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Background: Volatile organic compounds (VOCs) are emerging environmental

pollutants linked to various health problems. However, the relationship between

exposure to urinary volatile organic compound metabolites (mVOCs) and

sarcopenia remains unclear.

Methods: We used data from the National Health and Nutrition Examination

Survey (NHANES 2011–2018) to assess the association between mVOCs and

sarcopenia through multivariable logistic regression and restricted cubic spline

(RCS) regression. We also employed Weighted Quantile Sum (WQS) regression

model, a high-dimensional statistical approach used to evaluate the joint e�ects

of multiple exposures, and Bayesian Kernel Machine regression (BKMR) model, a

combination of Bayesian and statistical learning methods, to assess the mixture

e�ects of mVOCs on sarcopenia risk. These methods account for non-linearity,

collinearity, and dimensionality in exposure data. Mediation analysis was used to

identify metabolic, endocrine, and inflammatory mediators in these associations.

Subgroup analyses were conducted by gender and age. Network pharmacology

analysis was performed to identify potential pathways and targets.

Results: A total of 2,898 participants were included, with 145 (8%) diagnosed

with sarcopenia. Logistic regression showed a positive correlation between

mVOCs (3,4-MHA, ATCA, CEMA, CYMA, 2HPMA, 3HPMA, MHBMA3, and PGA)

and sarcopenia. RCS results confirmed linear dose-response associations (P for

overall <0.05, P for non-linear ≥0.05). Subgroup analysis indicated stronger

associations in older participants. The WQS and BKMR models consistently

showed a positive link between VOC exposure and sarcopenia. Mediation

analysis identified alkaline phosphatase (ALP), white blood cell count (WBC),

systemic immune-inflammation index (SII), and vitamin D as mediators. Network

analysis revealed significant enrichment in the endocrine resistance pathway.

Conclusions: Our findings suggest that co-exposure to VOCs is associated

with increased sarcopenia risk, potentially through disruption of endocrine and

inflammatory pathways, as indicated by elevated alkaline phosphatase (ALP),

white blood cell count (WBC), the systemic immune-inflammation index (SII),

and reduced vitamin D levels, with enrichment observed in the endocrine

resistance signaling pathway.
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1 Background

Sarcopenia is a geriatric condition characterized by a
progressive loss of muscle mass, strength and function, and has
been proven to increase the risk of falls, fractures, low quality
of life, postoperative complications, a loss of independence (1,
2), cognitive impairment, and mortality in general populations.
The prevalence of sarcopenia in older adults (aged >60 years) is
estimated to range from 10 to 30%, with higher rates observed in
older age groups (3–5). The prevalence of sarcopenia among Asian
populations ranges from 6.8 to 25.7%, representing a significant
social and economic burden (6–8). Risk factors for sarcopenia
include age, physical inactivity, smoking, chronic metabolic
diseases, malnutrition, and neuromuscular dysfunction (9, 10).
Previous studies have highlighted these factors, with particular
emphasis on the role of aging, physical inactivity, and metabolic
imbalance in increasing the risk of sarcopenia. There is increasing
evidence that environment pollutants may play important roles
in the development of sarcopenia (11, 12). However, the specific
compounds remain unclear.

Volatile organic compounds (VOCs) are carbon-based
compounds with low molecular mass that could evaporate easily at
normal environment (13–15). They are widespread in both indoor
and outdoor environments and the primary sources include but
not limited to industrial emissions, automotive exhaust, cooking
fumes, cigarettes, insecticides, furniture and building materials,
and personal care products (16–18). This poses a significant
threat to human health, as individuals spend the majority of their
time indoors. VOCs could be absorbed into the human body not
only through inhalation of air, but also via dietary intake and
dermal contact. Long-term exposure to VOCs has been linked
to several health issues, such as chronic respiratory disease (19),
growth and development (16), kidney diseases (15, 20), metabolic
diseases (21, 22), and depression (23). Due to the longer biological
half-life and greater stability of VOCs in urine compared to
blood, VOCs in urine serve as reliable indicators for reacting
human exposure to these compounds. Additionally, VOCs in urine
accumulate over time and reflect long-term exposure, whereas
blood concentrations fluctuate more rapidly, potentially leading
to underrepresentation of exposure levels. Urinary mVOCs also
provide a non-invasive and convenient sampling method, allowing
for repeated collection without the need for invasive procedures.
Given these advantages, urinary mVOCs are increasingly
recognized as a robust biomarker for assessing human exposure
to VOCs, particularly in epidemiological studies investigating
chronic health outcomes such as sarcopenia. VOCs encompass a
variety of species that frequently exist as mixtures in the natural
environment. These mixtures can influence both physiological
and pathological processes within the body. Several studies have
reported the effects of certain VOCs on sarcopenia. For instance,
Eshima et al. (24) have found that lipid hydroperoxides promote
sarcopenia through carbonyl stress. However, to date, research on
the impact of VOC mixtures on sarcopenia remains limited.

In this study, we employed a combination of strategies
including survey-weighted logistic regression, restricted cubic
spline (RCS) regression, and weighted quantile sum (WQS)
regression models to explore the individual and combined effects

of exposure to VOCs on sarcopenia. Bayesian kernel machine
regression (BKMR) models was used to further validate the mixed
effect of VOCs on sarcopenia. Moreover, mediation analysis and
network pharmacological analysis were utilized to investigate the
potential mechanism between VOCs exposure and sarcopenia. Our
findings might provide a novel insight for the understanding of the
impact of individual VOCs and their co-exposure on the occurance
of sarcopenia.

2 Methods

2.1 Study population

The data used in this cross-sectional study were derived from
the 2011–2018 National Health and Nutrition Examination Survey
(NHANES), a national, complex, stratified, multistage, probability
sampling design survey, conducted by the National Center for
Health Statistics (NCHS) of the Centers for Disease Control and
Prevention. The purpose of the NHANES was to evaluate the
health and nutritional status of the population in the US (25).
The NHANES was approved by the NCHS Research Ethics Review
Board and all selected participants signed the written informed
consent. Among the 39,156 participants, some individuals were
excluded based on the following criteria: (1) those who were under
20 years old (n = 16,539); (2) those with missing urinary mVOCs
data (n = 16,556); (3) those with missing data on dual-energy X-
ray absorptiometry (DXA) measurements (n = 2,988), body mass
index (BMI; n= 15), and urinary creatinine (n= 3); (4) those with
missing laboratory test results for white blood cell count (WBC; n=
102), alkaline phosphatase (ALP; n= 51), triglycerides (n= 2), and
high-density lipoprotein cholesterol (HDL-C; n= 2). Subsequently,
covariates with <20% missing values were imputed using multiple
imputation by chained equations (MICE). As shown in Figure 1, a
total of 2,898 participants were enrolled in the final analysis.

2.2 Determination of urinary VOC
metabolites

Urinary volatile organic compound metabolites (mVOCs)
were detected and quantified using ultra-performance liquid
chromatography-electrospray tandem mass spectrometry (UPLC-
ESI/MSMS) as described by Alwis et al. (26). The detailed
information on the analytical methods is available on the
NHANES website (https://www.cdc.gov/nchs/nhanes/). Based
on the NHANES guideline, the concentration of mVOCs
was presented as ng/ml. If the concentration of VOCs is
below the limit of detection (LOD), the values were replaced
by LOD divided by the square root of two. A total of 15
mVOCs were incorporated into the analysis based on their
detection rates in the NHANES 2011–2018 dataset, including
2-methylhippuric acid (2MHA), 3- methylhippuric acid & 4-
methylhippuric acid (3,4-MHA), N-acetyl-S-(2-carbamoylethyl)-
L-cysteine (AAMA), N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine
(AMCC), 2-aminothiazoline-4-carboxylic acid (ATCA),
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FIGURE 1

Flowchart of participants selected in this study. NHANES, National

Health and Nutrition Examination Survey; mVOCs, volatile organic

compound metabolites; DXA, dual-energy X-ray absorptiometry;

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol;

MICE, multiple imputation methods.

N-Acetyl-S-(benzyl)-L-cysteine (SBMA), N-acetyl-S-(2-
carboxyethyl)-L-cysteine (CEMA), N-Acetyl-S-(2-cyanoethyl)-
L-cysteine (CYMA), N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine
(DHBMA), N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA),
N-Acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), N-Acetyl-S-
(3-hydroxypropyl-1-methyl)-L-cysteine (HMPMA), Mandelic acid
(MA), N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine (MHBMA3),
and phenylglyoxylic acid (PGA). We chose to include metabolites
with a detection rate >80% to ensure that the exposure data
was robust and reliable across the study population. Metabolites
with a lower detection rate were excluded to avoid introducing
significant missing data, which could have compromised the
statistical analyses. This threshold is consistent with prior research
in environmental health and exposure assessment (16, 27, 28).

