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Objective: This study utilized National Health and Nutrition Examination Survey 
(NHANES) data to investigate the associations between weight-adjusted waist 
index (WWI), body mass index (BMI), and chronic low back pain (CLBP) risk, and 
to develop machine learning models to assess the predictive capacity of WWI 
for CLBP.

Methods: This cross-sectional analysis was based on NHANES 2009–2010 data. 
Weighted logistic regression models were employed to evaluate associations 
between WWI, BMI, and CLBP, with subgroup analyses, smooth curve fitting, 
and threshold effect analyses conducted to enhance result robustness. Receiver 
operating characteristic (ROC) curves were plotted to determine which indicator 
demonstrated stronger association with CLBP. Subsequently, permutation 
feature importance was applied for machine learning feature selection, random 
undersampling was utilized to address data imbalance, and the dataset was 
randomly divided into training and testing sets at a 7:3 ratio. Six machine learning 
algorithms were employed to predict CLBP occurrence and identify the optimal 
algorithm.

Results: A total of 4,687 participants were included. Significant differences 
were observed between CLBP and non-CLBP groups in age, diabetes 
prevalence, smoking status, BMI, WWI, and education level. Both WWI and BMI 
showed significant associations with CLBP; after covariate adjustment, WWI 
demonstrated stronger and more consistent associations across quartiles. 
Subgroup analyses, nonlinear analyses, and ROC analyses further supported 
these findings. Machine learning feature selection identified 19 variables, with 
the Random Forest model demonstrating optimal performance.

Conclusion: Both WWI and BMI were associated with increased CLBP risk, with 
WWI potentially serving as a more sensitive predictive indicator. Prospective 
studies are needed to validate causal relationships. The Random Forest machine 
learning model demonstrated high accuracy in CLBP prediction.
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1 Introduction

Chronic low back pain (CLBP) is a highly prevalent condition 
occurring across all income levels—high, middle, and low—and 
affecting individuals of all ages, from children to older adults. Between 
1990 and 2015, the global burden of disability-adjusted life years 
(DALYs) due to CLBP increased by 54%, making it one of the leading 
causes of disability worldwide (1). According to the chronic low back 
pain Research Standards Task Force of the U.S. National Institutes of 
Health, CLBP is defined as a back pain problem lasting at least 3 
months and causing pain for at least half the time in the past 6 months 
(2). Preventing CLBP in high-risk populations is a critical challenge 
to address the substantial healthcare costs associated with treatment 
and rehabilitation (3). While factors such as obesity, smoking, and 
occupational risks have been linked to CLBP (4, 5), the relationship 
between CLBP, obesity, and obesity-related metrics remains unclear.

Increasing obesity has been associated with a higher risk of 
musculoskeletal disorders. Studies have shown that obesity can 
elevate fracture risk, partly due to increased estrogen levels in 
adipose tissue (6). Body mass index (BMI) and waist circumference 
(WC) are primary metrics for assessing obesity. BMI is the most 
widely used indicator, but it does not accurately differentiate obesity 
types or the distribution of fat. WC has been proposed as a more 
precise index for predicting obesity-related diseases than BMI, as it 
correlates strongly with abdominal fat imaging and is highly 
associated with cardiovascular disease (CVD) risk factors and 
mortality (7, 8). Limb fat distribution in CLBP patients tends to 
be higher than in non-CLBP patients, suggesting that obese CLBP 
patients require reduction of lower extremity adipose tissue (9). 
This indicates that indices focusing on fat distribution may be more 
appropriate for CLBP prediction. Commonly utilized 
anthropometric indicators for assessing abdominal obesity, such as 
waist-to-height or waist-to-weight ratios, can accurately reflect 
body fat percentage but cannot effectively reflect both fat and 
muscle mass components simultaneously. Increased adipose mass 
and decreased skeletal muscle mass may be  associated with 
inflammation (10, 11), and the imbalanced ratio of fat to muscle 
mass represents an important contributing factor in CLBP 
development (12, 13).

