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Background: Sarcopenia (SP) is a progressive, age-related disease that may 
result in various adverse health outcomes and even mortality in older adults. 
Accurately predicting the mortality risk of older adults with SP is essential 
for informed clinical decision-making. This study aims to utilize machine 
learning techniques that incorporate sociodemographic factors, health-related 
metrics, lifestyle variables, and biomarker data to improve risk stratification and 
management in older adults with SP.

Methods: We analyzed data from the NHANES from 1999–2006 and 2010–
2018, including a total of 1,619 older adult patients with SP, with a 10-year 
follow-up period for this population, during which 541 (33%) patients died 
and 1,078 (67%) survived. This study extracted 36 clinical variables for each 
patient, encompassing sociodemographic factors, health-related metrics, and 
biochemical markers. Feature selection was performed using Lasso Regression, 
XGBoost, and Random Forest machine learning algorithms, and a nomogram 
model was developed using univariate and multivariate Cox regression analyses, 
with validation of its accuracy, concordance, and clinical applicability.

Results: A total of 12 feature variables were identified through the combined 
use of three machine learning methods. Univariate and multivariate Cox 
regression analyses identified Age, Height, Neutrophil count (NENO), The 
ratio of hemoglobin to red cell distribution width (HRR), Uric Acid (UA), and 
Creatinine as significant predictors of mortality in older adults with SP, and a 
nomogram model was constructed based on these feature variables, with model 
performance assessed through discrimination, calibration curves, and clinical 
utility evaluation. The model achieved AUC values of 0.753, 0.773, 0.782, and 
0.800 at 1, 3, 5, and 10 years, respectively, demonstrating good concordance 
and adequate calibration. Decision curve analysis (DCA) indicated that the model 
had broad applicability in predicting short-term and long-term outcomes in 
older adult patients with SP. Finally, based on the nomogram risk score, patients 
were stratified into risk groups and survival curves were plotted, illustrating a 
significantly lower survival probability in the high-risk group compared to the 
low-risk group (p < 0.0001).

Conclusion: Utilizing advanced statistical and machine learning techniques, 
we developed and validated a prognostic model for SP in the older adult that 
integrates multimodal data, enhancing predictive accuracy and reliability. This 
model provides valuable insights for clinicians, facilitates risk stratification, and 
provides personalized interventions for older adults with SP.
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1 Introduction

The human aging process is characterized by alterations in body 
composition, notably the loss of skeletal muscle mass. Beginning at 
approximately age 25, both the size and quantity of muscle fibers 
progressively decline. To define this age-related loss of muscle mass, 
Rosenberg et al. first introduced the term “sarcopenia (SP)” in 1989 
(1). As research progressed, the International Working Group on SP 
(IWGS) (2) refined and expanded the definition of SP.

SP is a disease characterized by a reduction in whole-body skeletal 
muscle mass (including skeletal muscle and cardiac muscle) and 
decreased muscle strength, with or without physical function decline 
(3). Epidemiological studies indicate that the global prevalence of SP 
among individuals aged 60 years and older ranges from approximately 
10 to 27%, while in those aged 80 years and above, it can increase to 
nearly 50% (4). A survey of community-dwelling older adults reported 
a SP prevalence of approximately 10–40% (5, 6). Furthermore, as 
population aging accelerates, the prevalence of SP continues to rise. 
By 2050, the population aged 65 and older will reach 2.1 billion, 
making SP a significant health concern in rapidly aging societies (7). 
Additionally, SP is associated with an increased risk of adverse events, 
including falls, fractures, frailty, mobility impairment, disability, 
complications, infections, metabolic disorders, reduced quality of life, 
and mortality (3, 8–10). These consequences impose a substantial 
burden on healthcare resources and society at large. For example, 
Janssen et al. reported that SP contributes to an additional annual 
healthcare expenditure of $18.4 billion in the United States ($10.8 
billion for men and $7.7 billion for women), representing 
approximately 1.5% of total healthcare costs (11). These findings 
underscore SP as a critical public health concern among older adults, 
highlighting the pressing challenge of its prevention and mitigation.

Accurate mortality risk prediction in older adult SP patients is 
crucial for effective therapeutic decision-making and risk 
management. Although several SP risk prediction models exist, they 
all have certain limitations (12). For instance, some models rely on 
difficult-to-collect and time-consuming predictors, limiting their 
utility in clinical practice. Other models fail to capture all risk factors 
for SP, potentially compromising their predictive accuracy. These gaps 
underscore the necessity for integrated multidimensional prediction 
systems to guide personalized therapeutic approaches and improve 
clinical outcomes in geriatric SP.

The progression of SP is influenced by various etiological 
variables, including systemic inflammation, neuromuscular function 
loss, decreased anabolic hormone levels, mitochondrial dysfunction, 
and oxidative stress (13–15). These factors affect skeletal muscle 
structure and function in older adults, leading to SP development, 
progression, and even mortality. Emerging consensus indicates that 
age-related chronic subclinical inflammation is a pivotal driver in SP 
pathophysiology (16). Nevertheless, current research predominantly 
emphasizes canonical inflammatory biomarkers (17–20)(IL-6, TNF-α, 
CRP) while overlooking the prognostic significance of alternative 
cytokine networks. Therefore, this study will incorporate other specific 
biomarkers to investigate their association with all-cause mortality 
and establish a more comprehensive and accurate prognostic model.

This study utilizes data from an 8-year cohort study to 
investigate the relationships between biomarkers, risk factors, and 
SP mortality. It specifically aims to identify key biomarkers linked 
to SP mortality. It constructs a long-term prognostic model by 
integrating multimodal data with multiple Machine Learning 
(ML) approaches to predict the mortality risk in older adult 
patients with SP. Furthermore, we assess the effectiveness of the 
model in individualized risk stratification for SP patients based on 
the identified factors, ultimately aiming to improve 
patient prognosis.