2.3 Sarcopenia

Sarcopenia was diagnosed based on the sarcopenia index which
was defined as the appendicular skeletal muscle mass (ASM), the
sum of lean mass for both arms and legs, after adjusting for BMI.
The ASM was measured by dual-energy X-ray absorptiometry

(DEXA). A sarcopenia index of <0.512 for females and <0.789
for males was considered to have sarcopenia (29, 30) according to
guidelines from the National Institutes of Health (FNIH).

2.4 Covariates

Based on previous studies, the covariates associated with
the sarcopenia were identified in the analysis (31, 32). The
sociodemographic characteristics included age (years), gender
(male and female), race (Mexican American, Other Hispanic,
Non-Hispanic White, Non-Hispanic Black, and Other Race),
educational level (<9th grade, 9–11th grade, High school graduate,
Some college/AA degree, and College graduate/above), marital
status (Married/living with partner, Widowed/separated/divorced,
and Never married), and the ratio of family income to poverty
(PIR; ≤1.0, >1.0 and ≤3.0, >3.0). The life behavior characteristics
included BMI, smoking status (yes and no), and drinking status
(yes and no). The concurrent diseases included hypertension (yes
and no), diabetes (yes and no), and stroke (yes and no). The
laboratory indicators included white blood cell (WBC), alkaline
phosphotase (ALP), platelet, neutrophils, lymphocyte, serum
vitamin D, triglycerides, and high-density lipoprotein cholesterol
(HDL-C). Family PIRwas categorized into 0–1.0, 1.0–3.0, and>3.0.
Smokers are defined as individuals who have smoked at least 100
cigarettes in their lifetime and are currently active smokers (33).
Alcohol consumers are defined as individuals who consume at least
12 alcohol drinks every year (34).

2.5 Statistical analysis

The Baseline features of the participants were described based
on the presence or absence of sarcopenia. Continuous variables
were presented as mean ± standard deviation (SD) and compared
by weighted t-test or Kruskal–Wallis test. Categorical variables
were expressed as n (%) and analyzed using the chi-square test.
Due to the right-skewed distribution, the concentration of mVOCs
were logarithmically transformed to achieve a normal distribution
and grouped into four quartiles (Q1, Q2, Q3, and Q4) for
further analysis. Spearman correlation coefficients were calculated
to assess the correlations between ln-transformed concentrations
of mVOCs. Subgroup analysis was conducted according to gender
(male and female group) and age (20 ≤ age ≤ 40 group and age
>40 group).

2.5.1 Primary exposure-outcome assessment
The multivariable logistic regression was used to explore the

relationship between individual mVOCs and the risk of sarcopenia,
with results expressed as odds ratios (ORs) and 95% confidence
intervals (CIs). Logistic regression is a robust statistical method
that can analyze binary outcomes, such as the presence or absence
of sarcopenia, and their associations with both continuous and
categorical variables. In this study, mVOCs were analyzed both as
continuous and categorical variables, with the first quartile (Q1)
serving as the reference group. All models were adjusted for gender,
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age, race, education, family PIR, marital status, body mass index,
smoking status, alcohol drinking, hypertension, diabetes, stroke,
white blood cell (WBC), alkaline phosphotase (ALP), platelet,
neutrophils, lymphocyte, serum vitamin D, triglycerides, and high-
density lipoprotein cholesterol. To minimize potential issues with
multicollinearity between the exposure variables and covariates,
variance inflation factor (VIF) tests were conducted using SPSS (v
25.0). AVIF value>5was considered indicative ofmulticollinearity
(35, 36). In this study, WBC, neutrophils, and lymphocyte had
VIF values >10, indicating significant multicollinearity. Based on
clinical experience, we retained WBC for subsequent analysis and
excluded neutrophils and lymphocyte as covariates. In addition, the
restricted cubic splines (RCS) with four knots at the 5th, 35th, 65th,
and 95th centiles were employed to investigate the dose-response
relationship between mVOCs and sarcopenia.

2.5.2 Mixture e�ects analysis
2.5.2.1 Weighted quantile sum (WQS) regression model

To further assess the joint effects of co-exposure to mVOCs
on the risk of sarcopenia, we employed the WQS regression
model. Detailed methodological descriptions of WQS regression
are available elsewhere (37, 38). Briefly, WQS is a high-dimensional
statistical approach that integrates weighted quantiles into either
linear regression models (for continuous outcomes) or logistic
regression models (for binary outcomes) (38, 39). This method
constructs a composite weighted index based on quantiles of
each exposure component and evaluates its association with
the outcome of interest. It enables the estimation of mixture
effects while accounting for the dimensionality of co-exposure,
as well as potential non-linearity and collinearity among the
exposure variables. In our analysis, the dataset was randomly
split into training and validation sets in a 4:6 ratio. Using the
training set, we performed 1,000 bootstrap resampling iterations
to preliminarily derive the WQS weights for each mVOC. These
weights, constrained to range from 0 to 1 and sum to 1 across all
components, were then applied to the validation set to assess the
statistical significance of the associations. Since WQS regression
requires the assumption that all components contribute to the
outcome in the same direction, we performed two separate
models—one assuming a positive association and the other a
negative association betweenmVOCs and sarcopenia. Additionally,
the WQS regression models were adjusted for the same set of
covariates as the logistic regression models described earlier, to
control for potential confounding factors.

2.5.2.2 Bayesian kernel machine regression (BKMR) model

We employed the BKMR model, a combination of bayesian
and statistical learning methods, to explore the joint effects of
mVOCs on the risk of sarcopenia. The overall effect of the
mVOCs mixture was assessed by comparing the changes in
effects between specific quantiles and the median of the mVOCs
mixture. Additionally, we investigated the univariate exposure-
response function by evaluating the impact of individual mVOCs
on sarcopenia risk when the other mVOCs were fixed at their
median values, with a particular focus on the effects when an
individual mVOC was at the 75th and 25th percentiles. To evaluate
the weight index of each mVOC’s influence on sarcopenia risk, we

used the posterior inclusion probability (PIP), with a PIP threshold
of 0.5 defined as statistically significant. The bivariate exposure-
response curves were used to demonstrate the interactions between
different mVOCs in the mixture. Specifically, the effect of the target
mVOC on sarcopenia risk was assessed at the 10th, 50th, and
90th percentiles of another mVOC in the mixture. The regression
models were adjusted for the same potential confounding factors
mentioned earlier. All analyses were conducted using the Markov
Chain Monte Carlo (MCMC) method with 20,000 iterations.
Furthermore, based on the Spearman correlations among the
mVOCs, the 15 mVOCs were grouped into four clusters (Group
1: 2MHA, 3,4-MHA; Group 2: AAMA, AMCC, CEMA, DHBMA,
2HPMA, MA, PGA; Group 3: ATCA, SBMA; Group 4: CYMA,
3HPMA, MHBMA3, HMPMA) to fit a stratified BKMR model.

2.5.3 Mechanistic investigations
2.5.3.1 Mediation e�ect analysis

In our study, mediation analysis was applied to explore whether
metabolic factors, endocrine factors, and inflammation biomarkers
mediate the associations between mVOCs and sarcopenia. The
exposure variable was the mVOCs mixture (X), the outcome
variable was sarcopenia (Y) and the mediating factors was
metabolic factors, endocrine factors, or inflammation biomarkers
(M). The total effect (TE) of mVOCs was divided into direct
effect (DE) and indirect effect (IE). The direct effect represents the
influence of mVOC exposure on sarcopenia without the mediation
of other factors, while the indirect effect represents the impact
of mVOC exposure on sarcopenia through the mediators. The
proportion of the indirect effect in the total effect (IE/TE) indicates
the mediating variable’s effectiveness, reflecting the extent to which
the mediator explains the relationship between mVOC exposure
and sarcopenia risk. According to previous research, TG/HDL-C
was selected as an indicator of metabolic factors (21), vitamin D as
a biomarker of endocrine factors (40) and SII, WBC and ALP as
markers of inflammation (41, 42). The formulas for the calculation
of TG/HDL-C and SII are as follows TG/HDL-C = triglycerides
(mg/dl)/HDL-C (mg/dl) and SII = platelet count × neutrophil
count/lymphocyte count.

2.5.3.2 Network pharmacological analysis

The pharmacological targets of VOCs were screened using the
Drugbank (https://go.drugbank.com/) and SwissTargetPrediction
(http://www.swisstargetprediction.ch/) databases. The protein
targets related to sarcopenia were obtained using GeneCards
database (https://www.genecards.org/). The primary targets of
VOCs and sarcopenia were overlapped and analyzed via Venn
diagrams to identify potential targets of VOCs contributing to
depression. Subsequently, the STRING database (https://cn.string-
db.org/) was utilized to construct a protein-protein interaction
(PPI) network among the intersecting targets, with the confidence
threshold for PPI analysis set to >0.4. With the help of the Analyze
Network tool, core targets were identified based on parameters
such as maximal clique centrality (MCC) and degree of network
nodes. Using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID; https://davidbioinformatics.nih.
gov/), Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) pathway enrichment analysis were performed
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on the core targets of VOCs and sarcopenia to identify potential
interaction pathways.

