suggested. The default RRMS protocol targeting 100% of the CpGs can be used in first for epigenetic biomarker discovery in EWAS 
setting, but with the limit of one sample per sequencing MinION flowcell, which can be costly but is needed to guarantee sufficient coverage for data 
analysis. The adaptive sampling DB can then be modified in a second stage to include only the selected epigenetic and genetic biomarkers (including 
those from the scientific literature), representing less ROIs than in the default RRMS protocol. As less regions are targeted, more samples can 
be multiplexed, to maximize the sequencing resources of the flow cell, without a trade for coverage and accuracy. This two-step strategy with 
multiplexing facilitates biomarker discovery and further use in HBM studies with a high number of samples, at reduced cost. †, chemical exposure 
assessed through the measurement of internal exposure biomarkers. ¥, the picture shows a GridION, an ONT sequencing instrument which can 
perform up to 5 sequencing runs in parallel with MinION flowcells. RNA fragments (and hence ncRNA epigenetic biomarkers) can also be measured 
with this device, although not simultaneously with DNAm and SNPs.
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of new markers, because not limited by a predefined subset of 
probes from an array sequenced in short-reads (60). This improved 
spatial resolution can be particularly helpful for the measurement 
of DNAm in repetitive elements not covered by the Infinium arrays 
(61). AS is easily scalable and the database used for selective 
sequencing can be adapted to allow for the enrichment of any CpG 
regions. Moreover, SNPs can also be included with CpGs in the 
same database for AS, for a simultaneous analysis of genetic and 
DNAm biomarkers in one experiment, avoiding the use of one of 
the additional genotyping methods mentioned earlier (Figure 1). 
This combined analysis was already successfully employed in 
forensics and aging research (58, 62), as well as in cancer studies 
(63, 64). To the best of our knowledge, this was never applied to 
HBM, because this rapidly evolving technology was not mature 
enough for this application. However, considering its numerous 
advantages, ONT emerges now as a promising method for 
epigenetic studies (22), that should be  included in HBM, as it 
fulfills the needs of measuring both SNPs and DNA modification 
(such as DNAm) biomarkers.

Single molecule, real time (SMRT) sequencing with Pacific 
Biosciences (PacBio) technology also offers the sequencing of long 
DNA fragment with detection of a limited number of base 
modification (such as methylation) with its kinetic signal analysis. 
However, PacBio sequencing offers a less flexible and scalable solution 
than ONT, with more complex sample preparation, resulting 
ultimately in a higher cost per sample (65, 66). Additionally, ONT 
encompasses more portable sequencing devices which can 
be interesting for HBM studies. Finally, real-time target selection with 
AS in ONT allows the enrichment for regions of interest, something 
that is not possible with PacBio.

ONT has still some limitations such as for instance read 
quality scores that have historically been lower compared to 
Illumina sequencing. Read quality is dependent on accurate signal 
measurement and basecalling algorithm performance, which can 
be affected by homopolymeric regions (67) or some methylation 
sites (68). However, continuous improvement is brought to the 
flowcell technology and chemistry, as well as to the basecalling 
algorithm. The last up to date R10 flowcells, V14 chemistry and 
dorado basecaller have been shown to produce accuracy (q-score 
> 20 and error rate < 1%) comparable to Illumina (67–70). 
Furthermore, with AS increasing sequencing depth, this 
guarantees that every nucleotide position and modification is 
called with high confidence for accurate data interpretation. 
Another limitation of the RRMS is the DNA input requirement 
(2 μg) for library preparation that is needed to obtain sufficient 
data output. Therefore, it requires sufficiently concentrated 
samples but this can be  further optimized case by case with 
every matrix.

Finally, it should be noticed that other important epigenetic 
factors not covered in the present mini-review, such as small and 
long ncRNAs and their modifications, can also be measured with 
ONT (63). Alterations of ncRNAs due to environmental stressors, 
are gaining more and more interest as these molecules are known 
to mediate DNAm in physiological and pathological mechanisms 
(20). However, the direct sequencing of ncRNAs by ONT requires 
more complex and specific protocols (71). In particular, the 
sequencing of some small ncRNAs brings new challenges due to 
their very short length (15–50 bp) and the absence of polyA tail, 

which still requires further development to have a fully mature 
technology. Currently, it is not feasible to simultaneously sequence 
DNAm, SNP and ncRNA biomarkers through a single 
library preparation.