2 Methods

2.1 Data source

This study utilizes data from the National Health and 
Nutrition Examination Survey (NHANES), a nationally 
representative program in the United States. The survey adopts a 
multistage, stratified probability sampling design incorporating 
cluster sampling to represent the population’s characteristics 
comprehensively. Data were collected using standardized 
interviews, physical examinations, and laboratory testing, 
systematically capturing multidimensional health data, including 
demographic characteristics, dietary intake, medical history, 
laboratory test results, and survey responses.1 The research 
protocol received formal approval from the National Center for 
Health Statistics Ethics Review Board. Written informed consent 
was obtained from all enrolled participants prior to their 
involvement in the study.

2.2 Study population

This study analyzed NHANES population data from eight 
cycles spanning 1999–2018, explicitly encompassing data from 
1999–2000, 2001–2002, 2003–2004, 2005–2006, 2011–2012, 2013–
2014, 2015–2016, and 2017–2018 cycles. The investigation 
specifically targeted individuals aged ≥60 years who possessed 
comprehensive datasets encompassing appendicular skeletal muscle 
mass (ASM) measurements, anthropometric parameters, 
laboratory-derived biomarkers, and longitudinal survival 
tracking records.

2.3 Outcome events

This research defined all-cause mortality as the principal endpoint 
in older adults diagnosed with SP. Survival status verification was 
conducted via linkage to the National Death Index (NDI). The 

1 https://www.cdc.gov/nchs/nhanes/
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follow-up period was accurately measured as the time (in months) 
from the baseline survey date to either the date of death or the end of 
follow-up (December 31, 2019).

2.4 Data structure

 (1) Inclusion Criteria: Age ≥60 years; Complete DXA scan data, 
including ASM, height and weight; Complete biomarker data 
related to inflammation.; Valid survival follow-up records; 
Muscle mass, muscle strength, and muscle strength per unit 
size constitute essential diagnostic components of sarcopenia. 
Grip strength measurement utilizes thresholds of <28.0 kg 
(men) and <18.0 kg (women) to identify low muscular 
strength, a key presarcopenia criterion. Based on the 
guidelines from the Foundation for the National Institutes of 
Health (FNIH), individuals in the NHANES database were 
classified as having SP if their BMI-adjusted skeletal muscle 
mass index (ASM/BMI) was <0.512 for females or <0.789 for 
males (21).

 (2) Exclusion Criteria: Individuals with incomplete DXA data; 
Pregnant individuals; Participants with incomplete relevant 
laboratory data.

As shown in Figure  1, after screening, our final study cohort 
included 1,619 SP patients with complete survival analysis data.

2.5 Data information

We employed a longitudinal cohort design, collecting baseline 
participant biomarker data and following them over time to evaluate the 
risk of SP-related mortality. Multiple variables were integrated into the 
predictive model to enhance its accuracy. The variables considered 
included: (1) Demographic characteristics: Age, Gender, Race, Marital 
status, and income level (PIR). (2) Anthropometric measurements: 
Height, Weight, Waist Circumference(WC), and Body Mass Index 
(BMI). (3) Health behaviours: Smoking, Obesity, diabetes, and 
Hypertension. (4) Laboratory indices: Blood samples from all participants 
were collected at the NHANES Mobile Examination Center (MEC).

The MEC used the Coulter HMX (Coulter Electronics Ltd., 
Bedfordshire, UK) and Beckman Coulter DXH 800 (Beckman 
Coulter, Brea, CA, USA) for complete blood count analysis, including 
neutrophil count (NENO), lymphocyte count (LYMNO), platelet 
count (PLT), hemoglobin (HGB), and red cell distribution width 
(RDW). The DcX800 chemistry analyzer was employed to assess 
biochemical markers, including albumin, alanine aminotransferase 

FIGURE 1

Sample selection flowchart for NHANES 1999–2018.
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(ALT), aspartate aminotransferase (AST), and uric acid (UA). The 
Cobas 6,000 Chemistry Analyzer was utilized to quantify total 
cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and 
high-density lipoprotein cholesterol (HDL-c).

Serum-related biomarkers were calculated based on laboratory 
parameters measured at the MEC: NLR (22) (Neutrophil to 
lymphocyte ratio), PLR (23) (Platelet to lymphocyte ratio)、HRR 
(The ratio of hemoglobin to red cell distribution width), SII (24) 
(Systemic immune inflammation index), CRI-I (25) (Castelli risk 
index I), CRI-II (25) (Castelli risk index II), NHHR (26) (non-high-
density lipoprotein cholesterol to high-density lipoprotein cholesterol 
ratio), UHR (27) (uric acid to high-density cholesterol ratio), 
ALI(Advanced lung cancer inflammation index) and BRI (28) (Body 
roundness index).

NLR = Neutrophil count (cell/ml) / Lymphocyte count (cell/ml).
PLR = Platelet count (cell/ml) / Lymphocyte count (cell/ml).
HRR = Hemoglobin (g/dl) / Red cell distribution width (%).
SII=Platelet count (cell/ml) × Neutrophil count (cell/ml) / 

Lymphocyte count (cell/ml).
CRI-I = Total cholesterol (mmol/L) / High density lipoprotein 

cholesterol (mmol/L).
CRI-II = LDL-c (mmol/L) / HDL-c (mmol/L).
NHHR = [TC (mmol/L)-HDL-c (mmol/L)] / HDL-c(mmol/L).
UHR = UA (umol/L) / HDL-c (mmol/L).
ALI = [Albumin (g/dl) × BMI (kg/m2)] / NLR (cell/ml).