Although the sample size for sarcopenia patients (n = 145) is
relatively small, we adhered to the event-to-variable ratio (EVR)
principle, ensuring that the number of covariates did not exceed
the recommended 10 events per variable. To mitigate overfitting,
we carefully selected covariates and applied various models (e.g.,
WQS and BKMR) for cross-validation. Furthermore, we performed
VIF analysis to detect multicollinearity and excluded variables with
high collinearity, such as neutrophils and lymphocytes. We believe
that, despite the smaller sample size, the study design and analytical
methods adequately support our conclusions.

All regression models were adjusted for the same covariates
as in the logistic regression. All analyses were performed with R
software (version 4.4.1). The “corrplot” (version 0.94), “plotRCS”
(version 0.1.4), “gWQS” (version 3.0.5), “bkmr” (version 0.2.2),
“mediation” (version 4.5.0) and “glmnet” (version 4.1-8) packages
were utilized for correlation analysis, RCSmodels,WQS regression,
BKMR regression, and mediation analysis, respectively. The
statistical significance was defined as P value of <0.05 (two-sided).

3 Results

3.1 Population characteristics

A total of 2,898 participants were eventually included
in the analysis from NHANES 2011–2018. The demographic
characteristics were presented in Table 1. Among them, 145 (8%)
cases were diagnosed with sarcopenia. Compared with participants
without sarcopenia, those with sarcopenia were more likely to be
older, female, Mexican American, and to experience family discord,
lower education levels, lower family incomes, higher BMI, a lower
prevalence of smoking and drinking, and a higher prevalence
of hypertension and diabetes (all P < 0.05). There were also
significant differences between the two groups in terms of WBC,
ALP, and platelet (all P < 0.05). The correlation between 15
ln-transformed mVOCs is presented in Supplementary Figure S1
using Spearman correlation coefficients. Three mVOCs (MEOHP,
MEHHP, and MECPP) were strongly correlated with each other,
with correlation coefficients >0.7. Additionally, there were strong
correlations between MCPP and MCOP (r = 0.73).

3.2 Association between mVOCs exposure
and sarcopenia using logistic regression
model

Multivariate logistic regression model was utilized to evaluate
the association between mVOCs and the risk of sarcopenia. After
adjusting for multiple potential confounding factors described
above, continuous analysis showed a positive association between
the risk of sarcopenia and ln-transformed 3,4-MHA (OR: 1.32, 95%
CI: 1.10–1.59), AMCC (OR: 1.50, 95% CI: 1.11–2.02), ATCA (OR:
1.47, 95% CI: 1.14–1.90), CEMA (OR: 1.64, 95% CI: 1.22–2.19),
CYMA (OR: 1.17, 95% CI:1.01–1.36), 3HPMA (OR: 1.45, 95%
CI: 1.12–1.88), PGA (OR: 1.54, 95% CI: 1.02–2.33), and HMPMA
(OR: 1.36, 95% CI: 1.03–1.79). When the mVOCs were analyzed

as categorical variables, compared with the control group (Q1), the
adjusted logistic model revealed that 3,4-MHA (Q4), ATCA (Q4),
CEMA (Q3, Q4), CYMA (Q4), 2HPMA (Q4), 3HPMA (Q3, Q4),
MHBMA3 (Q4), and PGA (Q4) were positively correlated with the
risk of sarcopenia (Table 2 and Supplementary Tables S1–S30).

In the age-stratified subgroup analysis, 2MHA (OR: 1.37,
95% CI: 1.09–1.73), 3,4-MHA (OR: 1.46, 95% CI: 1.14–1.86),
AMCC (OR: 1.70, 95% CI: 1.13–2.56), ATCA (OR: 1.66, 95% CI:
1.19–2.31), and CEMA (OR: 1.66, 95% CI: 1.10–2.50) remained
positively associated with sarcopenia as continuous variables in
the age >40 group. CEMA (OR: 1.77, 95% CI: 1.12–2.78), CYMA
(OR: 1.34, 95% CI: 1.06–1.69), 3HPMA (OR:1.90, 95% CI: 1.28–
2.81), MHBMA3 (OR: 1.71, 95% CI: 1.14–2.55), PGA (OR: 2.30,
95% CI: 1.20–4.39), and HMPMA (OR: 1.85, 95% CI: 1.23–2.80)
were associated with sarcopenia as continuous variables in the
20 ≤ age ≤ 40 group. This positive association predominantly
persisted when mVOCs were treated as categorical variables. In the
gender-stratified subgroup analysis, whenmVOCs were considered
as continuous variables, AMCC (OR: 2.65, 95% CI: 1.24–5.66),
CYMA (OR: 1.48, 95% CI: 1.11–1.99), 2HPMA (OR: 1.62, 95%
CI: 1.10–2.40), and HMPMA (OR: 1.99, 95% CI: 1.00–3.99) were
closely positively associated with the risk of sarcopenia in the
male group, while 3,4-MHA (OR: 1.37, 95% CI: 1.11–1.69), ATCA
(OR: 1.62, 95% CI: 1.19–2.20), CEMA (OR: 1.58, 95% CI: 1.14–
2.18), and 3HPMA (OR: 1.37, 95% CI: 1.03–1.82) were positively
correlated with the risk of sarcopenia in the same group. A
similar trend persisted when these variables were considered as
categorical variables.

The adjusted RCS regression model was utilized to explore
the dose-response relationship between mVOCs and sarcopenia
(Supplementary Figure S2). The RCS results further validated
linear dose-response associations between the sarcopenia and the
mVOCs 2MHA, AMCC, ATCA, CEMA, 3HPMA, and PGA (all
P for overall <0.05, all P for non-linear ≥0.05). However, no
statistically significant non-linear relationship has been found
between the mVOCs and the risk of sarcopenia (all P for non-
linear ≥0.05).

3.3 Weighted quantile sum (WQS)
regression to assess the associations of
mVOCs co-exposure and sarcopenia risk

WQS model was used to investigate the mixed effects of 15
mVOCs and the risk of sarcopenia. As shown in Figure 2, the WQS
index of mVOCs co-exposure was positively associated with the
prevalence of sarcopenia after adjusting for the multivate covariates
as in the logistic regression (OR: 2.39, 95% CI: 1.52–3.75, P =

0.00). CEMA had the highest weight (25%) among the mVOCs
in the positive direction, followed by AMCC (22%), ATCA (17%),
3,4-MHA (13%), and 3HPMA (5%). In the subgroups of males
(OR: 2.34, 95% CI: 1.12–4.89, P = 0.024), females (OR: 2.13, 95%
CI: 1.30–3.38, P = 0.003), and individuals aged >40 (OR: 2.97,
95% CI: 1.55–5.70, P = 0.001), exposure to combined mVOCs
also exhibited a positive trend with regard to sarcopenia. The
proportional weight of each mVOC varied across the subgroups.
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TABLE 1 Baseline characteristics of included participants.

Variables Overall (n = 2,898) Non-sarcopenia (n = 2,753) Sarcopenia (n = 145) P-value

Age, years (mean± SD) 39.14± 11.5 38.86± 11.39 44.59± 11.64 0.000

Gender, n (%) 0.000

Male 1,450 (50.0) 1,425 (51.8) 25 (17.2)

Female 1,448 (50.0) 1,328 (48.2) 120 (82.8)

Race, n (%) 0.000

Mexican American 414 (14.3) 367 (13.3) 47 (32.4)

Other Hispanic 328 (11.3) 298 (10.8) 30 (20.7)

Non-Hispanic White 975 (33.6) 941 (34.2) 34 (23.4)

Non-Hispanic Black 617 (21.3) 606 (22.0) 11 (7.6)

Other Race 564 (19.5) 541 (19.7) 23 (15.9)

Education, n (%) 0.000

<9th grade 176 (6.1) 153 (5.6) 23 (15.9)

9–11th grade 337 (11.6) 319 (11.6) 18 (12.4)

High school graduate 634 (21.9) 594 (21.6) 40 (27.6)

Some college/AA degree 924 (31.9) 883 (32.1) 41 (28.3)

College graduate/above 827 (28.5) 804 (29.2) 23 (15.9)

Marital status, n (%) 0.035

Married/living with partner 1,722 (59.4) 1,628 (59.1) 94 (64.8)

Widowed/separated/divorced 379 (13.1) 351 (12.7) 28 (19.3)

Never married 797 (27.5) 774 (28.1) 23 (15.9)

Family PIR, n (%) 0.038

≤1.0 612 (21.1) 578 (21.0) 34 (23.4)

>1.0, ≤3.0 1,168 (40.3) 1,099 (39.9) 69 (47.6)

>3.0 1,118 (38.6) 1,076 (39.1) 42 (29.0)

BMI, kg/m² (mean± SD) 28.80± 6.79 28.50± 6.58 34.49± 8.07 0.000

Smoke, n (%) 0.014

Yes 638 (22.0) 618 (22.4) 20 (13.8)

No 2,260 (78.0) 2,135 (77.6) 125 (86.2)

Alcohol drinking, n (%) 0.000

Yes 2,297 (79.3) 2,199 (79.9) 98 (67.6)

No 601 (20.7) 554 (20.1) 47 (32.4)