In 2018, Park (14) introduced a novel obesity metric, the weight-
adjusted waist index (WWI), which highlights the advantages of WC 
(15–18) and primarily reflects central obesity independent of body 
weight. Research has demonstrated significant associations between 
WWI and hypertension (19, 20), diabetes (21, 22), and cardiovascular 
diseases (23), among other conditions (24, 25). However, the 
relationship between CLBP risk, WWI, and BMI remains 
poorly understood.

Given this context, the present study aims to investigate the 
associations between WWI, BMI, and the risk of CLBP. Additionally, 
it seeks to explore potential factors influencing the relationship 
between WWI, BMI, and CLBP, which may hold significant 
implications for public health policies, prevention strategies, and 
patient education.

2 Materials and methods

2.1 Study design and population

This cross-sectional study utilized data from the 2009–2010 
National Health and Nutrition Examination Survey (NHANES), 
available on the NHANES website.1 Details of NHANES’ continuous 
design are provided on the platform. Since responses related to 
chronic CLBP in the NHANES dataset are only available within the 
inflammatory arthritis questionnaire, which targets individuals aged 
20 to 69 years, we included participants who completed this specific 
questionnaire for the assessment of CLBP. Exclusion criteria were: (1) 
missing CLBP data; (2) missing BMI values; (3) absent WC or weight 
measurements; and (4) pregnancy.

2.2 CLBP assessment

CLBP was identified based on NHANES criteria, defined as 
persistent pain in the region between the lower thoracic border and 
horizontal gluteal fold, lasting nearly daily for at least three consecutive 
months. Assessment required “yes” responses to the following 
questions: “Was there one time when you had pain, aching, or stiffness 
in your low back on almost every day for 3 or more months in a row?” 
and “Do you still have low back pain, aching, or stiffness?”

2.3 Study variables

The primary outcome was CLBP, while BMI and WWI served as 
independent variables. BMI was calculated as weight divided by the 
square of height (kg/m2), while WWI (cm/√kg) was derived by 
dividing WC (cm) by the square root of weight (kg).

2.4 Covariates

Demographic and clinical factors potentially influencing CLBP, 
BMI, and WWI were included as covariates: age, gender, education 
level, smoking status, alcohol consumption, poverty income ratio 
(PIR), sedentary time, diabetes status, and lumbar bone mineral 
density (BMD). Education was categorized into below high school, 
high school, or above high school. We referred to previous studies and 
categorized PIR into three groups: PIR < 1.5,1.5 ≤ PIR < 3.5, or 
PIR ≥ 3.5 (26). Alcohol consumption was defined as drinking more 
than 12 beverages in the past year, and smoking status as having 
smoked over 100 cigarettes in a lifetime. BMI was classified into three 
categories: <25 kg/m2, 25–30 kg/m2, and >30 kg/m2. Diabetes was 
based on a physician’s diagnosis, sedentary time (minutes/day) was 

1 https://www.cdc.gov/nchs/nhanes
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self-reported, and lumbar BMD was measured via dual-energy X-ray 
absorptiometry (DXA).

2.5 Statistical analysis

Statistical analyses were conducted using R software (RStudio: 
Integrated Development for R. RStudio, PBC, Boston, MA, USA) (27, 
28), with p < 0.05 considered statistically significant. Importing and 
visualizing datasets using the tidyverse package (29) in R, multiple 
imputation was performed using random forest methods via the mice 
package (30) to address missing data, generating five imputed datasets 
that incorporated all variables in the analysis. Results from the 
imputed datasets were combined for analysis. Characteristics of 
complete, missing, and imputed datasets were compared to ensure 
robustness. CDC-recommended sampling weights (“wtmec2yr”) were 
applied to reflect the U.S. population, following NHANES guidelines. 
Weighted means (± standard deviation) were used for continuous 
variables, and weighted percentages for categorical variables. Weighted 
logistic regression models were fitted using the survey package (31), 
and data manipulation was conducted using dplyr (32). T-tests 
assessed the relationships between BMI, WWI, and CLBP, and 
weighted logistic regression models were applied. Model 1 was 
unadjusted, Model 2 adjusted for gender, age, and education, and 
Model 3 adjusted for all covariates. Sensitivity analyses were 
performed to validate findings, including subgroup analyses, threshold 
effect analyses, smooth curve fitting by using the mgcv package (33). 
Log-likelihood ratio tests compared single-line and segmented models 
to identify thresholds. If nonlinear associations were observed, 
segmented regression models estimated effects and determined  
thresholds.

