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Determinants of rural middle
school students’ adoption of AI
chatbots for mental health

Shuo Li†, Lei Liu†, Yuhui Wang and Xinyun Deng*

School of Architecture and Art, Central South University, Changsha, China

Adolescent mental health challenges constitute an important global public

health issue. Despite the rapid development of AI technology in various fields,

its adoption in rural mental health remains constrained. The purpose of this

study is to examine the factors that influence the adoption of AI chatbots

for mental health education among rural Chinese secondary school students.

Utilizing the UTAUT2 framework, we included Perceived Risk (PR) and Perceived

Anthropomorphism (PA) to construct a theoretical model. A questionnaire survey

of 317 rural adolescents was conducted, analyzed via SPSS and AMOS. Results

showed PE, EE, SI, and PA positively correlated with BI; PR negatively correlated;

HM had no e�ect. Grade level moderated specific paths. The study extends

UTAUT2 to marginalized populations, filling a gap in AI-driven rural adolescent

mental health interventions.
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1 Background

Global mental health is experiencing a significant decline. According to the World
Health Organization (WHO), ∼1 billion people worldwide suffer from mental disorders
(1), with the prevalence continuing to rise (2, 3). This increasing burden not only imposes
substantial economic costs (4), but also exacerbates issues such as high unemployment
(5) and low educational achievements (6), further straining the global economy (7–9). To
address this challenge, the international community has implementedmeasures to enhance
mental health (10, 11). For instance, the 2030 Sustainable Development Goals (12) advocate
policy actions to promote mental wellbeing, while WHO’s Global Mental Health Action
Plan (13) integrates mental health services into public health systems.

Adolescents aged 10–19 are at particularly high risk of developing mental health
disorders, yet their needs remain widely under-recognized and under-treated (14). Recent
evidence shows that the prevalence of clinically elevated symptoms of depression and
anxiety among children and adolescents reached 25.2 and 20.5% respectively during the
COVID-19 pandemic, nearly double pre-pandemic levels (15).

In low-and middle-income countries, the prevalence of adolescent mental illness
may be even higher (16). In China, a middle-income country, 14.8% of adolescents face
mental health challenges, predominantly depression and anxiety (17). The 2022 National
Depression Blue Book (18) reports that 30% of depression patients are under 18, 50%
of whom are students. The 2023 China Mental Health Blue Book (19) further indicates
a 40% depression detection rate among high school students and 30% among junior
high students.
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Adolescence is a critical period for physical and mental
development. Untreated childhood mental health issues
significantly increase the risks of adult health problems, criminal
behavior, academic failure, and poverty (20).

Despite China’s policy initiatives—such as the Special Action
Plan for Student Mental Health (21–23), adolescent mental health
issues remain severe (24–26). Notably, rural adolescents exhibit
poorer mental health than urban peers (27). In rural schools, 20%
of students show depression risk, 68% have at least one anxiety
symptom (28), and their mental illness scale scores surpass urban
students (29). This disparity is largely attributed to parental labor
migration, which has left millions of rural students without direct
parental care (30, 31).

Although cognitive behavioral therapy (CBT) (32),
psychoanalytic therapy (33), pharmacological treatment (34),
and complementary interventions (35–37) have proven effective
in alleviating mental disorders and restoring patients’ normal
functioning, their implementation faces significant barriers among
rural secondary school students in China. First, the exorbitant
cost of professional counseling renders it financially inaccessible
(38). Second, over half of the rural students reside in boarding
schools (39), leaving limited time for regular counseling sessions.
Furthermore, insufficient mental health literacy among parents
and teachers in rural areas (40), may lead to the neglect of
students’ psychological issues or reluctance to seek treatment due
to stigma concerns (41). In addition, many rural schools lack
professional mental health teachers due to insufficient funding,
limited infrastructure, and a shortage of qualified personnel
(42, 43). Traditional educational priorities in rural areas emphasize
academic achievement over mental health, resulting in limited
recognition and support for psychological services within schools
(44). Consequently, conventional mental health interventions
remain impractical for most rural adolescents. This situation is
similarly observed in rural and underserved communities in other
countries (45–47).