Hypertension, n (%) 0.000

Yes 2,156 (74.4) 2,028 (73.7) 128 (88.3)

No 742 (25.6) 725 (26.3) 17 (11.7)

Diabetes, n (%) 0.000

Yes 273 (9.4) 240 (8.7) 33 (22.8)

No 2,625 (90.6) 2,513 (91.3) 112 (77.2)

Stroke, n (%) 0.522

Yes 42 (1.4) 39 (1.4) 3 (2.1)

No 2,856 (98.6) 2,714 (98.6) 142 (97.9)

WBC, 1,000 cells/µl
(mean± SD)

7.29± 2.12 7.25± 2.11 8.08± 2.25 0.000

(Continued)
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TABLE 1 (Continued)

Variables Overall (n = 2,898) Non-sarcopenia (n = 2,753) Sarcopenia (n = 145) P-value

Alkaline phosphotase, µ/L
(mean± SD)

68.34± 22.58 67.88± 22.56 77.02± 21.23 0.000

Platelet, 1,000 cells/µl
(mean± SD)

244.30± 59.40 243.08± 58.83 267.40± 65.46 0.000

Serum vitamin D, nmol/L
(mean± SD)

60.12± 25.15 60.18± 25.19 59.07± 24.55 0.638

Triglycerides, mg/dl
(mean± SD)

147.22± 118.08 147.17± 119.74 148.24± 80.41 0.879

HDL, mg/dl (mean± SD) 52.14± 15.03 52.17± 15.16 51.70± 12.29 0.663

The continuous variables were presented as median (interquartile range, IQR), and the categorical variables were shown as number and percentages. BMI, body mass index; Family PIR, ratio

of family income to poverty; SD, standard deviation; vitamin D, 25OHD2 + 25OHD3; WBC, white blood cell; HDL, high-density lipoprotein cholesterol. The P-value in bold indicates a

statistical significance.

3.4 Bayesian kernel machine regression
analysis (BKMR) to assess the associations
of mVOCs co-exposure and sarcopenia risk

In BKMR analysis, when all other mVOCs were fixed at
their median levels, the exposure–response functions revealed
3,4-MHA, AMCC, ATCA, CEMA, 2HPMA, 3HPMA, PGA, and
HMPMAwere positively associated with sarcopenia (Figure 3). The
combined exposure to mVOC mixtures above the 50th percentile
is associated with an increased risk of sarcopenia, compared to
other mVOCs at the 50th percentile. In the subgroups of males,
females, and individuals aged >40, compared to the median,
combined exposure to mVOC mixtures above the 50th percentile
also exhibited a positive trend with regard to sarcopenia (Figure 4).

Furthermore, CYMA exhibited significant interactions with
AMCC, ATCA, CEMA, 3,4-MHA, 3HPMA, and 2HPMA,
as indicated in the interaction analysis of 15 mVOCs,
suggesting that CYMA may synergistically interact with these
compounds to contribute to the development of sarcopenia
(Supplementary Figure S3). Subgroup analyses stratified by gender
and age revealed that AMCC and 2HPMA were particularly
notable in the female subgroup and the 20–40 age subgroup for
their interactions with other mVOCs. These interactions, such as
between AMCC, 2HPMA, and other mVOCs, were observed more
prominently in these specific groups (Supplementary Figures S4–
S7). This suggests that the interactivity betweenmVOC compounds
may vary by gender and age, potentially due to biological or
hormonal differences that could influence the metabolic processing
of these compounds and their synergistic effects on sarcopenia risk.

The groupPIP and condPIP values derived from the BKMR
regression analysis across different subgroups were presented in
Table 3. In total participants, the group with the highest groupPIP
was the third group (group PIP = 1.00), in which ATCA had
the highest condPIP of 1.00 (Table 3). The group PIP and cond
PIP of mVOCs varied between the different subgroups. When the
concentrations of other mVOCs were fixed at the 25th, 50th, and
75th percentiles, no metabolites were significantly associated with
sarcopenia in the overall population (Figure 5). Furthermore, in
the female group, AMCC and ATCA were positively associated
with sarcopenia when other mVOCs were fixed at 50th and 75th
percentiles, respectively. In the subgroup of individuals aged over

40 years, we observed a positive association between AMCC and
ATCA with sarcopenia, while other mVOCs were held constant at
the 25th, 50th, and 75th percentiles (Figure 5).

3.5 Mediation analysis of mediators on the
correlation between mVOCs co-exposure
and sarcopenia risk

We assessed whether metabolic factors (TG/HDL-C),
endocrine factors (vitamin D) and inflammation biomarkers
(SII index, WBC, and ALP) mediate the correlation between
mVOCs mixtures and sarcopenia. Inflammation biomarkers
significantly mediated the positive associations of mVOCs with
sarcopenia, with ALP accounting for 8.5% of the mediation, WBC
for 5.1%, and SII for 1.9%. However, vitamin D of endocrine
factors may exert an inhibitory effect on the relationship between
mVOCs and sarcopenia [indirect effect (IE): −0.003, 95% CI:
−0.006–0.00, P = 0.04], with a mediation proportion of 4.6%
(Table 4, Supplementary Figure S8). This finding suggests that
higher levels of vitamin D may reduce the detrimental impact of
mVOC exposure on sarcopenia risk. This negative mediation effect
implies that vitamin D could potentially play a protective role
in modulating the adverse effects of mVOC exposure on skeletal
muscle health.

3.6 Analysis of mechanisms and potential
targets

We identified a total of 205 target proteins associated
with volatile organic compounds (VOCs) from the
SwissTargetPrediction database and 423 target proteins associated
with sarcopenia from the GeneCards database (Figure 6A). By
intersecting the VOCs target proteins with sarcopenia-associated
proteins, we identified 14 potential targets involved in VOC-
induced sarcopenia [Figure 6B (a)]. The overlapping targets were
used to construct a protein-protein interaction (PPI) network using
the STRING database, which ultimately led to the identification of
11 core targets associated with VOCs [Figure 6B (b)].
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TABLE 2 Association of urine mVOCs with sarcopenia in all participants and their subgroup after adjusting for all covariates.

mVOCs Odds ratios (95% CI) P for trend

Continuous Q1 Q2 Q3 Q4

2MHA

Overall 1.19 (0.99–1.43) Ref 0.74 (0.43–1.28) 1.30 (0.78–2.17) 1.58 (0.90–2.78) 0.071

Male 0.90 (0.58–1.38) Ref 0.41 (0.11–1.51) 0.92 (0.28–3.06) 0.65 (0.17–2.54) 0.555

Female 1.28 (1.04–1.58) Ref 0.84 (0.45–1.56) 1.64 (0.92–2.93) 2.11 (1.11–4.04)∗ 0.024

Age (20–40) 0.91 (0.67–1.24) Ref 0.62 (0.28–1.39) 0.71 (0.30–1.66) 0.72 (0.27–1.88) 0.671

Age (>40) 1.37 (1.09–1.73)∗ Ref 0.81 (0.37–1.76) 2.39 (1.19–4.79) 2.45 (1.15–5.25) 0.005

3,4-MHA

Overall 1.32 (1.10–1.59)∗ Ref 1.39 (0.80–2.41) 1.67 (0.95–2.96) 2.64 (1.46–4.74)∗ 0.012

Male 1.17 (0.74–1.87) Ref 1.41 (0.40–4.98) 1.95 (0.51–7.48) 1.78 (0.40–7.93) 0.792

Female 1.37 (1.11–1.69)∗ Ref 1.29 (0.69–2.41) 2.00 (1.08–3.72)∗ 3.07 (1.59–5.96)∗ 0.005

Age (20–40) 1.08 (0.80–1.46) Ref 0.82 (0.36–1.90) 0.86 (0.33–2.21) 1.49 (0.62–3.58) 0.574

Age (>40) 1.46 (1.14–1.86)∗ Ref 1.36 (0.63–2.92) 2.89 (1.36–6.14)∗ 3.43 (1.52–7.75)∗ 0.005

AAMA

Overall 1.11 (0.83–1.48) Ref 1.21 (0.71–2.05) 1.29 (0.76–2.18) 1.08 (0.57–2.02) 0.787

Male 2.10 (1.08–4.09)∗ Ref 1.13 (0.30–4.26) 2.15 (0.60–7.76) 2.65 (0.61–11.63) 0.435

Female 0.92 (0.67–1.27) Ref 1.49 (0.82–2.68) 1.24 (0.68–2.25) 0.94 (0.47–1.89) 0.440

Age (20–40) 1.10 (0.71–1.72) Ref 0.92 (0.39–2.16) 1.09 (0.46–2.61) 1.17 (0.44–3.07) 0.963

Age (>40) 1.12 (0.75–1.66) Ref 1.45 (0.71–2.93) 1.42 (0.71–2.86) 0.99 (0.42–2.34) 0.584

AMCC

Overall 1.50 (1.11–2.02)∗ Ref 1.09 (0.59–2.03) 1.76 (0.98–3.18) 1.93 (0.99–3.78) 0.086