2.6 Machine learning algorithms

We conducted correlation tests for WWI and CLBP, demonstrating 
the high correlation between WWI and CLBP. However, we aim to 
accurately predict CLBP with the assistance of machine learning 
techniques, which has significant implications for the diagnosis and 
prevention of CLBP. To enhance the reliability of machine learning 
model training outcomes, we  incorporated additional variables 
correlated with the previously included covariates, all derived from the 
2009–2010 NHANES cycle dataset. These variables encompassed 
WWI-related measures (waist circumference and weight), 
BMD-related parameters (ward’s triangle BMD, femoral neck BMD, 
and lumbar spine BMD at L1-L4 vertebrae), Demographics-related 
factors (race, income level and marital status), and health status 
indicators (sleep quality, hypertension, healthy dietary patterns, and 
analgesic medication use), totaling 26 variables.

Python version 3.8 (Python Software Foundation, Wilmington, DE, 
USA) (34) is utilized for machine learning. The pandas (35) package was 
utilized for data analysis and processing. To conduct effective feature 
selection and enhance the interpretability of machine learning models, 
we employed permutation feature importance (PFI) (36) using the scikit-
learn package (37). PFI quantifies feature importance by evaluating the 
increase in model prediction error following the permutation of feature 
values, thereby disrupting their relationship with the target variable. This 
severe imbalance may cause the model to be biased toward the majority 

class (no CLBP symptoms), thereby reducing its effectiveness in 
predicting CLBP. To mitigate this issue, we reduced the sample size of the 
majority class (no CLBP) to match the sample size in the minority class 
(CLBP). By employing the imblearn package (38) to implement random 
undersampling, we ensured balanced class representation during model 
training. This approach was selected due to its simplicity and effectiveness 
in improving model performance when handling imbalanced data.

All participants were randomly allocated into training and testing 
sets using a 7:3 ratio. We employed six machine learning algorithms 
implemented using the scikit-learn, LightGBM (39), and XGBoost 
(40) packages, including Random Forest, Gradient Boosting, Light 
Gradient Boosting Machine (LightGBM), Naive Bayes, Support 
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost).

The hyperparameter optimization process involves systematic 
adjustment of key parameters for each machine learning model. This 
study employs a grid search-based hyperparameter tuning approach 
combined with five-fold cross-validation to evaluate different 
parameter combinations, ensuring model stability and minimizing the 
influence of random variables. The objective is to identify optimal 
configurations that maximize model performance, with particular 
attention to metrics such as accuracy and area under the curve (AUC). 
The optimal model for depression prediction was determined by 
comparing performance metrics on the test set.

3 Results

3.1 Basic clinical characteristics

Out of 10,537 participants from the 2009–2010 NHANES dataset, 
4,687 participants were included after excluding individuals with 
missing CLBP data (n = 3), BMI data (n = 3), waist and weight data 
(n = 349), and pregnant women (n = 67). The screening process is 
shown in Figure 1.

Table 1 compares the characteristics of participants with CLBP 
(n = 566) and those without CLBP (n = 4,121). Significant differences 
were observed in age, with CLBP individuals being older (47.35 years 
vs. 43.54 years, p < 0.001). The prevalence of diabetes was significantly 
higher in the CLBP group (15.91% vs. 8.66%, p < 0.001). Smokers 
were more prevalent among CLBP participants (62.37%) compared to 
the non-CLBP group (42.88%, p < 0.001). Both BMI and WWI were 
higher in the CLBP group (BMI: p < 0.001; WWI: 11.13 ± 0.80 vs. 
10.88 ± 0.80, p < 0.001). Education level also differed significantly, 
with more participants having less than high school education in the 
CLBP group (p = 0.014). No significant differences were observed in 
sedentary time, total spine BMD, drinking status, or sex distribution.

