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Background: Influenza remains a significant public health challenge worldwide, 
necessitating robust forecasting models to facilitate timely interventions and 
resource allocation. The aim of this study was to develop a long short-term 
memory (LSTM)-based short-term forecasting model to accurately predict 
weekly influenza case counts in Tokyo, Japan.
Method: By using weekly time-series data on influenza incidence in Tokyo from 
2000 to 2019, along with meteorological variables, we developed four distinct 
models to evaluate the impact of the external variables of mean temperature, 
relative humidity, and national public holidays. After model training, we assessed 
the predictive performance on an independent test dataset, using mean square 
error (MSE), root mean square error (RMSE), mean absolute error (MAE), and 
Pearson’s correlation coefficient.
Results: During the study period, 1,445,944 influenza cases were analyzed. 
The model incorporating all three external variables demonstrated superior 
predictive accuracy, with an MSE of 3,646,084, RMSE of 1,909, MAE of 849, 
and Pearson’s correlation coefficient of 0.924. These findings underscore the 
substantial contribution of these external factors to improving the prediction 
performance.
Conclusion: This study highlighted the efficacy of LSTM-based models for 
short-term influenza forecasting and reinforces the importance of integrating 
meteorological variables and national public holidays into predictive frameworks. 
Our optimal model provided more precise forecasts of influenza activity in 
Tokyo, Japan.
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1 Introduction

Seasonal influenza remains a significant global public health challenge, contributing to 
annual epidemics with substantial morbidity and mortality burdens in temperate regions such 
as Europe and the United States (1). The infection is associated with significant systemic 
complications, including an increased risk of myocardial infarction, stroke, pneumonia, 
glycemic instability, and ischemic heart disease (2). Despite extensive research, the mechanisms 
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driving the seasonal variability in influenza transmission are not fully 
understood, necessitating the development of models that incorporate 
genetic, environmental, and demographic factors (3, 4). Behavioral 
factors further shape seasonal patterns, with indoor crowding during 
colder months, low humidity, and temperature fluctuations 
hypothesized to promote outbreaks. In addition, distinct seasonal 
patterns in tropical regions align with rainy periods (5). These 
complexities underscore the need for advanced modeling techniques 
to better understand and predict influenza dynamics.

Traditional statistical models often fail to capture the dynamic and 
time-dependent nature of seasonal influenza trends. Previous studies 
have proposed various forecasting approaches, including statistical 
models (e.g., generalized linear models and autoregressive integrated 
moving average [ARIMA] time-series models) and mathematical 
models (e.g., susceptible-exposed-infected-recovered models) (6–8). 
By contrast, neural networks employing long short-term memory 
(LSTM) nodes have demonstrated substantial potential in recent years 
(9–12). By addressing issues such as vanishing gradients through 
mechanisms such as the constant error carousel and “forget gates” 
LSTM networks enable more robust and accurate time-
series forecasting.

This study employed LSTM-based neural networks to investigate 
seasonal influenza epidemics in Tokyo, Japan, from 2000 to 2019. By 
leveraging readily available meteorological data, this study seeked to 
enhance the predictive accuracy and generate actionable insights for 
targeted public health interventions. In this study, we  developed 
short-term forecasting models using LSTM to predict weekly 
influenza case counts 1 week in advance by using influenza 
surveillance and meteorological data from the several preceding 
weeks. Additionally, we report the prediction accuracy of our model 
for Tokyo, Japan.

2 Materials and methods

2.1 Study location

Tokyo, officially designated as the Tokyo Metropolis and serving 
as the capital city of Japan, is situated in the western Pacific region at 
a latitude of 35°N and longitude of 139°E (13). The region is 
characterized by a temperate climate with four distinct seasons. 
Summer, which extends from June to August, is typically hot and 
humid, whereas winter, which extends from December to February, is 
cold and dry. In Japan, this region primarily experiences a winter 
influenza epidemic. This analysis utilized weekly time-series datasets 
of influenza incidence and meteorological variables collected over a 
20-year period (2000–2019) in Tokyo, Japan.