Male 2.65 (1.24–5.66)∗ Ref 2.21 (0.38–12.77) 5.38 (1.04–27.53)∗ 7.91 (1.16–53.87)∗ 0.100

Female 1.32 (0.94–1.84) Ref 1.19 (0.63–2.26) 1.52 (0.80–2.86) 1.65 (0.78–3.51) 0.494

Age (20–40) 1.43 (0.89–2.32) Ref 0.44 (0.16–1.23) 1.38 (0.61–3.15) 1.59 (0.57–4.46) 0.103

Age (>40) 1.70 (1.13–2.56)∗ Ref 3.49 (1.43–8.55)∗ 3.13 (1.23–7.97)∗ 4.69 (1.65–13.30)∗ 0.024

ATCA

Overall 1.47 (1.14–1.90)∗ Ref 1.41 (0.67–2.99) 1.06 (0.50–2.26) 2.62 (1.28–5.38)∗ 0.001

Male 1.20 (0.73–1.95) Ref 0.78 (0.19–3.13) 1.37 (0.39–4.84) 1.11 (0.32–3.90) 0.867

Female 1.62 (1.19–2.20) Ref 1.07 (0.53–2.18) 1.76 (0.92–3.36) 2.39 (1.25–4.58)∗ 0.018

Age (20–40) 1.33 (0.86–2.06) Ref 1.16 (0.31–4.36) 1.40 (0.39–5.04) 2.11 (0.61–7.33) 0.450

Age (>40) 1.66 (1.19–2.31)∗ Ref 1.23 (0.48–3.13) 0.97 (0.38–2.48) 3.26 (1.32–8.03)∗ 0.001

SBMA

Overall 0.98 (0.79–1.22) Ref 0.81 (0.47–1.38) 0.73 (0.42–1.26) 0.82 (0.48–1.38) 0.720

Male 1.12 (0.68–1.84) Ref 0.69 (0.19–2.56) 1.06 (0.32–3.54) 0.80 (0.23–2.83) 0.907

Female 0.94 (0.74–1.20) Ref 1.04 (0.58–1.87) 0.88 (0.48–1.61) 1.09 (0.61–1.95) 0.905

Age (20–40) 1.02 (0.73–1.43) Ref 0.64 (0.24–1.71) 0.92 (0.38–2.21) 1.14 (0.49–2.68) 0.659

Age (>40) 0.96 (0.71–1.30) Ref 0.89 (0.45–1.78) 0.80 (0.39–1.66) 0.85 (0.42–1.71) 0.940

CEMA

Overall 1.64 (1.22–2.19)∗ Ref 1.49 (0.82–2.70) 2.66 (1.50–4.72)∗ 2.75 (1.48–5.10)∗ 0.002

Male 1.89 (0.88–4.03) Ref 0.80 (0.21–3.10) 1.40 (0.37–5.33) 2.94 (0.77–11.19) 0.235

Female 1.58 (1.14–2.18)∗ Ref 1.41 (0.71–2.82) 3.50 (1.82–6.73)∗ 2.45 (1.18–5.09)∗ 0.000

(Continued)
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TABLE 2 (Continued)

mVOCs Odds ratios (95% CI) P for trend

Continuous Q1 Q2 Q3 Q4

Age (20–40) 1.77 (1.12–2.78)∗ Ref 1.61 (0.64–4.03) 2.01 (0.81–4.98) 2.80 (1.08–7.28)∗ 0.197

Age (>40) 1.66 (1.10–2.50)∗ Ref 1.20 (0.55–2.64) 2.92 (1.41–6.06)∗ 1.98 (0.85–4.62) 0.013

CYMA

Overall 1.17 (1.01–1.36)∗ Ref 1.41 (0.85–2.34) 1.48 (0.87–2.52) 2.77 (1.25–6.15)∗ 0.086

Male 1.48 (1.11–1.99)∗ Ref 1.59 (0.48–5.25) 1.23 (0.32–4.82) 7.21 (1.28–40.68)∗ 0.140

Female 1.09 (0.91–1.31) Ref 1.39 (0.78–2.48) 1.69 (0.94–3.05) 1.65 (0.69–3.97) 0.352

Age (20–40) 1.34 (1.06–1.69)∗ Ref 0.81 (0.34–1.94) 1.47 (0.62–3.49) 5.02 (1.56–16.13)∗ 0.020

Age (>40) 1.08 (0.87–1.34) Ref 2.01 (1.01–4.01)∗ 1.76 (0.87–3.55) 2.14 (0.66–6.89) 0.212

DHBMA

Overall 1.65 (0.98–2.77) Ref 1.62 (0.84–3.09) 1.96 (1.03–3.71) 1.78 (0.92–3.47) 0.228

Male 2.33 (0.66–8.18) Ref 0.38 (0.06–2.33) 2.08 (0.56–7.76) 2.27 (0.57–9.03) 0.129

Female 1.51 (0.84–2.71) Ref 1.76 (0.91–3.40) 1.69 (0.87–3.28) 1.26 (0.61–2.58) 0.272

Age (20–40) 2.09 (0.88–4.99) Ref 0.96 (0.31–2.96) 3.56 (1.38–9.17)∗ 1.57 (0.54–4.60) 0.005

Age (>40) 1.61 (0.83–3.15) Ref 0.72 (0.32–1.62) 1.38 (0.65–2.95) 1.09 (0.49–2.41) 0.320

2HPMA

Overall 1.19 (0.98–1.45) Ref 1.21 (0.71–2.05) 1.34 (0.77–2.34) 1.76 (1.00–3.10)∗ 0.253

Male 1.62 (1.10–2.40)∗ Ref 1.12 (0.28–4.56) 2.31 (0.62–8.64) 3.44 (0.92–12.90) 0.211

Female 1.09 (0.86–1.38) Ref 1.47 (0.82–2.65) 1.40 (0.75–2.61) 1.82 (0.94–3.52) 0.342

Age (20–40) 1.18 (0.89–1.57) Ref 0.31 (0.11–0.90) 1.01 (0.44–2.31) 1.44 (0.62–3.34) 0.039

Age (>40) 1.19 (0.89–1.59) Ref 2.28 (1.13–4.62)∗ 1.79 (0.82–3.91) 2.10 (0.93–4.76) 0.134

3HPMA

Overall 1.45 (1.12–1.88)∗ Ref 1.29 (0.73–2.27) 2.03 (1.18–3.48)∗ 2.13 (1.12–4.04)∗ 0.034

Male 1.91 (0.99–3.71) Ref 1.82 (0.40–8.25) 5.18 (1.21–22.19) 4.14 (0.72–23.75) 0.110

Female 1.37 (1.03–1.82)∗ Ref 0.98 (0.52–1.84) 1.67 (0.91–3.05) 1.91 (0.94–3.88) 0.108

Age (20–40) 1.90 (1.28–2.81)∗ Ref 0.92 (0.35–2.44) 2.06 (0.86–4.92) 2.98 (1.13–7.91)∗ 0.057

Age (>40) 1.28 (0.88–1.85) Ref 0.97 (0.47–2.01) 1.75 (0.88–3.49) 1.52 (0.60–3.84) 0.276

MA

Overall 1.26 (0.89–1.79) Ref 1.05 (0.61–1.82) 1.42 (0.84–2.41) 1.30 (0.71–2.38) 0.527

Male 1.01 (0.41–2.49) Ref 1.30 (0.34–4.96) 0.66 (0.15–3.03) 2.20 (0.50–9.64) 0.399

Female 1.29 (0.87–1.90) Ref 1.11 (0.62–2.00) 1.29 (0.72–2.32) 1.17 (0.60–2.28) 0.862

Age (20–40) 1.64 (0.91–2.97) Ref 0.89 (0.36–2.20) 1.06 (0.43–2.59) 1.66 (0.64–4.34) 0.590

Age (>40) 1.14 (0.72–1.80) Ref 0.99 (0.48–2.06) 1.67 (0.84–3.32) 1.18 (0.51–2.74) 0.360

MHBMA3

Overall 1.28 (0.99–1.65) Ref 1.32 (0.78–2.23) 1.19 (0.68–2.09) 2.83 (1.47–5.47)∗ 0.012

Male 1.43 (0.78–2.62) Ref 0.81 (0.23–2.86) 1.02 (0.29–3.68) 3.61 (0.84–15.62) 0.201

Female 1.25 (0.94–1.66) Ref 1.21 (0.68–2.18) 1.20 (0.64–2.23) 2.08 (1.01–4.28)∗ 0.240

Age (20–40) 1.71 (1.14–2.55)∗ Ref 0.79 (0.31–1.99) 1.44 (0.58–3.59) 5.01 (1.92–13.06)∗ 0.001

Age (>40) 1.15 (0.81–1.62) Ref 1.40 (0.71–2.75) 1.15 (0.56–2.36) 1.85 (0.70–4.84) 0.561

PGA

Overall 1.54 (1.02–2.33)∗ Ref 1.31 (0.72–2.39) 1.82 (1.01–3.30)∗ 1.93 (0.99–3.74) 0.141