3.2 Association between WWI, BMI, and 
CLBP

Table 2 displays the associations between WWI, BMI, and CLBP 
across three models. For WWI, each unit increase was consistently 
associated with higher odds of CLBP, even after full adjustment for all 
covariates (Model 3: OR = 1.31, 95% CI: 1.08–1.60, p = 0.006). 
Quartiles of WWI also showed a significant trend, with participants 
in Quartile 4 having the highest odds of CLBP compared to Quartile 
1 (Model 3: OR = 1.62, 95% CI: 1.12–2.34, p = 0.010).
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For BMI, each unit increase was associated with a smaller, yet 
significant, increase in CLBP risk (Model 3: OR = 1.03, 95% CI: 1.01–
1.05, p = 0.006). While Quartile 3 showed significant associations 
across models, Quartile 4 results were less consistent. Overall, WWI 
demonstrated a stronger and more consistent relationship with CLBP 
than BMI, suggesting its potential as a better predictor of CLBP.

3.3 Subgroup analysis

Subgroup analyses (Table 3) revealed positive associations between 
WWI, BMI, and CLBP across various demographic and health-related 
groups, including age, sex, education, smoking, and diabetes. WWI had 
a stronger effect size in individuals aged 40–60 years, males, and those 
with lower education levels. BMI associations were notable among 
individuals with diabetes or lower BMD. No significant interaction 
effects were observed, confirming the robustness of the findings.

3.4 Threshold effect analysis

Smooth curve fitting and threshold effect analysis (Figure  2; 
Table 4) identified nonlinear relationships between WWI, BMI, and 
CLBP. For BMI, a threshold was identified at 20.17, where BMI had a 
negative association with CLBP below this value (β = 0.84, 95% CI: 
0.76–0.93) and a positive association above it (β = 1.03, 95% CI: 1.03–
1.04). For WWI, the threshold was 11.6, with a significant positive 
association below the threshold (β = 1.31, 95% CI: 1.21–1.42), while 
no significant relationship was observed above the threshold.

3.5 ROC curve analysis between BMI and 
WWI

Compared to BMI, WWI demonstrates slightly higher diagnostic 
performance, with an AUC of 0.589 versus 0.573 for BMI (Figure 3). 

However, both indicators exhibit limited discriminative ability, as their 
ROC curves lie relatively close to the diagonal. Nevertheless, WWI 
appears to be  a marginally more promising indicator for CLBP, 
offering slightly better predictive value than BMI. Therefore, 
we  applied machine learning methods to further evaluate the 
predictive capability of WWI for CLBP.

3.6 Machine learning model performance 
comparison

3.6.1 Machine learning feature selection
We employed PFI to screen the 26 included variables, selecting 19 

variables with positive perm importance mean values (analgesic 
medication use, waist circumference, weight, sleep quality, ward’s 
triangle BMD, WWI, education, smoking status, hypertension, 
income level, sedentary, diabetes, PIR, L2BMD, marital status, BMI, 
sex, L4BMD, femoral neck BMD) for inclusion in the machine 
learning models. Detailed results of PFI feature selection are provided 
in Supplementary file.

3.6.2 Machine learning algorithm performance 
comparison

Six machine learning models (Random Forest, Gradient Boosting, 
LightGBM, Naive Bayes, SVM, XGBoost) were applied to the training 
set for model training, and the test set was used to evaluate the 
predictive performance of these models. Since multiple imputation via 
random forest methods was employed for missing value imputation, 
we compared the mean values across the 5 imputed datasets. Figure 4 
shows the receiver operating characteristic (ROC) curves for machine 
learning models predicting CLBP.