BRI = 364.2–365.5
( ) ( )

( )( )

 π −  × 

2

2
(WC m / 2

1 ).
0.5 Height m

2.6 Variable screening

In this study, we  employed three different machine learning 
algorithms—LASSO regression, XGBoost and Random Forest- to 
select features. First, we  implemented LASSO regression, which 
applies an L1 regularization constraint to shrink regression coefficients 
of low-contribution features to zero, achieving effective dimensionality 
reduction while controlling the risk of overfitting. Next, we utilized 
the XGBoost algorithm to evaluate feature importance. By optimizing 
the distributed gradient boosting algorithm and incorporating 
regularization terms and custom loss functions, the generalization 
ability of the model was significantly enhanced. Finally, we applied the 
RF ensemble algorithm for survival analysis modelling and feature 
importance assessment. We  internally validated the model’s 
generalization ability by generating decision trees and calculating the 
Out-of-Bag (OOB) error, thereby identifying the most critical features. 
The standard features identified by all three algorithms resulted in 12 
prognostic markers for predicting SP patient survival. Additionally, 
univariate and multivariate Cox regression analyses were performed 
to verify whether the selected features were independent prognostic 
factors in SP patients beyond other clinical variables. Ultimately, Age, 
Height, NENO, UA, Creatinine and HRR were confirmed as 
independent prognostic factors for mortality risk in SP patients.

2.7 Assessment of mortality

The performance of the nomogram model was assessed using 
three approaches: discrimination, calibration curve, and clinical 

utility. The model’s discriminative ability was analyzed using the area 
under the ROC curve. Furthermore, Bootstrap resampling was 
performed to refine the C-index, providing an estimate of the model’s 
predictive accuracy in future scenarios. Calibration curve analysis was 
subsequently conducted to evaluate the predictive model’s accuracy 
alignment between observed outcomes and probabilistic estimates. 
Finally, decision curve analysis (DCA) was performed to examine the 
net benefit of the model across various threshold probabilities. The 
nomogram risk score was calculated for each patient, and patients 
were classified into low-risk and high-risk groups based on median 
survival. Kaplan–Meier analysis was employed to compare survival 
distributions between the high-risk and low-risk groups.

2.8 Statistical analysis

In addressing potential estimation distortions induced by partial 
data availability, covariates demonstrating missingness rates 
surpassing 20% were methodologically omitted at the preliminary 
stage of information acquisition. An advanced multiple imputation 
framework was then operationalized to manage remaining data gaps 
within preserved parameters, following a rigorously structured 
implementation sequence: first, comprehensive specification of 
interdimensional associations using iterative conditional modeling; 
second, probabilistic assignment of multiple coherent replacement 
values through regression-based pattern alignment; third, generation 
of five computationally compatible synthetic datasets. This Bayesian-
consistent framework maintains stochastic characteristics while 
incorporating measurement variability following Rubin’s variance 
estimation principles, ultimately optimizing inferential precision and 
analytical robustness in subsequent quantitative investigations.

Statistical analysis of the study results was performed using R 
software 4.2.2. The following R packages were employed: “tidyverse” 
for data manipulation, “glmnet” for Lasso regression-based feature 
selection, and “survival” for survival modeling. “xgboost” for variable 
selection via Extreme Gradient Boosting; “randomForestSRC” for 
random survival forest analysis with embedded feature selection; 
“ggplot2,” “ggvenn,” “ggrain,” and “ggDCA” for data visualization; 
“timeROC” and “survivalROC” for generating time-dependent ROC 
curves. Initially, the Shapiro–Wilk test was conducted to assess the 
normality of the data distribution. Continuous variables were 
presented as means±SD or median with 25th and 75th Percentiles. 
Group comparisons were analyzed using Student’s t-test (normally 
distributed continuous variables) or Mann–Whitney U test 
(non-normally distributed data). Categorical variables were reported 
as frequency counts with percentages, and intergroup differences were 
assessed via the Chi-square test or Fisher’s exact test. A two-tailed 
significance threshold of p < 0.05 was applied for all 
statistical inferences.

3 Results

3.1 Analysis of baseline data

After screening, the final cohort included 1,619 older adult patients 
with SP, among whom 541 (33%) died and 1,078 (67.0%) survived. 
Table 1 presents the baseline characteristics of the deceased and surviving 
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TABLE 1 Baseline patient characteristics.

Variable Overall (N = 1,619) Dead (N = 541) Alive (N = 1,078) p-value

Age (year) <0.001***

  Median (Q1, Q3) 71.0 (65.0, 80.0) 66.0 (62.0, 70.0) 75.0 (69.0, 82.0)

Gender, n (%) <0.001***

  Male 874 (54%) 247 (46%) 627 (58%)

  Female 745 (46%) 294 (54%) 451 (42%)

Race, n (%) <0.001***

  Mexican American 576 (36%) 270 (50%) 306 (28%)

  Non-Hispanic White 841 (52%) 201 (37%) 640 (59%)

  Non-Hispanic Black 94 (5.8%) 30 (5.5%) 64 (5.9%)

  Other 108 (6.7%) 40 (7.4%) 68 (6.3%)

Marital, n (%) <0.001***

Median (Q1, Q3) 968 (60%) 372 (69%) 596 (55%)

Pir income level, n (%) 0.11

  Poor 291 (18%) 109 (20%) 182 (17%)

  Not poor 1,328 (82%) 432 (80%) 896 (83%)

Smoke, n (%) 60 (3.7%) 14 (2.6%) 46 (4.3%) 0.10

Height (cm)

  Median (Q1, Q3) 160.2 (153.0, 167.0) 158.5 (152.4, 165.4) 161.1 (153.3, 167.6) <0.001***

Body Mass Index (kg/m2) <0.001***

  Median (Q1, Q3) 29.3 (26.3, 33.4) 30.5 (27.4, 34.4) 28.8 (25.8, 32.5)