2.2 Epidemiological data

2.2.1 National influenza surveillance data
We collected weekly influenza case counts in Tokyo from the 

Infectious Disease Weekly Report published by the Japan Institute for 
Health Security by the Ministry of Health, Labor, and Welfare, Tokyo, 
Japan (14). The reporting criteria for influenza-like illness included (1) 
sudden onset of symptoms, (2) fever exceeding 38.0°C, (3) upper 
respiratory tract inflammation, and (4) systemic symptoms. A 

confirmed case was identified by meeting all four criteria or at least 
one criterion along with a positive rapid diagnostic test.

2.2.2 Meteorological data
Daily mean temperature (°C), relative humidity (%), and total 

rainfall (mm) were collected from the Japan Meteorological Agency 
single monitoring station situated in the capital city (15). These daily 
observations were aggregated to compute the weekly averages.

2.2.3 Other data
The dataset also incorporated variables for the year, month, week, 

and weekly number of public holidays (Holidays).

2.3 Preprocessing of the dataset

2.3.1 Scaling dataset
In the training process of the neural networks, the scale of the 

dataset values affects the stability of training convergence (16). Thus, 
the weekly mean number of influenza cases (Flucases) was normalized, 
whereas the weekly mean temperature and relative humidity 
(TempAve and Rh, respectively) were standardized. In particular, for 
the normalization of Flucases, the minimum and maximum values 
were fixed at 0 and 30,000, respectively, and the data were subsequently 
mapped to a range of 0–100.

2.3.2 Data partitioning
Our dataset, spanning 2000–2019, encompassed 1,040 weeks. The 

initial 740 weeks were allocated to the training set, whereas the 
remaining 260 weeks served as the test set for the final evaluation of 
the model’s predictive performance (17). Data partitioning is 
illustrated in Figure 1.

2.3.3 Forecasting models
In this study, we  introduced a series of short-term influenza 

forecasting models based on LSTM networks (9–12). To account for 
the influence of external factors—specifically, TempAve, Rh, and 
Holidays—on the fluctuations in Flucases, we developed four distinct 
models: (1) Vanilla LSTM, which utilizes only Flucases as the input 
and output variables; (2) Auxiliary LSTM, which extends the Vanilla 
LSTM by incorporating the Holidays as an auxiliary variable; (3) 
Vector LSTM, which employs Flucases, TempAve, and Rh as input and 
output variables; and (4) Auxiliary-vector (Aux-vec) LSTM:, which 
combines the Vector LSTM with the Holidays as an auxiliary variable.

Our LSTM models used the values of Flucases, TempAve, and Rh 
from up to the preceding M  weeks as an input sequence, namely: 

( )− − −− − 
 , 2, 11 ,t M t tt My y y y . A multilayer perceptron (MLP) was 
then applied to the final hidden vector th  of the LSTM to predict the 
values of Flucases, TempAve, and Rh for the subsequent week. In the 
Vector LSTM and Aux-vec LSTM, we defined ∈ 3y   as a vector with 
three values: Flucases, TempAve, and Rh. In the Vanilla LSTM and 
Auxiliary LSTM models, ∈y  denoted the scalar value of Flucases. 
Furthermore, in the Auxiliary LSTM and Aux-vec LSTM models, 
we  included the Holidays for the preceding M  
weeks—i.e., ( )− − −− − 

 , 2, 11 ,t M t tt Mx x x x —as an auxiliary input 
sequence, in addition to using the number of national public holidays 
in the following week, tx , as an auxiliary input variable.
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2.3.4 Objective function of our models
We formulated the objective function of each model in terms of 

the learnable parameters w (comprising those of the LSTM and the 
MLP) and the observed samples. 0, 2, 1,: ,T TY y y y y− =    which 
denotes the sequence of observations over T  weeks, where each ty  is 
a vector containing influenza cases, TempAve, and Rh. Likewise, 

0, 1, 1,: T TX x x x x− =    represents the Holidays.
For the Vanilla LSTM and Vector LSTM models, we defined the 

log-likelihood objective function as follows:

	
( ) ( ) [ ]( )0 , 1

1
log | log log |, ,,

T

t t M t
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p Y w p y p y Y w− −
=
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where the conditional probability is assumed to follow a 
Gaussian distribution:
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(3)

where = 3d  corresponds to the dimensionality of ty . In this 
instance, the notation [ ] ( ), 2, 11 ,, 1 : t M t tt Mt M tY y y y y− − −− −− −

 =    

denotes the sequence of observations over the preceding M  weeks. In 
our model architecture, the sequence [ ]− −, 1t M tY  is provided as the 
input to the LSTM. The final hidden state, th , produced by the LSTM 
is then passed to the MLP, which generates the output [ ]( )− −, 1 ,t M tf Y w  
that predicts ty .