Among all model test results, Random Forest consistently 
achieved the highest metrics across all categories, indicating robust 
overall performance. The Random Forest model achieved the best 
overall performance, with the highest accuracy (0.85), excellent 
sensitivity (0.88), and strong specificity (0.82), indicating a 

FIGURE 1

Screening process for participant inclusion. NHANES: National Health and Nutrition Examination Survey.
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TABLE 1 Baseline characteristics.

Variable Non-CLBP #

n = 4,121
CLBP
n = 566

p-value

AGE (years) 43.54 ± 14.11 47.35 ± 13.21 <0.001

Sex (%) 0.089

  Male 2043 (49.58%) 259 (45.76%)

  Female 2078 (50.42%) 307 (54.24%)

Education (%) 0.014

  Less than high school 1,092 (26.56%) 173 (30.57%)

  High school 937 (22.79%) 143 (25.27%)

  More than high school 2083 (50.66%) 250 (44.17%)

Diabetes (%) <0.001

  Diabetes 351 (8.66%) 88 (15.91%)

  Non-diabetes 3,701 (91.34%) 465 (84.09%)

Drinking status (%) 0.179

  Drinking 2,831 (75.94%) 415 (78.60%)

  Non-drinking 897 (24.06%) 113 (21.40%)

Smoking status (%) <0.001

  Non-smoking 2,354 (57.12%) 213 (37.63%)

  Smoking 1767 (42.88%) 353 (62.37%)

PIR (%) <0.001

  0–1.3 1,266 (33.99%) 216 (41.06%)

  1.3–3.5 1,320 (35.44%) 186 (35.36%)

  >3.5 1,139 (30.58%) 124 (23.57%)

  BMI (kg/m2) 28.92 ± 6.61 30.85 ± 7.90 <0.001

BMI <0.001

  0–25 1,207 (29.29%) 125 (22.08%)

  25–30 1,388 (33.68%) 172 (30.39%)

  >30 1,526 (37.03%) 269 (47.53%)

  WWI (cm/√kg) 10.88 ± 0.80 11.13 ± 0.80 <0.001

WWI <0.001

  8.42–10.35 1,071 (25.99%) 100 (17.67%)

  10.35–10.90 1,056 (25.62%) 116 (20.49%)

  10.90–11.43 1,014 (24.61%) 158 (27.92%)

  11.43–13.82 980 (23.78%) 192 (33.92%)

Sedentary (min) 313.04 ± 196.27 326.74 ± 201.60 0.121

Total spine BMD 1.04 ± 0.14 1.04 ± 0.14 0.585

# Unweighted number. BMI, body mass index; WWI, weight-adjusted waist index; CLBP, chronic low back pain; BMD, bone mineral density; PIR, Personal Income Ratio.
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well-balanced ability to identify both positive and negative cases. It 
also had the highest F1-score (0.85), reflecting a strong balance 
between precision and recall. Moreover, its AUC was the highest 
(0.89), demonstrating outstanding discriminatory power. Naive 
Bayes also performed well, with good accuracy (0.81), balanced 
sensitivity (0.81) and specificity (0.80), and a solid F1-score (0.81). 
Its AUC (0.89) was nearly comparable to Random Forest, with a 
slightly narrower confidence interval, suggesting stable predictive 
power. XGBoost showed strong performance as well, with high 
accuracy (0.83), good sensitivity (0.85), and specificity (0.81). 
Table 5 presents detailed test results for all machine learning models 
using the test set.

4 Discussion

This cross-sectional study of 4,687 participants examined the 
associations between WWI, BMI, and CLBP risk. Both higher WWI 
and BMI were significantly associated with increased CLBP risk. 
Furthermore, WWI demonstrated a stronger and more consistent 
association with CLBP risk across quartiles, suggesting it may serve 
as a more sensitive body composition indicator for predicting 
chronic low back pain. Subgroup analyses revealed positive 
associations between WWI, BMI, and CLBP across various age 
groups, genders, education levels, and health-related subgroups. No 
significant interaction effects were observed among these variables, 
supporting the robustness of these findings. Smooth curve fitting 
and threshold effect analyses identified nonlinear relationships 
between WWI, BMI, and CLBP, with thresholds at BMI 20.17 and 
WWI 11.6. The associations with CLBP exhibited different 
characteristics on either side of these thresholds, suggesting potential 

underlying mechanisms influencing WWI and BMI effects on CLBP 
near these critical points.