Waist Circumference (cm) 0.3

  Median (Q1, Q3) 103.0 (95.3, 112.9) 103.6 (96.0, 112.7) 102.8 (95.0, 112.9)

Obesity, n (%) 724 (45%) 291 (54%) 433 (40%) <0.001***

Diabetes, n (%) 535 (33%) 159 (29%) 376 (35%) 0.029

Hypertension, n (%) 1,177 (73%) 364 (67%) 813 (75%) <0.001***

Total Cholesterol (mmol/L) 0.5

  Median (Q1, Q3) 5.3 (4.6, 6.0) 5.36 (4.6, 6.0) 5.34 (4.6, 6.0)

High-density lipoprotein cholesterol (mmol/L) 0.2

  Median (Q1, Q3) 1.3 (1.1, 1.6) 1.3 (1.0, 1.5) 1.3 (1.1, 1.6)

Low-density lipoprotein cholesterol (mmol/L) 0.3

  Median (Q1, Q3) 3.1 (2.5, 3.8) 3.1 (2.6, 3.8) 3.1 (2.5, 3.8)

Albumin (g/L) 0.016*

  Median (Q1, Q3) 42.0 (40.0, 44.0) 42.0 (40.0, 44.0) 42.0 (40.0, 44.0)

Alanine aminotransferase (U/L) <0.001***

  Median (Q1, Q3) 20.0 (16.0, 25.0) 22.0 (18.0, 28.0) 19.0 (15.0, 24.0)

Aspartate aminotransferase (U/L) 0.5

  Median (Q1, Q3) 23.0 (20.0, 27.0) 23.0 (20.0, 27.0) 23.0 (19.0, 27.0)

Creatinine (umol/L) <0.001***

  Median (Q1, Q3) 79.6 (61.9, 97.2) 70.7 (61.9, 88.4) 79.6 (70.7, 97.2)

Serum Fertin (nmol/L) 0.3

  Median (Q1, Q3) 14.3 (10.8, 18.1) 14.5 (11.1, 18.1) 14.1 (10.7, 18.1)

Lymphocyte Count (109/L) <0.001***

  Median (Q1, Q3) 1.9 (1.5, 2.4) 2.0 (1.6, 2.5) 1.8 (1.4, 2.3)

Neutrophil Count (109/L) 0.009**

(Continued)
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SP patients. And present the distribution characteristics of the variable 
in the Alive group and the Dead group using box plots 
(Supplementary Figure  1a). Univariate analysis revealed elevated 
mortality risk in sarcopenia patients with: Age (66y vs. 75y, p < 0.001), 
female sex (54% vs. 42%, p < 0.001), Mexican ethnicity (50% vs. 28%, 
p < 0.001), married status (69% vs. 55%, p < 0.001), higher BMI (30.5 vs. 
28.8), obesity (54% vs. 40%, p < 0.001), elevated ALT (22 U/L vs. 19 U/L, 
p < 0.001), increased platelet count (261 × 109/L vs. 241 × 109/L), 
lymphocyte count (2.0 vs. 1.8 × 109/L), and higher ALI levels. 
Paradoxically younger age in decedents (66 year vs. 75 year, p < 0.001) 
reflects the shifting epidemiology toward younger-onset sarcopenia, 
implying multifactorial mortality mechanisms beyond chronological age 
(29). Female sarcopenia patients demonstrate worse outcomes, 

potentially mediated by hormonal dynamics (30). Sarcopenic obesity 
confers elevated mortality risk, consistent with JAMA evidence linking 
it to reduced survival (31). PLR, ALT, and ALI levels reflect systemic 
inflammation. ALI integrates inflammatory and nutritional status, 
capturing complex interplay between systemic inflammation, immune 
function, and nutritional state. ALI has emerged as a promising 
prognostic marker in cancer (32), CVD, and chronic inflammatory 
disorders (33). Thus, inflammation may critically influence sarcopenia 
prognosis in our cohort. Unexpectedly lower creatinine in decedents 
(70.7 vs. 79.6 μmol/L, p < 0.001) may reflect higher muscle mass in 
younger subgroups or unmeasured confounders. Furthermore, 
we  performed stratified analyses by sex for key variables, created 
sex-stratified box plots (Supplementary Figure 1b) to illustrate differences 

TABLE 1 (Continued)

Variable Overall (N = 1,619) Dead (N = 541) Alive (N = 1,078) p-value

  Median (Q1, Q3) 4.3 (3.4, 5.3) 4.2 (3.3, 5.2) 4.4 (3.5, 5.4)

Hemoglobin (g/dl) 0.004**

  Median (Q1, Q3) 14.3 (13.3, 15.2) 14.5 (13.6, 15.2) 14.2 (13.2, 15.2)

Red cell distribution width (%) <0.001***

  Median (Q1, Q3) 12.9 (12.4, 13.5) 12.6 (12.2, 13.1) 13.0 (12.4, 13.7)

Platelet Count (109/L) <0.001***

  Median (Q1, Q3) 249.0 (206.0, 295.0) 261.0 (221.0, 301.0) 241.0 (201.0, 288.0)

Uric Acid (umol/L) <0.001***

  Median (Q1, Q3) 333.1 (285.5, 398.5) 327.1 (273.6, 374.7) 339.0 (285.5, 410.4)

The ratio of hemoglobin to red cell distribution 

width

<0.001***

  Median (Q1, Q3) 1.1 (1.0, 1.2) 1.1 (1.1, 1.2) 1.1 (1.0, 1.2)

Neutrophil to lymphocyte ratio <0.001***

  Median (Q1, Q3) 2.3 (1.7, 3.1) 2.0 (1.6, 2.7) 2.4 (1.8, 3.2)

Platelet Lymphocyte Ratio 0.12

  Median (Q1, Q3) 131.3 (100.8, 171.3) 128.5 (101.5, 161.3) 132.8 (100.0, 175.3)