For the Auxiliary LSTM and Aux-vec LSTM models, we extended 
the formulation to incorporate the auxiliary variable X  (i.e., the 
Holidays) alongside the primary observations. In particular, the 
log-likelihood objective function is defined as
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(4)

where the conditional distribution is assumed to be Gaussian:
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and the Gaussian density function is given by
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(6)

where = 3d  corresponds to the dimensionality of ty  (i.e., Flucases, 
TempAve, and Rh). We  also defined the sequences as follows: 

[ ] ( ), 2, 11 ,, 1 : t M t tt Mt M tY y y y y− − −− −− −
 =  

 

FIGURE 1

Temporal distribution of weekly influenza cases and data partitioning. This figure illustrates the temporal distribution of weekly influenza cases over the 
study period from 2000 to 2019, encompassing approximately 1,040 weeks (i.e., 52 weeks × 20 years). The x-axis represents the week number since 
2000, whereas the y-axis denotes the number of reported influenza cases. The dataset was partitioned into two distinct subsets: the training dataset 
(blue line), comprising the first 740 weeks and utilized for training the long short-term memory-based forecasting models, and the test dataset (yellow 
line), encompassing the subsequent 260 weeks and reserved for evaluating predictive performance on unseen data. Abbreviations: Flucases, weekly 
mean number of influenza cases.
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[ ] ( ), 1,1 ,, : t M t tt Mt M tX x x x x− −− −−
 =   . In our model architecture, 

[ ]− −, 1t M tY  and [ ]− −, 1t M tX  were both input into the LSTM. The final 

hidden state, th , produced by the LSTM, in conjunction with the 
current auxiliary input, tx , is then provided to the MLP to generate the 
predictions [ ] [ ]( )− − − −, 1 , 1, ,t M t t M tf Y X w  for ty . We  optimized 
parameter w of each model by using stochastic gradient descent.

2.3.5 Covariate contribution assessment
To assess the relative contribution of each covariate (i.e., 

TempAve, Rh, and Holidays), we  compared the predictive 
accuracy—measured by log-likelihood on the test dataset—
between the full Aux-vec LSTM model and reduced models in 
which each covariate was systematically omitted. In addition to the 
four base models (Vanilla LSTM, Auxiliary LSTM, Vector LSTM, 
and Aux-vec LSTM), we constructed three reduced models: Model 
1 (Flucases, TempAve, and Rh), Model 2 (Flucases, Rh, and 
Holidays), and Model 3 (Flucases, TempAve, and Holidays). Model 
1 corresponds to the Vector LSTM, while Models 2 and 3 are based 
on the LSTM network of the Aux-vec LSTM and use the same 
input sequence length as the Aux-vec LSTM. Let ( )allM  represent 
the log-likelihood of the full Aux-vec LSTM model using all 
covariates, and ( )Model i  denote the log-likelihood of the 
reduced Model i. The relative contribution of each covariate was 
quantified as the difference between ( )allM  and ( )Model i . 
We refer to this difference as the “likelihood-based contribution 
score” for clarity. Specifically: contribution score of Holidays 

( ) ( )all: Model 1M= −  ; contribution score of TempAve 

( ) ( )all: Model 2M= −  ; and contribution score of Rh 

( ) ( )all: Model 3M= −  . These scores reflect the extent to which 
each covariate improved model fit based on log-likelihood and 
should be interpreted as relative indicators of contribution, rather 
than absolute indicators.

2.3.6 Hyperparameters
Supplementary Table 1 details the hyperparameters employed 

during the training of our models. The dataset was partitioned using 
a 75:25 split, with the initial 75% allocated for training and the 
remaining 25% reserved for testing (17).

2.3.7 Evaluation metrics
To assess the predictive performance of our forecasting models, 

we  employed four evaluation metrics: the mean squared error 
(MSE), root mean squared error (RMSE), mean absolute error 
(MAE), and Pearson correlation coefficient (18, 19). The variable 

iy  denoted the observed values and if , the corresponding model 
predictions for = …1,2, , ,i N  where N  denoted the total number 
of observations.