Male 2.08 (0.85–5.09) Ref 1.12 (0.29–4.33) 1.57 (0.40–6.25) 2.95 (0.72–12.07) 0.430

(Continued)
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TABLE 2 (Continued)

mVOCs Odds ratios (95% CI) P for trend

Continuous Q1 Q2 Q3 Q4

Female 1.41 (0.87–2.30) Ref 1.11 (0.60–2.05) 1.42 (0.78–2.60) 1.69 (0.86–3.34) 0.416

Age (20–40) 2.30 (1.20–4.39)∗ Ref 3.01 (0.96–9.44) 5.06 (1.68–15.22)∗ 5.03 (1.49–16.95)∗ 0.028

Age (>40) 1.30 (0.76–2.24) Ref 0.86 (0.41–1.81) 1.43 (0.72–2.86) 1.52 (0.67–3.46) 0.374

HMPMA

Overall 1.36 (1.03–1.79)∗ Ref 1.29 (0.73–2.29) 1.58 (0.90–2.76) 2.01 (0.99–4.07) 0.236

Male 1.99 (1.00–3.99)∗ Ref 0.61 (0.14–2.61) 2.08 (0.60–7.27) 2.65 (0.50–14.03) 0.235

Female 1.26 (0.93–1.72) Ref 1.64 (0.89–3.03) 1.30 (0.69–2.46) 1.72 (0.78–3.78) 0.373

Age (20–40) 1.85 (1.23–2.80)∗ Ref 1.62 (0.58–4.51) 3.33 (1.27–8.68)∗ 4.56 (1.53–13.62)∗ 0.020

Age (>40) 1.17 (0.79–1.72) Ref 1.08 (0.54–2.17) 0.96 (0.46–2.01) 1.69 (0.63–4.57) 0.657

∗P value < 0.05.

Models were adjusted for gender, age, race, education, family PIR, marital status, body mass index, smoking status, alcohol drinking, hypertension, diabetes, stroke, white blood cell, alkaline

phosphotase, platelet, serum vitamin D, triglycerides, and high-density lipoprotein cholesterol.

Continuous, ln-transformed concentration of variables; CI, confidence interval; Q, quartile; mVOCs, metabolites of volatile organic compounds.

The bold values indicate statistical significance.

FIGURE 2

The combined e�ect of urinary volatile organic compound metabolites (mVOCs) on sarcopenia estimated by the weighted quantile sum (WQS)

models in total population and their subgroups. (A) The association of mVOCs co-exposure with the risk of sarcopenia in total participants and

subgroups stratified by age and gender. The proportional contribution of each mVOC to the combined e�ect on sarcopenia in all participants (B),

males (C), females (D), 20 < age ≤ 40 years (E), and age >40 years (F). The figure illustrates the top five mVOCs ranked by weight. The WQS

regression model was adjusted for gender, age, race, education, family PIR, marital status, body mass index, smoking status, alcohol drinking,

hypertension, diabetes, stroke, white blood cell, ALP, platelet, serum vitamin D, triglycerides, and high-density lipoprotein cholesterol.
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FIGURE 3

Univariate exposure–response function between each mVOC and the risk of sarcopenia estimated by the BKMR model when the other mVOCs were

fixed at 50th percentiles in total participants (A), males (B), females (C), 20 < age ≤ 40 years (D), and age >40 years (E). The model was adjusted for

gender, age, race, education, family PIR, marital status, body mass index, smoking status, alcohol drinking, hypertension, diabetes, stroke, white

blood cell, ALP, platelet, serum vitamin D, triglycerides, and high-density lipoprotein cholesterol.

Gene Ontology (GO) analysis was conducted to identify
the biological processes (BPs), cellular components (CCs) and
molecular functions (MFs) involved in the potential targets
(Figure 6C). BPs were predominantly involved in the insulin-like

growth factor receptor signaling pathway, response to amyloid-
beta, regulation of vasoconstriction, vasoconstriction, negative
regulation of blood vessel diameter, regulation of angiotensin
levels in blood, angiotensin maturation, gap junction assembly,
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FIGURE 4

The combined e�ects of mVOCs mixtures on sarcopenia risk were estimated by BKMR models in total population (A), males (B), females (C), 20 <

age ≤ 40 years (D), and age >40 years (E), when the other mVOCs were fixed at the median. The model was adjusted for gender, age, race,

education, family PIR, marital status, body mass index, smoking status, alcohol drinking, hypertension, diabetes, stroke, white blood cell, ALP, platelet,

serum vitamin D, triglycerides, and high-density lipoprotein cholesterol.

regulation of blood circulation, and regulation of systemic arterial
blood pressure by the circulatory renin-angiotensin system. CCs
were Enriched in azurophil granule lumen, ficolin-1-rich granule,
ficolin-1-rich granule lumen, primary lysosome, azurophil granule,
vacuolar lumen, transferase complex, transferring phosphorus-
containing groups, mast cell granule, phosphatidylinositol 3-
kinase complex, and secretory granule lumen. MFs were mainly
involved in metallopeptidase activity, insulin-like growth factor
I binding, insulin-like growth factor binding, endopeptidase
activity, serine-type peptidase activity, serine hydrolase activity,
carboxypeptidase activity, metalloexopeptidase activity, hormone
binding, and exopeptidase activity.

In the KEGG pathway enrichment analysis, the top 10
pathways associated with these targets were identified as: prostate
cancer, endocrine resistance, transcriptional misregulation in
cancer, renin-angiotensin system, TNF signaling pathway, estrogen
signaling pathway, breast cancer, proteoglycans in cancer, diabetic
cardiomyopathy, and lipid and atherosclerosis (Figure 6D).

4 Discussion

In this study, we employed five different statistical methods to
evaluate the individual and combined effects of various mVOCS
on sarcopenia. In the multivariable logistic regression analysis,

ten mVOCs were found to be significantly correlated with
sarcopenia, with ORs ranging from 1.17 to 2.83. Co-exposure to
mVOCs showed an increased risk of sarcopenia in the WQS and
BKMR model. Those mVOCs included CEMA, AMCC, ATCA,
3,4-MHA and 3HPMA. The RCS analysis revealed a positive
linear association between mVOCs and sarcopenia. Moreover,
inflammatory factors (SII, WBC, and ALP) partially mediated the
positive association between mVOCmixture and sarcopenia, while
endocrine factors (vitamin D) inhibited this relationship.

mVOCs have been reported to be associated with several
diseases, including diabetes (21), chronic cardiovascular diseases
(27), respiratory diseases (43), and cancer (44). To the best of
our knowledge, this is the first study to investigate the effects of
individual and combined mVOCs on sarcopenia. Our findings
contribute to the growing body of literature on environmental
pollutants and their potential role in muscle health.

Firstly, regarding the effects of mVOCs on the endocrine
system, previous studies have found positive associations between
low-level exposure to VOCs, especially HPMMA, and diabetes,
insulin resistance (TyG index), fasting glucose (FPG), glycosylated
hemoglobin (HbA1c), and insulin levels. Notably, the impact of
mVOCs appears to be more pronounced in females and individuals
aged 40–59 years (21). This aligns with our findings that mVOCs
may disrupt glucose metabolism, potentially contributing to the
development of sarcopenia. Additionally, Silan et al. conducted
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TABLE 3 Posterior inclusion probabilities (PIPs) of mVOCs on sarcopenia in di�erent subgroups within the hierarchical BKMR model.

Total participants Male group Female group

mVOCs Group GroupPIP CondPIP Group GroupPIP CondPIP Group GroupPIP CondPIP

2MHA 1 0.76 0.25 1 0.67 0.16 1 0.03 0.00

3,4-MHA 1 0.76 0.75 1 0.67 0.07 1 0.03 1.00

AAMA 2 0.59 0.07 1 0.67 0.06 2 0.32 0.00

AMCC 2 0.59 0.07 1 0.67 0.00 2 0.32 0.03

ATCA 3 1.00 1.00 2 0.71 0.41 3 0.69 1.00

SBMA 3 1.00 0.00 2 0.71 0.59 3 0.69 0.00

CEMA 2 0.59 0.32 1 0.67 0.16 2 0.32 0.13

CYMA 4 0.85 0.14 3 0.97 0.77 4 0.03 0.00

DHBMA 2 0.59 0.10 1 0.67 0.00 2 0.32 0.25

2HPMA 2 0.59 0.07 4 0.85 1.00 2 0.32 0.00

3HPMA 4 0.85 0.19 3 0.97 0.19 4 0.03 0.00

MA 2 0.59 0.27 1 0.67 0.36 2 0.32 0.25

MHBMA3 4 0.85 0.44 3 0.97 0.04 4 0.03 0.00

PGA 2 0.59 0.10 1 0.67 0.18 2 0.32 0.34

HMPMA 4 0.85 0.24 3 0.97 0.00 4 0.03 1.00

Age group 20–40 Age group over 40

mVOCs Group GroupPIP CondPIP Group GroupPIP CondPIP

2MHA 1 0.53 0.87 1 0.01 0.00

3,4-MHA 1 0.53 0.13 1 0.01 1.00

AAMA 2 1.00 0.00 2 0.09 0.00

AMCC 2 1.00 0.00 2 0.09 1.00

ATCA 3 0.19 0.53 3 1.00 1.00

SBMA 3 0.19 0.47 3 1.00 0.00

CEMA 2 1.00 0.00 2 0.09 0.00

CYMA 2 1.00 0.00 2 0.09 0.00

DHBMA 2 1.00 0.00 4 0.01 0.00

2HPMA 4 0.29 1.00 4 0.01 0.00

3HPMA 2 1.00 0.97 2 0.09 0.00

MA 2 1.00 0.00 4 0.01 1.00

MHBMA3 2 1.00 0.00 2 0.09 0.00

PGA 2 1.00 0.00 4 0.01 0.00

HMPMA 2 1.00 0.03 2 0.09 0.00

The mVOCs were grouped based on the correlation matrix.