Systemic immune inflammation index 0.018*

  Median (Q1, Q3) 550.8 (390.8, 788.9) 537.3 (384.8, 734.7) 559.5 (394.3, 829.3)

Castelli risk index I 0.079*

  Median (Q1, Q3) 4.0 (3.3, 5.0) 4.2 (3.4, 5.1) 4.0 (3.2, 5.0)

Castelli risk index II 0.090*

  Median (Q1, Q3) 2.4 (1.8, 3.2) 2.5 (1.8, 3.2) 2.3 (1.7, 3.1)

NHHR 0.079*

  Median (Q1, Q3) 3.0 (2.3, 4.0)* 3.2 (2.4, 4.1)e 3.0 (2.2, 4.0)*

Uric acid to high-density cholesterol ratio 0.039*

  Median (Q1, Q3) 261.5 (194.4, 345.0) 252.9 (196.3, 328.3) 268.9 (194.2, 355.0)

Advanced lung cancer inflammation index <0.001***

  Median (Q1, Q3) 55.1 (39.8, 76.6) 64.1 (47.8, 85.2) 50.6 (36.1, 72.0)

Body roundness index 0.002**

  Median (Q1, Q3) 6.5 (5.4, 7.9) 6.6 (5.6, 8.1) 6.4 (5.3, 7.8)

1Wilcoxon rank sum test; Fisher’s exact test

*p < 0.05, **p < 0.01, ***p < 0.001. Bold value indicates significant difference between the two groups.
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in survival status between genders, and incorporated the results of 
statistical tests for group comparisons in each plot (as shown in the figure 
below). In these figures, the impacts of age, height, BMI, albumin, ALT, 
etc., on survival outcomes may vary between genders (p < 0.05).

Univariate analysis may be susceptible to multicollinearity effects. 
Consequently, we incorporated the variables into Lasso regression, 
XGBoost, and random forest algorithms for further feature selection.

3.2 LASSO regression feature selection

The “glmnet” package was utilized to model the survival data of SP 
patients, and 10-fold cross-validation was performed to identify the 
optimal regularization parameter λ. First, the partial likelihood 
deviance corresponding to different λ values was calculated (Figure 2A). 
The λ value that resulted in the minimum deviance within one standard 
error was then selected as the final parameter (Figure  2B). This 
procedure selected 30 nonzero coefficient variables with significant 
predictive value, encompassing demographic characteristics (Age, 
Gender, Race, Marital status), health behaviours (Smoking, Height, 
BMI, Obesity, Diabetes, Hypertension) and laboratory parameters 
(TC_mmol, LDL_mmol, Albumin, ALT, AST, Creatinine, SF, LYMNO, 
NENO, HGB, RDW, PLT, UA, HRR, NLR, PLR, SII, CRI, BRI) 
(Figure 2C).

3.3 XGBoost feature selection

The extreme gradient boosting XGBoost algorithm was used to 
assess the importance of the feature. Figure 3A. illustrates the dynamic 
change curve of Cox negative log-likelihood values across iterations 
(0–100 epochs) during training. At 100 iterations, the validation loss 
stabilized, suggesting that the model had converged. Figure 3B. displays 

the top 15 most important features, highlighting Age, ALI, ALT, AST, 
BMI, Creatinine, HDL_mmol, Height, HRR, NENO, PLT, RDW, SF, 
TC_mmol and UA as key predictors of SP patient prognosis.

3.4 Random Forest feature screening

The RF ensemble algorithm was employed to model survival 
analysis and assess feature importance. A random seed (seed = 123) 
was set to ensure result reproducibility, and the survival analysis model 
was constructed using the randomForestSRC package. The decision 
trees were visualized (decision trees), showing that when the number 
of trees reached 400, the OOB error rate plateaued, demonstrating 
stable predictive performance beyond this threshold (Figure 4A). The 
var.select function was used to identify the most important features in 
the random forest model, with age, creatinine, and RDW ranking as 
the top three. A higher feature importance score suggests a greater 
impact of that feature on the model’s predictive performance. Finally, 
a bar plot was created using the ggplot2 package to visualize the 
feature importance (VIP) in the random forest model (Figure 4B).

3.5 Feature variables identified through 
multiple algorithm-based selection

The feature variables selected by LASSO regression, XGBoost 
algorithm, and RF were intersected using a Venn diagram, identifying 
12 variables, as shown in Figure 5. These include Age, Height, BMI, 
LDL-c, Albumin, ALT, Creatinine, PLT, UA, HRR, NLR and AST. This 
multimodal feature selection strategy employs cross-validation across 
algorithms to effectively reduce single-model selection bias, enhancing 
the reliability of selected feature variables and playing a crucial role in 
constructing a prognostic model for SP patients.

FIGURE 2

(A) The coefficient path diagram of Lasso regression. (B) Regularization path analysis diagram. (C) Lasso Coefficients Bar Plot.
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3.6 Univariate and multivariate cox 
regression analyses

Survival analysis was conducted on the feature variables identified 
by the three ML methods. Univariate and multivariate Cox 
proportional hazards regression models were employed to evaluate the 
associations between various variables and SP mortality (Table 2), 
enabling the identification of key prognostic factors for clinical 

decision support in SP patients. In this study, BMI, ALT, RDW, and 
PLT were significant in the univariate Cox regression analysis but lost 
significance in the multivariate analysis, indicating that other variables 
might have accounted for or adjusted their effects. Therefore, they 
cannot serve as predictive factors in SP survival analysis. However, the 
multivariate Cox regression analysis indicated that Age (HR = 1.092, 
95% CI: 1.081–1.102, p < 0.001), Height (HR = 1.026, 95% CI: 1.018–
1.033, p < 0.001), and NENO (HR = 1.095, 95% CI: 1.054–1.138, 

FIGURE 3

(A) XGBoost Training Loss vs. Iteration Curve. (B) XGBoost Feature Importance Ranking (Top 15 Variables).