The MSE is defined as the arithmetic mean of the squared 
differences between the observed values and their corresponding 
predictions. This value is formally given by

	
( )21

1: N
i iiMSE y f

N =
= −∑

	
(7)

where iy  is the observed value, if  is the predicted value, and N  is 
the total number of observations.

The RMSE is the square root of the MSE

	
( )21

1: : ,N
i iiRMSE MSE y f

N =
= = −∑

	
(8)

thereby providing an error measure in the same units as the target 
variable, which facilitates a more intuitive interpretation.

MAE was calculated as the average of the absolute differences 
between the observed and predicted values:

	

2
1

1: .N
i iiMAE y f

N =
= −∑

	
(9)

Unlike the MSE, the MAE does not disproportionately emphasize 
larger errors and offers a more robust measure in the presence 
of outliers.

The Pearson’s correlation coefficient (denoted by r ) quantifies the 
linear relationship between the observed and predicted values. It is 
defined as

	

( )( )

( ) ( )
1
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i

N N

i i
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y y f f
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y y f f
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=

− −

∑

∑ ∑
	

(10)

where y and f  are the mean values of the observed and predicted 
datasets, respectively. This coefficient ranges from −1 to 1, with values 
near 1 indicating a strong positive linear correlation, values near −1 
indicating a strong negative linear correlation, and values around 0 
suggesting no linear correlation.

2.4 Software

Our experiments were conducted using Python (version 
3.10.13; Python Software Foundation, Wilmington, DE, 
United States) in conjunction with the PyTorch deep learning 
framework (version 2.4.0; Linux, San Francisco, CA, 
United  States). The source code and dataset supporting the 
findings of this study are publicly available at: https://github.com/
daiki-ko/flu_forecast_rnn.git.

2.5 Ethical approval and consent to 
participate

This modeling study analyzed publicly available data. The datasets 
were de-identified and fully anonymized in advance, and the analysis 
of publicly available data with no identifying information did not 
require ethical approval.
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3 Results

3.1 Descriptive statistics

Over the study period from 2000 to 2019, a total of 1,445,944 
influenza cases were reported in Tokyo (Supplementary Table 2). The 
average number of weekly influenza cases was 1,390 (range, 0–26,635). 
The weekly meteorological variables spanned from 1.7°C to 31.0°C for 
mean temperature, from 28.7 to 94.7% for relative humidity, and from 
0.0 mm to 337.5 mm for total rainfall.

3.2 Comparison and analysis of models

To determine the optimal input sequence length (M ) for our 
LSTM models, we  evaluated the log-likelihood of the prediction 
models for Flucases by varying M from 1 week to 52 weeks (i.e., 
1 year). Figure 2 illustrates the log-likelihood values achieved in the 
test dataset for the different values of M . The most favorable 
log-likelihood values were ultimately −4,303,471 for the Vanilla LSTM 
at M  = 26, −4,068,070 for the Auxiliary LSTM at M  = 26, −3,692,631 
for the Vector LSTM at M  = 26, and −3,444,597 for the Aux-vec 
LSTM at M  = 13. Considering these findings, we fixed the M  value 
for each model at the optimal value, as indicated previously, for the 
subsequent analyses.

We evaluated the predictive performance of the models on the test 
dataset by using several metrics, including MSE, RMSE, MAE, and 
Pearson’s correlation coefficient. The comprehensive evaluation 
metrics for each model are listed in Table 1, and the corresponding 
prediction outcomes are shown in Figure 3.

The progression of the error metrics across the models revealed 
consistent improvement. The Vanilla LSTM model registered an MSE 
of 4,303,471, an RMSE of 2,074, and an MAE of 880. Incorporating 
the Holidays as an auxiliary variable in the Auxiliary LSTM led to 
modest improvements, reducing the MSE to 4,068,070, RMSE to 
2,016, and MAE to 899. The performance was further enhanced in the 
Vector LSTM model, which integrated meteorological variables (i.e., 
TempAve and Rh), resulting in an MSE of 3,692,631, an RMSE of 
1,921, and an MAE of 886. The most marked improvement occurred 
in the Aux-vec LSTM model, which combines meteorological and 
holiday data, achieving the lowest error metrics with an MSE of 
3,444,597, an RMSE of 1,856, and an MAE of 897.