CLBP represents a cardinal manifestation of numerous conditions, 
including lumbar disc herniation, spinal stenosis, and spondylolisthesis, 
warranting substantial clinical and patient attention. Managing these 
underlying pathologies presents considerable therapeutic challenges 
(41–43). Prolonged CLBP is closely linked to a decline in quality of life, 
reduced work capacity, and higher prevalence of mental health 
disorders (44, 45). Moreover, research suggests that CLBP may 
contribute to the acceleration of biological aging (46). The extensive 
use of analgesics resulting from CLBP is associated with increased 
healthcare utilization among individuals with severe CLBP (47, 48).

Obesity and overweight have been confirmed as major risk factors 
for various diseases. The World Health Organization (WHO) defines 
obesity as excessive fat accumulation beyond normal physiological 
needs, caused by a long-term imbalance between caloric intake and 
energy expenditure (49). Factors such as slow metabolism, reduced 
physical activity, dietary imbalances, and life stress contribute to the 
increased risk of obesity (50). A study involving 4,289 participants 
demonstrated a significant association between obesity and increased 
risk of CLBP (51). Both metabolically healthy and unhealthy obesity 
were shown to significantly increase the risk of joint pain and low back 
pain (52). This highlights the critical role of regional fat distribution 
in the pathogenesis of obesity-related diseases, although few studies 
have explored how fat distribution impacts CLBP (9).

The emergence of the WWI index addresses the limitations of 
traditional body mass index (BMI) in obesity assessment, thereby 
more accurately reflecting intracorporeal fat distribution. Different fat 
distribution patterns reflect biomechanical stress in various body 
regions, while BMI cannot differentiate between muscle mass and fat 
mass. Recent studies have increasingly demonstrated the association 

TABLE 2 Association between WWI, BMI, and CLBP.

Mode Model 1 Model 2 Model 3

VAR OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

WWI (continuous 

variable) (cm/√kg)

1.54 (1.29–1.85) <0.0001 1.40 (1.13–1.73) 0.002 1.31(1.08–1.60) 0.006

WWI (categorical variable)

 Quartile 1 Ref Ref Ref Ref Ref Ref

 Quartile 2 1.08 (0.84–1.39) 0.531 0.98 (0.77–1.26) 0.902 0.97 (0.76–1.25) 0.822

 Quartile 3 1.71 (1.33–2.22) <0.0001 1.46 (1.10–1.96) 0.010 1.43 (1.07–1.92) 0.015

 Quartile 4 2.31 (1.64–3.28) <0.0001 1.84 (1.24–2.73) 0.002 1.62 (1.12–2.34) 0.010

P for trend 1.35 (1.20–1.53) <0.0001 1.26 (1.10–1.44) 0.002 1.21 (1.06–1.37) 0.004

BMI (continuous 

variable) (kg/m2)

1.04 (1.02–1.06) <0.0001 1.03 (1.01–1.05) 0.001 1.03 (1.01–1.05) 0.006

BMI (categorical variable)

 Quartile 1 Ref Ref Ref Ref Ref Ref

 Quartile 2 1.31 (1.07–1.59) 0.009 1.20 (0.96–1.49) 0.107 1.20 (0.95–1.51) 0.130

 Quartile 3 1.72 (1.23–2.41) <0.0001 1.55 (1.09–2.00) 0.002 1.45 (1.08–1.95) 0.013

P for trend 1.31 (1.13–1.52) <0.0001 1.25 (1.09–1.44) 0.002 1.21 (1.03–1.40) 0.017