FIGURE 4

Evaluation of the importance of random forest features. (A) The relationship between decision trees and out-of-bag (OOB) error. (B) Results of 
visualizing the importance of characteristic variables in the random forest model.
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p < 0.001) were still significantly associated with an increased risk of 
mortality in SP patients. HRR (HR = 0.250, 95% CI: 0.130–0.449, 
p < 0.001) was recognized as a protective factor for SP patients. 
Although UA (HR = 1.001, 95% CI: 1.000–1.002, p < 0.008) and 
Creatinine (HR = 1.001, 95% CI: 1.000–1.002, p < 0.004) had a 
relatively minor impact on the prognosis of SP patients, their increase 
should not be  overlooked as a contributing factor to heightened 
mortality risk.

3.7 Visual the forest plot

The forest plot is a widely used visualization tool in survival 
analysis for illustrating hazard ratios and the statistical significance of 
variables in Cox regression analysis. The variables selected through 
univariate and multivariate Cox regression analyses were depicted in 

a forest plot to visualize their hazard ratios and confidence intervals 
for mortality risk in older adult SP patients. As illustrated in Figure 6, 
the forest plot demonstrates a strong association between Age, Height, 
NENO, HRR, Creatinine, and UA and the risk of mortality in SP 
patients (p < 0.05). BMI, ALT, SF, RDW, and PLT were not significantly 
associated with SP-related mortality risk (p > 0.05). Additionally, the 
model demonstrated good overall fit (AIC: 14097.51; Concordance 
Index: 0.73, 95%CI: 0.714–0.744), indicating its strong predictive 
capability for SP mortality risk.

3.8 Nomogram construction and 
assessment

Based on the multivariate Cox regression model results, the 
variables Age, Height, NENO, Creatinine, UA, and HRR were 
incorporated into the nomogram model (Figure 7), with the total 
score axis summing the scores of each variable into an overall score 
ranging from 160 to 340. A higher total score signifies an increased 
risk of adverse events. As shown in the nomogram, an increase in Age, 
Height, NENO, Creatinine, and UA is associated with a higher score, 
indicating an elevated mortality risk in SP patients. However, a higher 
HRR corresponds to a lower score, indicating that HRR is a protective 
factor in SP patients. This nomogram enables the calculation of a total 
score based on individual variable values (Age, Height, HRR, NENO) 
in SP patients, allowing for the identification of high-risk individuals 
and the prediction of overall survival probabilities at 1, 3, 5 and 
10 years, thus guiding personalized treatment strategies.

3.9 Plotting the time-dependent ROC 
curve

The model’s discrimination was evaluated by computing the 
nomogram risk score and the time-dependent ROC curve. The time-
dependent ROC curve allows a dynamic assessment of the model’s 
predictive performance across different time points. As illustrated in 
Figure 8, the time-dependent ROC analysis for SP patients resulted in 
AUC values of 0.753 (95%CI: 0.677–0.829), 0.773 (95%CI: 0.740–
0.807), 0.782 (95%CI: 0.755–0.809), and 0.800 (95%CI: 0.778–0.822) 

FIGURE 5

Venn diagram (LASSO regression, XGBoost, random forest).

TABLE 2 Results of univariate and multivariate cox regression analyses.

Variable All (Mean ± SD) HR (univariable) HR (multivariable)

Age 72.2 ± 8.0 1.10 (1.09–1.11, p < 0.001) 1.092(1.081–1.102, p < 0.001)

Height 160.1 ± 9.1 1.02 (1.01–1.02, p < 0.001) 1.026(1.018–1.033, p < 0.001)

BMI 30.2 ± 5.7 0.96 (0.95–0.97, p < 0.001) 0.993 (0.981–1.006, p = 0.130)

ALT 22.9 ± 12.2 0.98 (0.97–0.99, p < 0.001) 1.000 (0.990–1.000, p = 0.335)

Creatinine 86.2 ± 53.0 1.00 (1.00–1.00, p < 0.001) 1.001 (1.000–1.002, p = 0.004)

SF 14.9 ± 5.8 0.99 (0.98–1.00, p = 0.040) 1.003 (0.991–1.015, p = 0.578)

NENO 4.5 ± 1.6 1.09 (1.05–1.13, p < 0.001) 1.095(1.054–1.138, p < 0.001)

RDW 13.2 ± 1.5 1.16 (1.13–1.19, p < 0.001) 1.013 (0.962–1.066, p = 0.745)

PLT 255.4 ± 74.2 1.00 (1.00–1.00, p < 0.001) 0.999 (0.998–1.000, p = 0.073)

UA 345.4 ± 89.7 1.00 (1.00–1.00, p < 0.001) 1.001 (1.000–1.002, p = 0.008)

HRR 1.1 ± 0.2 0.16 (0.11–0.23, p < 0.001) 0.250 (0.130–0.449, p < 0.001)
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at 1, 3, 5, and 10 years, respectively, demonstrating good discrimination 
at all evaluated time points. The highest AUC value was observed at the 
10-year, suggesting that the model performs best for long-term 
prediction. Moreover, we  implemented DeLong’s test for pairwise 

comparison of AUCs at 1, 3, 5, 10 year intervals (Table 3). The observed 
AUC variations across time points were minimal (0.009–0.047), 
indicating non-significant differences in predictive performance across 
temporal endpoints. Moreover, AUCs exceeded 0.7 at 1-year, 3-year, 

FIGURE 6

Forest plot visualization.