The Pearson’s correlation coefficients concomitantly exhibited a 
gradual increase across the models—from 0.916 for the Vanilla LSTM 
to 0.927 for the Aux-vec LSTM—indicating enhanced predictive 
accuracy. These findings illustrated that the systematic integration of 
external factors resulted in a steady reduction in error metrics and a 
corresponding improvement in the forecasting performance. In 
particular, the Aux-vec LSTM model demonstrated superior 
capability, especially in forecasting peak values, as further supported 
by the visual comparisons in Figure 3.

To evaluate the relative contribution of each covariate (i.e., 
TempAve, Rh, and Holidays), we  assessed changes in predictive 
accuracy—quantified by log-likelihood on the test dataset—when 
each covariate was systematically omitted from the full Aux-vec LSTM 
model. As described in Section 2.3.5, we compared the performance 
of three reduced models (Model 1, Model 2, and Model 3), each 
lacking one of the covariates of interest, to the full model. The results 
are summarized in Supplementary Table  3. We  quantified the 
contribution of each covariate using a “likelihood-based contribution 
score,” calculated as the difference in log-likelihood between the full 
model (incorporating all covariates) and the corresponding reduced 
model with a covariate omitted. Specifically, the contribution scores 
were as follows: TempAve, 8,341,461; Rh, 3,745,779; and Holidays, 
2,480,335. These results indicate that TempAve had the greatest 
relative impact on model performance, followed by Rh and Holidays. 
The likelihood-based contribution scores are also presented 
graphically in Supplementary Figure 1.

In the additional analysis (Supplementary material 1), we assessed 
the potential contribution of weekly total rainfall by explicitly 
comparing forecasting metrics from models with rainfall 
(Supplementary Table 4) to those from our original models without 
rainfall (Table 1). Specifically, we compared the performance metrics 

FIGURE 2

Log-likelihood values for each model are compared as a function of 
the input sequence length (M). The figure displays the log-likelihood 
corresponding to sequences of 1 week, 1 month (i.e., 4 weeks), 
3 months (i.e., 13 weeks), 6 months (i.e., 26 weeks), and 1 year (i.e., 
52 weeks). Abbreviations: LSTM, long short-term memory; Aux-vec, 
auxiliary-vector.

TABLE 1  Metrics for prediction for long short-term memory models.

Metric Forecasting model

Vanilla 
LSTM

Auxiliary 
LSTM

Vector 
LSTM

Aux-vec 
LSTM

MSE 4,303,471 4,068,070 3,692,631 3,444,597

RMSE 2,074 2,016 1,921 1,856

MAE 880 899 886 897

Pearson’s 

correlation 

coefficient

0.916 0.916 0.924 0.927

LSTM, long short-term memory; Aux-vec, auxiliary-vector; MSE, mean squared error; 
RMSE, root mean squared error; MAE, mean absolute error.
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(MSE, RMSE, MAE, and Pearson’s correlation coefficient) of the 
Vector LSTM and Aux-vec LSTM models before and after 
incorporating rainfall. As shown in Supplementary Table 4, adding 
rainfall to the Vector LSTM slightly improved the MSE from 3,692,631 
(Table 1, without rainfall) to 3,679,988 (with rainfall), and similarly, 
RMSE marginally decreased from 1,921 to 1,918. However, MAE 
slightly increased from 886 to 889, and Pearson’s correlation coefficient 
marginally decreased from 0.924 to 0.921. For the Aux-vec LSTM, the 
inclusion of rainfall increased MSE from 3,444,597 (without rainfall) 
to 3,472,671 (with rainfall), and RMSE also slightly increased from 
1,856 to 1,863. Similarly, MAE increased from 897 to 904, while 
Pearson’s correlation coefficient marginally decreased from 0.927 to 
0.926. These comparisons indicate that although rainfall is 
meteorologically relevant, its addition provided minimal and 
inconsistent improvements in short-term influenza forecasting 
accuracy within this specific setting. Therefore, rainfall was retained 
only in the supplementary comparative analysis and was not 
incorporated into the main forecasting models.