4 Challenges for a better integration 
of genetic and epigenetic biomarkers 
in large population studies

The biomarkers and related analytical methods are key aspects 
to carefully select during the design of large-population studies, 
because of cost and practical organization constraints, that can 
limit the number of participants. In the previous sections, 
we proposed DNAm and SNPs as promising effect and susceptibility 
biomarkers, respectively, that can be simultaneously measured by 
ONT. For large-population studies, ONT can still be  costly, 
considering that one sample per MinION flowcell is preferred in 
EWAS to achieve adequate sequencing depth (>15-20x) and 
accuracy for data interpretation (60). Nevertheless, a cost effective 
two-step ONT strategy could be implemented, starting with a more 
costly open approach for marker discovery, and followed by a more 
affordable targeted method for marker validation (Figure 1). Few 
studies from Table 1 have adopted this approach, by using first 
Infinium arrays with a limited amount of samples for EWAS, and 
secondly pyrosequencing targeting few CpG sites in replication 
studies with more participants. Similarly, RRMS can be used in first 
intention with AS targeting all the CpG islands for marker 
discovery (open untargeted approach), and then be adjusted to 
detect only a set of selected biomarkers (targeted approach) during 
HBM studies (Figure 1). As less sequences are targeted for selective 
enrichment during this second stage, this can free sequencing 
resources in the MinION flowcell to allow multiplexing of several 
samples in one analysis, without a trade for coverage and accuracy. 
By sequencing only selected CpGs and SNPs, one MinION flow cell 
could handle multiple multiplexed samples at once, dramatically 
improving throughput and cost-efficiency. This multiplexing level 
can even be  increased with the use of PromethION flowcells 
(theoretical capacity 290 Gb), encompassing 5 times more pores 
than MinION, and hence 5 times more sequencing capacity at 
similar cost.

Another critical aspect is the choice of the matrix where to 
measure the different biomarkers, i.e., exposure, effect and 
susceptibility. Among the studies listed in Table  1, urine was 
preferably used for the measurement of exposure biomarkers 
(except for PFAS), most of the time in combination with blood for 
the measure of effect and susceptibility biomarkers; although, 
sperm, placenta tissue and cord blood were also used depending on 
the biological question investigated. The sampling of blood is 
invasive and requires medical staff (unless remote blood sampling 
devices could be used (72)), which can limit the number of samples 
due to higher cost and participant reluctance. Alternatively, 
non-invasive samples, such as saliva, gained in popularity for HBM 
to measure effect biomarkers (7). Saliva is produced in abundance 
and is easy to collect. Furthermore, as it is mainly derived from 
intercellular fluid and blood, it contains key cellular and molecular 
components, such as a.o. leukocytes, buccal cells, microbial cells, 
inflammatory molecules, antibodies and hormones. Thanks to this, 
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saliva is an interesting surrogate for effect and susceptibility 
biomarkers investigation, including DNAm and SNPs, as high 
quality DNA can be extracted from the cells present in saliva (73). 
Saliva can be  combined with urine collection (for exposure 
biomarkers) for a full non-invasive sampling. Nonetheless, caution 
must be taken when measuring DNAm in different fluids, as some 
methylation marks are tissue and cell dependent (74, 75). This 
heterogeneity is already accounted for in DNAm studies using 
blood, where data correction is applied according to cell 
composition, estimated using deconvolution methods (76, 77) and 
reference panels (78) (Table 1). Saliva is a slightly more challenging 
matrix, as it also contains (dead) buccal cells as well as 
microorganisms, and has more inter-individual variability. 
However, this should not be  limiting, as reference-based 
deconvolution methods can be used (74, 79) with saliva reference 
panels to account for cellular heterogeneity (80). Concerning 
non-human DNA, it can be  aimed to be  ignored by using AS 
included in the RRMS protocol, as only human CpGs are enriched. 
Some studies compared DNAm profiling in saliva vs. blood, and 
concluded that despite some differences, there was an overall good 
correlation between the two matrices, with key common 
biomarkers present in both sample types (5, 81–83). Considering 
this, it is encouraged to do marker discovery with EWAS directly 
in saliva, and if needed to test for biomarker replication in blood 
with targeted methods, to ensure that the same changes can 
be detected in both fluids, before assuming interchangeability. The 
evidence reviewed here provides proofs of concept that saliva (or 
eventually other non-invasive human samples) can deliver high 
quality DNA, suitable for DNAm and SNP biomarkers 
measurement. Nevertheless, more studies are needed to explore the 
use of saliva in identifying and measuring these biomarkers in the 
context of environmental exposure and HBM, as proposed in 
Figure 1.

5 Conclusion

Amongst the different epigenetics mechanisms, 
DNA-methylation is a promising effect biomarker that should 
be combined with susceptibility genetic biomarkers and exposure 
biomarkers, to provide the full and accurate picture in large 
population HBM studies, for improved risk assessment. However, 
the collection and analysis of thousands of samples in exposure 
studies are still costly and practically challenging. In this study, 
we  presented how ONT could be  a method of choice for 
simultaneous analysis of genetic (SNP) and epigenetic (DNAm) 
markers, with potential to include a large panel of DNA 
modifications in the future. While ONT has mainly be used in 
medical research, the most recent improvements in accuracy 
(Q20+) and selective sequencing (AS) make this technology 
mature to be used in HBM, addressing the limitations of large-
population (epi)genetic studies. Indeed, this scalable method can 
first be used with a small subset of samples in EWAS for marker 
discovery, and later in a large population study with sample 
multiplexing at reduced cost and increased throughput for 
HBM. Moreover, saliva appears to be a valid alternative to blood 
for biomarker measurement, facilitating sample collection from a 
high number of participants. The use of ONT and non-invasive 

samples, for combined measurement of effect and susceptibility 
biomarkers, will facilitate the evaluation of the impact of 
environmental exposure, and will contribute to a better 
understanding of the AOPs. This will eventually lead to a NGRA 
for chemicals as aimed for in the PARC project to protect human 
health and the environment, with amongst others new innovative 
approaches (8).
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