Model 1 was crude model. Model 2 adjusting age, sex, education level. Model 3 adjusting all covariates. WWI (categorical variable), Quartile 1: 8.42–10.35; Quartile 2: 10.35–10.90; Quartile 3: 
10.90–11.43; Quartile 4: 11.43–13.82; BMI (categorical variable), Quartile 1:0–25; Quartile 2: 25–30; Quartile 3: >30; Ref, reference; OR, odds ratio; CI, confidence interval; BMI, body mass 
index; WWI, weight-adjusted waist index; CLBP, chronic low back pain.
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TABLE 3 Subgroup analysis of the relationship between WWI, BMI, and CLBP.

Groups WWI (continuous) BMI (continuous)

Model 3 OR (95%CI) P for interaction Model 3 OR (95%CI) P for interaction

Age (year) 0.1041 0.1459

  20–40 1.16 (0.89, 1.53) 1.01 (0.98, 1.04)

  40–60 1.54 (1.32, 1.80) 1.04 (1.02, 1.06)

  >60 1.16 (0.75, 1.80) 1.03 (0.98, 1.07)

Gender 0.4947 0.1635

  Male 1.37 (1.13, 1.67) 1.02 (1.00, 1.04)

  Female 1.27 (1.01, 1.61) 1.03 (1.01, 1.06)

Education 0.5145 0.2200

  Less than high school 1.43 (1.05, 1.95) 1.05 (1.00, 1.09)

  High school 1.49 (1.10, 2.01) 1.04 (1.01, 1.08)

  More than high school 1.18 (0.90, 1.54) 1.01 (0.99, 1.03)

Smoking status 0.6684 0.8183

  Non-smoking 1.27 (0.96, 1.69) 1.03 (1.00, 1.05)

  Smoking 1.35 (1.11, 1.63) 1.03 (1.00, 1.06)

Drinking status 0.1628 0.4056

  Drinking 1.37 (1.10, 1.70) 1.02 (1.00, 1.05)

  Non-drinking 1.18 (0.96, 1.46) 1.03 (1.01, 1.06)

Diabetes 0.7321 0.0549

  Diabetes 1.24 (0.85, 1.82) 1.07 (1.03, 1.12)

  Non-diabetes 1.32 (1.08, 1.62) 1.02 (1.00, 1.04)

PIR 0.0079 0.2998

  0–1.3 1.67 (1.29, 2.16) 1.05 (1.01, 1.08)

  1.3–3.5 1.09 (0.86, 1.38) 1.02 (0.98, 1.05)

  >3.5 1.37 (1.03, 1.83) 1.02 (0.99, 1.05)

Total spine BMD 0.8257 0.0036

  Low 1.34 (1.02, 1.76) 1.05 (1.01, 1.09)

  Middle 1.21 (0.91, 1.62) 1.01 (0.99, 1.04)

  High 1.39 (1.00, 1.92) 1.04 (1.01, 1.06)

Model 3 adjusting all covariates. Total spine BMD: Low (0.85–0.95); Middle (1.02–1.06); High (1.12–1.23); Ref, reference; OR, odds ratio; CI, confidence interval; BMI, body mass index; WWI, weight-adjusted waist index.

https://doi.org/10.3389/fpubh.2025.1617732
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1617732

Frontiers in Public Health 08 frontiersin.org

between WWI and skeletal muscle. WWI can estimate fat and muscle 
mass, potentially influencing bone health (53). In community-
dwelling adults, higher WWI values were associated with adverse 
body composition outcomes, indicating high fat mass, low muscle 
mass, and low bone mass. WWI has been proven to predict early 
deterioration of trabecular bone structure (54). Higher WWI was 
associated with increased prevalence of hip and spinal fractures (55). 
Furthermore, WWI is applicable for predicting metabolic risk, 
correlating with diabetes and cardiovascular disease risk and mortality 
(56). WWI can also predict renal function and compared to BMI, 
contributes to better patient prevention and treatment strategies (57). 
Emerging evidence suggests a potential association between chronic 
pain and increased adiposity. Women with larger hip or waist 
circumferences exhibit a significantly higher prevalence of chronic 
pain, which is strongly correlated with elevated levels of inflammatory 
biomarkers such as IL-6 (58).