4 Discussion

To the best of our knowledge, this study is the first systematic 
assessment employing LSTM-based recurrent neural networks to 
forecast seasonal influenza epidemics in Tokyo, Japan. In the present 
study, we developed four models for short-term prediction of weekly 
influenza case counts and rigorously evaluated their predictive 
performance. Each model forecasts the number of influenza cases for 
the subsequent week by extracting salient features from time-series 
data comprising influenza case counts, mean temperature, and relative 
humidity over the preceding weeks. Of note, the Aux-vec LSTM 
model, which integrated exogenous variables such as these 
meteorological variables and the number of national public holidays 
per week, exhibited superior performance, suggesting that these 
external factors exert a significant influence on the weekly incidence 
of influenza cases. To further clarify the relative contribution of each 
covariate, we excluded TempAve, Rh, or Holidays from the Aux-vec 
LSTM model and measured the increase in predictive accuracy. This 
covariate contribution assessment revealed that TempAve was the 
most influential factor, followed by Rh and Holidays.

Many studies conducted worldwide have generally supported the 
proposition that outdoor ambient temperature and humidity have a 
significant role in the transmission dynamics of influenza. For 
instance, a nationwide time-series analysis (20). spanning 201 Chinese 
cities between 2013 and 2018 quantitatively demonstrated the 
pronounced contribution of low temperatures to influenza incidence. 
In our previous large-scale epidemiological study in Japan (13), the 
attributable fractions of temperature and humidity were estimated to 
be approximately 60.0%, highlighting the substantial disease burden 
associated with these environmental stressors. The mechanisms by 
which these meteorological variables influence influenza transmission 
have been elucidated via several plausible pathways. First, exposure to 
cold weather compromises the mucociliary clearance of the nasal 
mucosa and promotes the ordering of lipids within the viral envelope, 
thereby enhancing viral stability and shedding, which then facilitates 
viral amplification and transmission (21). Second, extreme 

FIGURE 3

Comparison of the forecasting results of each model. This figure 
illustrates the temporal distribution of weekly influenza cases over 
the study period from 2000 to 2019, encompassing approximately 
1,040 weeks (i.e., 52 weeks × 20 years). This figure presents the 
comparison between the predicted and actual influenza cases for 
the test dataset, as produced by the (A) Vanilla LSTM, (B) Auxiliary 
LSTM, (C) Vector LSTM, and (D) Aux-vec LSTM. The x-axis represents 
the week number after 2000, whereas the y-axis denotes the 
number of reported influenza cases. The actual test data are 
represented by a blue dashed line and the model’s predictions are 
depicted in red. Abbreviations: LSTM, long short-term memory; Aux-
vec, auxiliary-vector.

https://doi.org/10.3389/fpubh.2025.1618508
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Koge and Wagatsuma� 10.3389/fpubh.2025.1618508

Frontiers in Public Health 07 frontiersin.org

temperatures, whether low or high, can impair adaptive immune 
responses, thereby increasing host susceptibility to influenza infection 
(22). Third, adverse weather conditions tend to encourage individuals 
to remain indoors (i.e., often in air-conditioned environments), 
consequently elevating the frequency of close interpersonal contact 
and potentially augmenting transmission rates (23, 24). Although 
influenza is predominantly transmitted indoors, emerging evidence 
suggests that the short-term effects of indoor and outdoor 
meteorological conditions may differ (25). Therefore, future research 
that rigorously examines how these discrepancies influence the 
predictive performance of influenza transmission models is 
imperative. Overall, further epidemiological studies are warranted to 
elucidate the complex mechanisms by which ambient temperature and 
humidity modulate influenza transmission and to enhance the 
predictive accuracy of machine learning methodologies.

Numerous studies have demonstrated the utility of machine-
learning-based time-series forecasting models for infectious 
diseases, including seasonal influenza. These investigations have 
primarily employed autoregressive methods [e.g., ARIMA and 
seasonal ARIMA (SARIMA)], hybrid deep learning models [e.g., 
convolutional neural network (CNN)-LSTM], and statistical 
approaches that integrate environmental factors. For instance, Zheng 
et al. (26) incorporated meteorological variables into an ARIMA 
with an explanatory variable (ARIMAX) model to predict the 
monthly influenza incidence in Fuzhou, China, and attaned an 
RMSE of 12.033. Chen et al. (27) similarly employed a SARIMA with 
exogenous factors (SARIMAX) model to forecast monthly influenza-
like illness (ILI) cases in Chongqing, China, utilizing historical data 
in conjunction with meteorological variables (i.e., maximum and 
minimum temperatures and fine particulate matter). They achieved 
a mean absolute percentage error of 0.1903. In another study, 
Amendolara et al. (10) developed an LSTM-based model to predict 
weekly ILI rates across several major parts of the United States by 
using historical data and meteorological variables (i.e., mean 
temperature, wind speed, and precipitation), and achieved an MAE 
of 0.1973. Li et  al. (28) applied a CNN-LSTM hybrid model to 
forecast weekly ILI rates in Hebei Province, China, relying solely on 
historical ILI data. They reported an MAE of 0.4388. Our study 
extended this body of research by integrating meteorological 
variables and national public holiday data into an LSTM-based 
model to enhance the accuracy of weekly influenza forecasts for 
Tokyo, Japan. Shi et al. (29) noted that holiday travel may trigger 
secondary epidemic peaks through increased interpersonal contact.