FIGURE 7

Nomogram Pr(os<1): probability of survival at 1 year; Pr(os<3): probability of survival at 3 years; Pr(os<5): probability of survival at 5 years; Pr(os<10): 
probability of survival at 10 years.

https://doi.org/10.3389/fpubh.2025.1614374
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2025.1614374

Frontiers in Public Health 11 frontiersin.org

and 10-year time points, demonstrating temporal stability in prognostic 
accuracy. Therefore, nomogram model effectively predicts the 
mortality risk of SP patients at different time points.

3.10 Plotting the calibration curve

To assess the calibration performance of the nomogram model in 
predicting overall survival (OS) among SP patients. The calibration 
curve was constructed using the “calibrate” function, and the consistency 
between predicted and observed values was evaluated using the 
Bootstrap method (resampling n = 1,000). Figure  9 presents the 
calibration curves for 1, 3, 5 and 10-year survival. For 1-year survival, 
the predicted probability of 0.90 corresponded to an observed probability 
of 0.89 (95% CI: 0.87–0.91), resulting in an absolute deviation of −1.0%. 
For 3-year survival, a predicted value of 0.80 matched an observed value 
of 0.81 (95% CI: 0.78–0.84), with a deviation of +1.0%. For 5-year 

survival, the predicted probability of 0.70 corresponded to an observed 
value of 0.69 (95% CI: 0.65–0.73), with a deviation of −1.0%. For 10-year 
survival, the predicted value of 0.60 aligned with an observed probability 
of 0.58 (95% CI: 0.54–0.62), resulting in a deviation of −2.0%. The 
greatest deviation occurred in the high-prediction range of the 10-year 
survival curve, where a predicted probability of 0.90 corresponded to a 
deviation of −3.0%. Nonetheless, all deviations remained within 
clinically acceptable limits (<5%). This discrepancy may be attributed to 
the relatively small sample size within the high-survival probability 
range, which may limit the model’s predictive accuracy in this subgroup. 
Increasing the sample size in future studies could enhance the model’s 
stability and reliability. Overall, the nomogram demonstrated excellent 
calibration performance across the 1- to 10-year follow-up period and 
provides reliable survival estimates to support clinical decision-making.

3.11 Establishing a Kaplan–Meier curve

The nomogram risk score was computed for each patient, and a 
raincloud plot (Figure 10A) was drawn to visualize the distribution of 
nomogram risk scores across different outcome groups (Alive and 
Death). The plot demonstrates that the risk scores in the deceased group 
are markedly higher than those in the surviving group, suggesting that 
the nomogram model differentiates between high-risk and low-risk 
patients. The cohort was stratified into high-risk and low-risk groups 
based on the median risk score, and survival curves were generated using 
the “ggsurvplot” function. As shown in Figure 10B, the survival curve of 
the high-risk group declines more rapidly, with a shorter median survival 
time, indicating a significantly decreasing survival probability over time. 
Conversely, the survival curve for the low-risk group exhibits a slower 

FIGURE 8

Area under the ROC curve year os: 0.753 (95%CI: 0.677–0.829); 3-year os: 0.773 (95%CI: 0.740–0.807); 5-year os: 0.782 (95%CI: 0.755–0.809); 10-
year os: 0.800 (95%CI: 0.778–0.822).

TABLE 3 Results of DeLong.

Comparison groups 
(year)

95%CI p value

1 vs. 3 −0.044 ~ 0.082 0.647

1 vs. 5 −0.042 ~ 0.099 0.512

1 vs. 10 −0.027 ~ 0.123 0.274

3 vs. 5 −0.018 ~ 0.030 0.727

3 vs. 10 −0.008 ~ 0.060 0.221

5 vs. 10 −0.009 ~ 0.043 0.221
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FIGURE 10

(A) Raincloud plot. (B) Kaplan-Meier curve.

decline and a longer median survival time, indicating a more gradual 
decrease in survival probability. Moreover, the survival curves for the 
high-risk and low-risk groups are separated, demonstrating a significant 
difference in survival probabilities (p < 0.0001). Thus, the nomogram 
model demonstrates efficacy in prognosticating SP outcomes and can 
be applied in clinical practice to identify high-risk patients, facilitating 
timely interventions to lower mortality rates.

3.12 Establishing decision curve analysis

To evaluate the clinical utility of the nomogram model in 
predicting survival outcomes in older adult SP patients, we plotted a 

decision curve analysis (DCA) graph. As shown in Figure 11, within 
the risk threshold range of 0.02–0.08, the Nomogram and All models 
performed well, yielding a higher net benefit than None. This result 
indicates that the Nomogram model has high clinical utility within 
this threshold range, assisting clinicians in better weighing the benefits 
and risks of interventions.

4 Discussion

This study utilized three distinct ML algorithms—LASSO 
regression, XGBoost, and RF to identify biomarkers associated with 
survival prediction in older adult patients with SP. This study is the 
first to provide a quantitative insight into the association between 
HRR and SP survival. By incorporating multimodal data—including 
demographics, anthropometrics, lifestyle factors, and biomarkers—a 
dynamic nomogram was developed to visualize different variables, 
enabling clinicians to understand patient conditions better 
intuitively. This model exhibited strong consistency and accuracy, 
proving highly effective in differentiating high-risk from low-risk 
patients. In conclusion, this model aids clinicians in swiftly 
identifying high-risk older adult patients with SP, allowing for 
enhanced monitoring and proactive management of modifiable 
risk factors.

Although SP is prevalent among the older adult, it remains 
underrecognized in clinical practice. Furthermore, most existing 
models are designed to predict the risk of SP onset in the older 
adult, with limited efforts directed toward developing risk 
stratification and prognostic models for patients already 
diagnosed with SP. Additionally, these models may fail to 
comprehensively capture the multifactorial nature of individual 
patient risk profiles (12). This study incorporates demographic 
characteristics, lifestyle factors, conventional SP risk indicators, 

FIGURE 9

Calibration curves total patients: 1619; Risk patients at time points: 
1-year = 1,569, 3-year = 1,429, 5-year = 1,285, 10-year = 947.
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and inflammatory and metabolic biomarkers—such as HRR and 
CRI—to markedly improve the accuracy of short-term and long-
term prognostic predictions in older adult sarcopenic 
patients (34).