The prediction of CLBP can serve as a valuable indicator for 
at-risk populations. We employed six machine learning algorithms 
to predict the occurrence of CLBP, aiming to help with early 
prevention efforts. Ultimately, we found that the Random Forest 
model was the most suitable predictive model. Additionally, 
we  found that Naive Bayes and XGBoost also demonstrated 

TABLE 4 Threshold effect analysis of the relationship among WWI, BMI, and CLBP.

Categories WWI p-value BMI p-value

Linear effect model 1.24 (1.17, 1.31) <0.0001 1.03 (1.02, 1.04) <0.0001

Non-linear effect model

 Infection point (K) 11.6 20.17

 < K, effect 1 1.31 (1.21, 1.42) <0.0001 0.84 (0.76, 0.93) 0.0009

 > K, effect 2 1.07 (0.92, 1.25) 0.3812 1.03 (1.03, 1.04) <0.0001

 Effect difference between 2 and 1 0.82 (0.67, 0.99) 0.0418 1.22 (1.11, 1.35) <0.0001

 Log-likelihood ratio 0.04 <0.001

BMI, body mass index; WWI, body mass index; p, p-value; Threshold effect analysis adjusted all variables in Table 1.

FIGURE 3

ROC curve for WWI, BMI, and CLBP. BMI, Body Mass Index; WWI, 
Waist-to-Weight index. CLBP, Chronic Low Back Pain.

FIGURE 2

(a) Smooth curve fitting of WWI and CLBP; (b) Smooth curve fitting of BMI and CLBP. The red line represents the fitted curve, and blue lines indicate 
the 95% confidence interval.
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excellent predictive performance, with strong results across 
evaluation metrics including F1-score, accuracy, and sensitivity, 
thereby confirming that the variables included in this study show 
significant potential for CLBP prediction.

This study has several strengths. First, it used a large population 
dataset to investigate the relationships between WWI, BMI, and 
CLBP. The data were derived from an authoritative database, making 
the results representative of the general U.S. population. In addition, 
the study incorporated factors such as lumbar spine BMD, diabetes, 
smoking, alcohol consumption, and poverty levels, addressing 
potential confounders related to CLBP and ensuring the reliability of 
the findings. However, there are limitations. First, the NHANES 
database included CLBP data only from the 2009–2010 cycle, limiting 

the sample size. Second, NHANES data represent the U.S. population 
only, restricting the study’s geographical scope. Third, CLBP was self-
reported through questionnaires, which may introduce some 
measurement errors. In the future, we will conduct in-depth research 
on other chronic pain conditions, such as thoracic spine pain (59), 
headaches, cervical spine pain (60), etc.

5 Conclusion

This study found a significant association between WWI and 
CLBP, and the Random Forest machine learning model demonstrated 
good predictive performance for CLBP.

FIGURE 4

The ROC curves for the six machine learning models. MI, ITER represents the 5 new datasets following multiple imputation.

TABLE 5 Performance metrics of different machine learning approaches.

Model Accuracy Precision Sensitivity Specificity F1 Score AUC (95% 
CI)

Random Forest 0.846 0.827 0.876 0.816 0.851 0.894 (0.855–

0.927)

Naive Bayes 0.806 0.802 0.813 0.799 0.807 0.893 (0.857–

0.923)

XGBoost 0.831 0.818 0.852 0.811 0.835 0.883 (0.842–

0.917)

Gradient Boosting 0.828 0.812 0.854 0.802 0.833 0.876 (0.835–

0.912)

LightGBM 0.811 0.803 0.825 0.798 0.814 0.871 (0.830–

0.906)

SVM 0.549 0.601 0.293 0.806 0.394 0.551 (0.493–

0.609)
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