In our supplementary comparative analysis, we  evaluated the 
contribution of weekly total rainfall to influenza forecasting accuracy 
by comparing models with and without rainfall. Incorporating rainfall 
into our forecasting models yielded minimal and inconsistent changes 
in performance. This limited predictive contribution of rainfall 
observed in Tokyo, an urban area with a temperate climate, may 
be partly explained by previous evidence showing climate-dependent 
responses of influenza activity. For instance, studies indicate that 
temperate regions generally have stronger associations between 
influenza incidence and temperature or humidity compared to 
subtropical regions (30). This could reflect lower average temperatures 
and humidity levels in temperate climates, making these 
meteorological factors more influential than rainfall. Nonetheless, 
previous studies conducted in tropical and subtropical regions, such 

as Singapore and Hong Kong, have reported stronger associations 
between rainfall and influenza activity (31, 32). According to the 
previous study, the role of rainfall in influenza transmission may not 
be through direct effects on virus survivorship or host susceptibility; 
rather, rainfall-induced changes in social behaviors—such as increased 
indoor activities on rainy days—may facilitate influenza transmission 
through greater interpersonal contact (32). While rainfall is 
meteorologically relevant, its effect in short-term influenza forecasting, 
at least within Tokyo’s urban temperate context, seems comparatively 
limited. Further investigations using alternative rainfall metrics or 
studies conducted in other climatic zones would be beneficial to more 
precisely evaluate subtle influences of rainfall on influenza 
transmission dynamics.

This study had some limitations. First, it did not account for 
multiple nonmeteorological variables influencing influenza 
transmission dynamics such as human behavior, travel patterns, 
population immunity, virus subtypes, viral variability, and public 
health and social interventions (33). However, modeling these factors 
at the national or prefectural scale for an early warning system in 
Japan is challenging. Second, the analysis relied solely on data from 
Tokyo, necessitating validation by using datasets from multiple 
regions. Third, the meteorological data were collected from fixed 
weather monitoring stations, which may have introduced an exposure 
measurement bias and potentially reduced the precision and statistical 
power of our findings. Forth, this study was constrained by a 
noticeable discrepancy in the distribution of influenza case counts 
between the training and testing datasets, which may have contributed 
to reduced predictive accuracy during periods of unusually high 
incidence in the later stages of the time series. Addressing this 
distributional mismatch—potentially through the use of expanded or 
rebalanced training datasets—may improve model performance in 
future study. Finally, as in all ecological studies, our results are 
inherently susceptible to ecological fallacies.

5 Conclusion

We developed a series of LSTM-based short-term influenza 
forecasting models for Tokyo, Japan. Our four models demonstrated 
robust performances in predicting influenza cases over short periods. 
Of note, the Aux-vec LSTM model, which integrated meteorological 
variables and the weekly number of public holidays, exhibited the best 
predictive performance. The evaluation results underscore that 
external factors such as temperature, relative humidity, and the 
number of days off per week are crucial for accurate forecasting. These 
findings enhance the precision of influenza predictions in Tokyo, and 
highlight the potential of the Aux-vec LSTM model for epidemic 
forecasting of viruses influenced by these external factors. Moreover, 
our covariate contribution assessment further substantiated that mean 
temperature had the most significant impact on prediction accuracy, 
followed by relative humidity and national public holidays. This 
highlights the robustness of incorporating temperature-related 
features into influenza forecasting models, particularly in temperate 
regions like Tokyo. More precise influenza predictions could be useful 
in planning targeted vaccination campaigns, in healthcare resource 
planning, and in enhancing public health messaging and 
preventive measures.
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