mVOCs, metabolites of volatile organic compounds; GroupPIP, group posterior inclusion probability; CondPIP, conditional posterior inclusion probability.

a nested case-control study involving 454 cases of gestational
diabetes mellitus (GDM) and 454 matched healthy controls to
explore the association between mVOCs and GDM risk. Their
results revealed that elevated urinary concentrations of six specific
VOCs were significantly associated with an increased risk of
GDM, with each quartile increase in exposure correlating with a
19%−27% increase in risk (45). Furthermore, numerous studies
have confirmed a strong relationship between the development
of diabetes and an elevated risk of sarcopenia (46, 47), which

indirectly explains our findings that mVOCs significantly promote
the onset of sarcopenia, potentially through the disruption of
glucose metabolism regulation. Furthermore, a cross-sectional
study of 3,478 participants found that exposure to both individual
and combined mVOCs was associated with reduced bone mineral
density in U.S. adults (48). Osteoporosis is a well-established
contributor to sarcopenia (49), which may represent another
potential mechanism through which mVOCs elevate the risk
of sarcopenia.
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FIGURE 5

Associations of each mVOC with the risk of sarcopenia estimated by the BKMR model in total participants (A), males (B), females (C), 20 < age ≤ 40

years (D), and age >40 years (E), when other all mVOCs were fixed at their corresponding 25th (red), 50th (green) or 75th (blue) percentile,

respectively. All models were adjusted for gender, age, race, education, family PIR, marital status, body mass index, smoking status, alcohol drinking,

hypertension, diabetes, stroke, white blood cell, ALP, platelet, serum vitamin D, triglycerides, and high-density lipoprotein cholesterol.

TABLE 4 Mediating e�ect and proportions of metabolic factors, endocrine factors and inflammation biomarkers between mVOCs and the prevalence of

sarcopenia.

Pathways Indirect e�ect 95% CI P-value Mediation
proportions

95% CI P-value

Metabolic factors

mVOCs→ TG/HDL-C→
sarcopenia

0.000 −0.001–0.00 0.28 0.2% −0.022–0.002 0.28

Endocrine factors

mVOCs→ Vitamin
D→ sarcopenia

−0.003 −0.006–0.00 0.04 4.6% −0.11 to−0.001 0.04

Inflammation factors

mVOCs→ SII→ sarcopenia 0.001 0.00–0.003 0.01 1.9% 0.004–0.051 0.01

mVOCs→ WBC→ sarcopenia 0.003 0.001–0.006 0.00 5.1% 0.019–0.11 0.00

mVOCs→ ALP→ sarcopenia 0.005 0.003–0.009 0.00 8.5% 0.045–0.15 0.00

The mVOCs were grouped based on the correlation matrix.

mVOCs, metabolites of volatile organic compounds; SII, Systemic Immune-Inflammation Index; WBC, White blood cell; ALP, Alkaline phosphatase; GroupPIP, group posterior inclusion

probability; CondPIP, conditional posterior inclusion probability.

Second, regarding the effects of mVOCs on the immune
system, dimethylformamide (DMF), a precursor of AMCC, has
been reported to significantly impair lung function, with C-reactive

protein (CRP) mediating this process (50). In a prospective study,
Schaap et al. (51) found that IL-6 and CRP were associated with the
increased risk of muscle strength loss in older adults after adjusting
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FIGURE 6

The potential targets and mechanisms by which VOCs contribute to sarcopenia were predicted using a network pharmacology approach. (A) A Venn

diagram illustrating the number of predicted VOCs targets and the overlapping targets shared with sarcopenia-related targets. [B(a)] Interaction

network between overlapping targets and VOCs. [B(b)] PPI network of the overlapping targets. (C) Bar chart of the GO enrichment analysis. (D) Dot

plot of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. VOCs, volatile organic compounds; PPI, Protein-Protein

Interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

for confounders. Moreover, a cross-sectional study involving
individuals aged 90 years and older revealed that interleukin-6
(IL-6), interleukin-1 receptor antagonist (IL-1Ra), and C-reactive
protein (CRP) were correlated with the risk of sarcopenia (52).
These findings were consistent with our study, indicating that
inflammatory mediators play a crucial role in the association
between mVOCs and the risk of sarcopenia.

However, the biological mechanisms by which VOCs
contribute to sarcopenia remain unclear. Inflammation and
endocrine dysregulation may be significant factors in the
development of the sarcopenia (53, 54).

VOCs enter the body through the oral cavity, gastrointestinal
tract, or respiratory system. Prolonged exposure to these
compounds results in the generation of reactive oxygen species
(ROS) in human alveolar epithelial cells. Interestingly, there is
no corresponding increase in free radical scavengers, such as
antioxidants. The accumulation of ROS subsequently leads to the
activation of nuclear factor kappa B (NF-κB), which stimulates
the expression of specific genes involved in the synthesis of

inflammatory proteins. This process facilitates the recruitment
of various immune cells, including leukocytes and macrophages,
to sites of oxidative stress. The subsequent cascade amplifies the
release of pro-inflammatory cytokines, such as tumor necrosis
factor alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma.
These dysregulated inflammatory mediators contribute to
metabolic disorders, such as insulin resistance, and can infiltrate
muscle tissue, promoting muscle loss and ultimately leading to the
development of sarcopenia.

VOCs can alter hormone levels by mimicking or disrupting
the functions of endogenous hormones, particularly estrogen (55).
This hormonal imbalance may directly affect skeletal metabolism
by disrupting the balance between osteoblasts (responsible for
bone formation) and osteoclasts (responsible for bone resorption),
ultimately leading to osteoporosis. Additionally, VOCs can exert
direct toxicity on osteoblasts, inhibiting their function and reducing
the synthesis of bone matrix (56). The diminished function of
osteoblasts adversely impacts bone formation and maintenance,
resulting in decreased bone density and the eventual development
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of osteoporosis. Bone tissue regulates muscle metabolism by
secreting bioactive factors. Osteocalcin, secreted by osteoblasts,
plays a crucial role in muscle metabolic regulation. It activates
the G protein-coupled receptor signaling pathway, promoting
Akt phosphorylation, which leads to the translocation of glucose
transporter GLUT4 to the plasma membrane, thereby enhancing
glucose uptake in muscle cells (57). Moreover, osteocalcin signaling
increases the phosphorylation of AMPK and mTOR, as well
as the activity of CPT1B in muscle fibers, facilitating the
catabolism of fatty acids and the synthesis of proteins (58),
ultimately improving muscular energy metabolism. In conditions
of osteoporosis, reduced osteoblast activity leads to a decline
in these processes, resulting in decreased muscle synthesis and
the onset of sarcopenia. In the present study, we found that
SII, WBC, and ALP were involved in the positive correlation
between mVOCs and the incidence of sarcopenia, with mediating
contributions of 1.9%, 5.1%, and 8.5%, respectively. Therefore,
we hypothesize that exposure to VOCs increases the incidence of
sarcopenia by promoting inflammation. Interestingly, in contrast
to these pro-inflammatory mediators, the endocrine factor vitamin
D showed a negative mediating effect in the relationship between
mVOCs and sarcopenia, with a mediation ratio of 4.6%. This
negative effect suggests that vitamin D may mitigate the harmful
impact of mVOCs on sarcopenia risk. The result is consistent
with the well-established role of vitamin D in bone and muscle
health. Vitamin D is known to regulate calcium and phosphate
metabolism, and deficiency in vitamin D has been linked to muscle
weakness and sarcopenia. In this context, our findings indicate
that higher levels of vitamin D could potentially attenuate the pro-
inflammatory effects of VOCs, providing a protective mechanism
against sarcopenia. Moreover, the GO and KEGG enrichment
analyses revealed significant overlap in the targets between VOCs
and sarcopenia in endocrine pathways, further supporting the
notion that vitamin D might act as a key modulator in this context.
Taken together, these results underscore the complex interplay
between environmental pollutants, inflammatory processes, and
endocrine factors, highlighting vitamin D’s potential as a protective
factor against sarcopenia in individuals exposed to mVOCs.