Among the various reported risk factors for SP, increasing age 
is arguably the most significant. In line with previous studies, our 
findings indicate that age serves as an independent risk factor for 
predicting mortality in sarcopenic patients (35). Among the various 
reported risk factors for SP, increasing age is arguably the most 
significant. In line with previous studies, our findings indicate that 
age serves as an independent risk factor for predicting mortality in 
sarcopenic patients. Moreover, family status, lifestyle habits, 
physical inactivity, and malnutrition have been strongly linked to 
SP. (36–38) Notably, multiple evidence-based approaches to 
managing SP have demonstrated that biomarkers are essential for 
assessing and managing sarcopenic patients (39).

However, the underlying pathological mechanisms of SP are 
still not well understood (40). One widely accepted mechanism 
underlying the onset and progression of SP is age-related chronic 
low-grade inflammation, known as “inflammaging” (41). With 
ageing, macrophage activation increases, leading to a chronic 
subclinical inflammatory state in older adults characterized by 
elevated pro-inflammatory cytokines and reduced anti-
inflammatory cytokines. Inflammation impairs skeletal muscle 
structure and function in older adults, thereby promoting the onset, 
progression, and potentially fatal consequences of SP. Research by 
Jagadish et  al. demonstrated that IL-6 and TNF-αare linked to 
muscle strength and mass reductions (42). In vitro studies suggest 
that IL-6 facilitates muscle atrophy by disrupting anabolic 
metabolism and energy homeostasis while directly mediating 
muscle catabolism. Despite substantial research, the association 
between conventional inflammatory markers (TNF-α, IL-6) and SP 
remains debated, especially among patients with other age-related 
diseases (43).

Therefore, identifying more representative biomarkers is an 
important area of ongoing research. Importantly, this study is the first 

to explore the potential link between HRR and SP, demonstrating that 
HRR is a protective factor for sarcopenic patients, where higher HRR 
values correlate with a lower mortality risk. Moreover, in the 
nomogram risk scoring system, HRR has a high score and contributes 
the most to predicting mortality risk in older adult sarcopenic 
patients. HRR is derived by calculating the ratio of haemoglobin to red 
cell distribution width. RDW is a straightforward parameter in routine 
blood tests that indicates variations in circulating red blood cell size 
(44) and is frequently employed in the differential diagnosis of 
anaemia. Epidemiological research has suggested that RDW may be a 
reliable predictor of mortality in cardiovascular disease, cancer, and 
various chronic conditions (45, 46). Increased RDW reflects an 
inflammatory state closely linked to various biological processes, 
including ageing, oxidative stress, nutritional deficiencies, and renal 
dysfunction (47–49). Junghoon Kim et al. discovered that increased 
RDW is linked to the onset of SP, especially among overweight and 
obese individuals (46). Consequently, HRR encapsulates prognostic 
insights from Hb and RDW, serving as a more reliable prognostic 
marker than either parameter alone and providing enhanced 
predictive utility (50).

Likewise, hyperuricemia is strongly linked to systemic 
inflammation and exhibits oxidative properties. Research indicates 
that higher uric acid levels elevate the risk of muscle strength decline 
(51). A study conducted on Japanese postmenopausal women revealed 
that hemodialysis patients with reduced muscle mass exhibited lower 
serum creatinine levels, suggesting a positive association between 
serum creatinine and the onset and progression of SP. Hence, in 
alignment with prior research, our study confirms that uric acid and 
creatinine serve as independent risk factors for mortality in 
sarcopenic patients.

However, a single predictive factor is insufficient to 
encapsulate the complexity of SP prognosis and progression. 
Consequently, this study introduces a dynamic nomogram model 
by integrating multimodal data, allowing clinicians to estimate the 
probability of future disease progression based on a patient’s 
current condition, thus offering a robust and intuitive scientific 
tool for personalized precision medicine (52–54). By identifying 
sarcopenic patients at higher risk of mortality, clinicians can 
utilize this predictive model to optimize patient management and 
enhance overall care for older adult SP patients. More frequent 
follow-ups, tailored pharmacological treatments, and targeted 
lifestyle interventions may be  necessary rather than applying 
uniform treatment and intervention strategies to all 
sarcopenic patients.

4.1 Limitations

We recognize several limitations in this study. First, it may not 
establish definitive causal relationships as an observational study. 
Secondly, our model was developed based on data from a single 
database, which may introduce inherent biases in data collection. 
Lastly, potential biases may exist as the data utilized in this study were 
sourced from a U.S. SP cohort. Therefore, further validation across 
different populations is needed, and refinements may be required to 
improve predictive accuracy. In the future, we aim to include larger-
scale, multicenter SP cohorts to validate the model’s 
generalizability further.

FIGURE 11

Decision curve analysis all: assumes that interventions are applied to 
all patients, where net benefit is determined by subtracting the 
weighted cost of false positives from the true positive rate. None: 
assumes no intervention for any patient, leading to a constant net 
benefit of zero.
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5 Conclusion

In summary, this study established a dynamic visual risk 
stratification model for predicting the 1-year, 3-year, 5-year, and 
10-year mortality risk in older adult SP patients, offering precise 
prognostic insights. Incorporating multimodal data, the machine 
learning-based prognostic model exhibits robust predictive accuracy 
and significant clinical benefits. This enables tailored medical strategies 
and targeted interventions for high-risk SP patients, ultimately 
enhancing strategies for SP prevention and healthcare improvement.
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