In this study, subgroup analyses stratified by age and gender
revealed that the effects of individual mVOC on sarcopenia were
not entirely consistent across different subgroups. However, there
were mVOCs associated with the outcome in each subgroup. There
was an observed association between the co-exposure to mVOCs
and sarcopenia, particularly pronounced in males, females, and
those over 40 years of age, whereas this significance was not evident
in younger groups. Age seems to modulate the negative correlation
between mVOCs and sarcopenia. The underlying reasons for this
age-related disparity remain unclear. It may be due to the decline
in metabolic rate, muscle mass and strength that often accompanies
aging, leading to an increased accumulation of mVOCs in the body,
which subsequently reduces testosterone levels (59). Satellite cells,
the stem cells of skeletal muscle, play a crucial role in muscle
growth and repair. Testosterone enhances the survival of these
satellite cells by increasing the expression of androgen receptors on
their surface, thereby activating the phosphoinositide 3-kinase/Akt
signaling pathway, which inhibits the activity of pro-apoptotic
factors (60–63). Additionally, testosterone increases the protein

expression and activity of mitochondrial manganese superoxide
dismutase, which protects the mitochondrial membrane potential
and inhibits the opening of the mitochondrial permeability
transition pore induced by H2O2. In contrast, the increase in VOC
metabolites, by reducing endogenous testosterone levels, disrupts
satellite cell activity and consequently promotes the development
of sarcopenia.

This study possesses several strengths. First, participants
included in this study were derived from the nationally
representative NHANES survey with a large sample size.
Second, this is the first study to investigate the individual and
joint effect of several mVOCs on the risk of sarcopenia through
multiple statistical models, including the WQS model, and
BKMR model. These models address the issue of collinearity
among mVOC components and robustly identify the compounds
most strongly associated with sarcopenia risk. In addition, the
study explores the relationship between mVOC mixtures and
sarcopenia across different subgroups, and examines the mediating
effects of metabolic, endocrine, and inflammatory factors on the
VOC-sarcopenia association.

However, there remained some limitations to our study. First,
this study utilized a cross-sectional design, limiting our ability
to infer a causal relationship between mVOCs and sarcopenia.
Therefore, further cohort studies are required to validate the
association between combined mVOC exposure and sarcopenia,
as well as the roles of inflammatory and metabolic factors
in this relationship. Additionally, despite the comprehensive
adjustments made for potential confounders, several unmeasured
factors could still influence the observed associations. For example,
occupational exposures, physical activity, and dietary habits are
known to impact both VOCs exposure and sarcopenia but
were not directly accounted for in our analysis. Although we
included a range of covariates, these unmeasured confounders
may have introduced residual bias, which could influence
the strength and direction of the associations observed in
this study. Third, the exact mechanisms by which mVOCs
contribute to the development of sarcopenia remain unclear,
and further animal studies are needed to explore the underlying
biological mechanisms. The network pharmacology analysis
identified potential targets and pathways, but these findings
require experimental validation. While we have used databases
such as DrugBank, SwissTargetPrediction, and STRING to
identify potential pharmacological targets, and conducted pathway
enrichment analysis, further in vitro and in vivo experiments are
necessary to confirm the biological relevance of these targets and
pathways in the context of sarcopenia. Future experiments will
focus on validating the core targets identified through network
pharmacology, such as those involved in endocrine signaling and
immune response, to better understand how VOC exposure may
affect sarcopenia development.

In addition, while the sample size in this study is relatively
small (145 sarcopenia patients), which could potentially limit
statistical power, we employed rigorous variable selection and
utilized multiple statistical methods to validate the robustness
of our findings, including WQS and BKMR regression models.
Our results consistently showed an association between VOC
exposure and sarcopenia, strengthening the reliability of our
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conclusions across different analytic techniques. However,
we acknowledge that future studies with larger longitudinal
samples are warranted to further confirm these preliminary
findings. Finally, the study participants were drawn from an
adult population in the United States, and the generalizability
of the findings to other populations and regions requires
further investigation.

5 Conclusion

In summary, our study provided preliminary evidence that
exposure to individual and mixed VOCs were positively associated
with the risk of sarcopenia, particularly among older adults.
Alkaline phosphatase (ALP), white blood cell count (WBC),
the systemic immune-inflammation index (SII), and vitamin D
were identified as mediators in the relationship between mixed
mVOCs and sarcopenia. Endocrine resistance pathway was the
underlying mechanism.
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SUPPLEMENTARY FIGURE 1

Spearman correlation coe�cient among the fifteen ln-transformed volatile

organic compound metabolites.

SUPPLEMENTARY FIGURE 2

Restricted cubic spline plots of the association between ln-transformed

mVOCs and sarcopenia. The model was adjusted for gender, age, race,

education, family PIR, marital status, body mass index, smoking status,

alcohol drinking, hypertension, diabetes, stroke, white blood cell, ALP,

platelet, serum vitamin D, triglycerides, and high-density lipoprotein

cholesterol.

SUPPLEMENTARY FIGURE 3

The interaction of each mVOC in total participants. The model was adjusted

for gender, age, race, education, family PIR, marital status, body mass index,

smoking status, alcohol drinking, hypertension, diabetes, stroke, white

blood cell, ALP, platelet, serum vitamin D, triglycerides, and high-density

lipoprotein cholesterol.

SUPPLEMENTARY FIGURE 4

Interactions among each mVOC within the male subgroup. The model was

adjusted for gender, age, race, education, family PIR, marital status, body

mass index, smoking status, alcohol drinking, hypertension, diabetes, stroke,

white blood cell, ALP, platelet, serum vitamin D, triglycerides, and

high-density lipoprotein cholesterol.

SUPPLEMENTARY FIGURE 5

Interactions among each mVOC within the female subgroup. The model

was adjusted for gender, age, race, education, family PIR, marital status,

body mass index, smoking status, alcohol drinking, hypertension, diabetes,

stroke, white blood cell, ALP, platelet, serum vitamin D, triglycerides, and

high-density lipoprotein cholesterol.

SUPPLEMENTARY FIGURE 6

Interactions among each mVOC within the subgroup aged 20 to 40 years.

The model was adjusted for gender, age, race, education, family PIR, marital

status, body mass index, smoking status, alcohol drinking, hypertension,
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diabetes, stroke, white blood cell, ALP, platelet, serum vitamin D,

triglycerides, and high-density lipoprotein cholesterol.

SUPPLEMENTARY FIGURE 7

Interactions among each mVOC within the subgroup aged over 40 years.

The model was adjusted for gender, age, race, education, family PIR, marital

status, body mass index, smoking status, alcohol drinking, hypertension,

diabetes, stroke, white blood cell, ALP, platelet, serum vitamin D,

triglycerides, and high-density lipoprotein cholesterol.

SUPPLEMENTARY FIGURE 8

The mediating roles of metabolic factors, endocrine factors and

inflammation biomarkers in the association between VOCs co-exposure

and sarcopenia. (A) TG/HDL-C, triglycerides/high-density lipoprotein

cholesterol; (B) Vitamin D; (C) SII, the systemic immune-inflammation

index; (D) WBC, white blood cell count; (E) ALP, alkaline phosphatase. All

models were adjusted for gender, age, race, education, family PIR, marital

status, body mass index, smoking status, alcohol drinking, hypertension,

diabetes, stroke, white blood cell, ALP, platelet, serum vitamin D,

triglycerides, and high-density lipoprotein cholesterol. mVOCs, metabolites

of volatile organic compounds (VOCs). IE, indirect e�ect; DE, direct e�ect;

Proportion of mediation = IE / (DE + IE). ∗P < 0.05.

SUPPLEMENTARY TABLE 1

Association of continuous urine 2MHA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 2

Association of categorical urine 2MHA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 3

Association of continuous urine 3,4-MHA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 4

Association of categorical urine 3,4-MHA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 5

Association of continuous urine AAMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 6

Association of categorical urine AAMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 7

Association of continuous urine AMCC with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 8

Association of categorical urine AMCC with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 9

Association of continuous urine ATCA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 10

Association of categorical urine ATCA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 11

Association of continuous urine SBMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 12

Association of categorical urine SBMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 13

Association of continuous urine CEMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 14

Association of categorical urine CEMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 15

Association of continuous urine CYMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 16

Association of categorical urine CYMA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 17

Association of continuous urine DHBMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 18

Association of categorical urine DHBMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 19

Association of continuous urine 2HPMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 20

Association of categorical urine 2HPMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 21

Association of continuous urine 3HPMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 22

Association of categorical urine 3HPMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 23

Association of continuous urine MA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 24

Association of categorical urine MA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 25

Association of continuous urine MHBMA3 with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 26

Association of categorical urine MHBMA3 with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 27

Association of continuous urine PGA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 28

Association of categorical urine PGA with sarcopenia risk in all participants

after adjusting for all covariates.

SUPPLEMENTARY TABLE 29

Association of continuous urine HMPMA with sarcopenia risk in all

participants after adjusting for all covariates.

SUPPLEMENTARY TABLE 30

Association of categorical urine HMPMA with sarcopenia risk in all

participants after adjusting for all covariates.
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