In recent years, Artificial Intelligence (AI) has emerged
as a transformative force, driving significant advancements in
industries such as manufacturing, healthcare, architecture, and
translation (48–50). As a subset of AI, chatbots are defined as
intelligent programs that simulate human-like conversations
(51) and have been recognized as a promising solution for
mental health interventions (52). Within mental health domains,
AI technologies—particularly generative AI—demonstrate
capabilities in comprehending and generating natural language,
with performance comparable to or exceeding human expertise in
medical diagnosis, communication, and therapeutic practices (53).
These AI-driven chatbots are based on robust decision-making
framework. According to Guo and Hou (54) their research analyzes
the conversational context to identify users’ emotional states and
subsequently utilize risk stratification models to assess mental
health conditions and deliver personalized interventions. Unlike
human therapists, AI chatbots offer round-the-clock support
(55), providing a cost-effective solution to address mental health
resource shortages in rural areas and potentially enhancing
students’ psychological wellbeing.

In summary, AI holds significant promise for delivering mental
health education to rural secondary school students. However,

existing research predominantly focuses on AI applications in
universities (56) and urban primary/secondary schools (57), while
targeted studies on rural adolescents remain scarce. Given the
low adoption rates of AI technologies in rural settings, students’
acceptance of such systemsmay significantly influence intervention
efficacy. This study therefore aims to investigate rural students’
acceptance of AI chatbots and its determinants, addressing current
research gaps and proposing a scalable intervention framework for
global implementation.

Part 1 reviews global mental health challenges and examines
mental health issues prevalent among secondary school students
in Chinese educational contexts. Part 2 examines key studies from
existing literature, demonstrating the feasibility of AI applications
in mental health education. Part 3 details the questionnaire-
driven methodology and UTAUT2-derived research model. Parts
4–5 detail the survey implementation, data analysis procedures,
and empirical findings. Part 6 discusses the implications of these
findings and proposes evidence-based recommendations. The
paper concludes with a synthesis of major contributions and
future directions.

2 Related research

2.1 Application of artificial intelligence in
educational contexts

Recent studies indicate that artificial intelligence (AI)
offers transformative opportunities for the education sector,
with applications extensively penetrating core domains
such as curriculum development, learning guidance, and
instructional assistance.

First, research on curriculum development—the cornerstone
of educational practice—has yielded AI-powered frameworks and
tools to enhance pedagogical design. For instance, Dickey and
Bejarano (58) proposed the GAIDE framework, enabling educators
to efficiently develop diverse, high-quality, and learner-centric
materials through AI, thereby alleviating workload pressures. Heo
and Kang (59) introduced the AIESTEP platform, which integrates
learning content with practical modules and facilitates real-time
teacher reflection for curriculum optimization. Sun et al. (60)
further confirmed AI’s efficacy in improving teachers’ technical
proficiency, self-efficacy, and instructional outcomes through
experimental evidence.

The second research direction focuses on personalized
learning guidance. In educational environments, students exhibit
diverse learning experiences, proficiency levels, and individual
characteristics. To enhance both engagement and knowledge
retention, AI technology can dynamically adjust instructional
content and methodologies based on learners’ behavioral patterns,
cognitive styles, and learning preferences (61), delivering tailored
educational experiences (62). Representative implementations
include Becerra et al. (63), who utilized generative AI to
analyze MOOC data for personalized interventions and dropout
prevention, and Qiu et al. (64), who developed the “Academic
Quick Guide” system to streamline educational administration
through 24/7 academic support.
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The third direction emphasizes AI-augmented pedagogical
support. As interactive practice constitutes a crucial component for
assessing knowledge acquisition, some researchers have conducted
related studies on this recently. Lin and Ye (65) developed
a biology-focused chatbot to enhance academic performance
via extracurricular scaffolding; Xu et al. (66) implemented a
digital game-based chatbot system that boosts motivation through
gameplay mechanics; while Banjade et al. (67) created an adaptive
learning environment integrating AI-generated images with text-
to-speech technology.

Notably, AI demonstrates particular efficacy in addressing
educational disparities within China’s resource-constrained rural
regions. Niu et al. (68) mixed-methods study involving 130 teachers
and students across nine schools, validated the effectiveness of AI
platforms as effective pedagogical tools, particularly in resource-
limited contexts.

2.2 Application of artificial intelligence in
psychotherapy

Artificial intelligence has been explored in the mental
health domain for decades. Pioneering systems include Eliza,
which simulates psychotherapeutic dialogues to investigate
problem origins (69). Woebot implements cognitive behavioral
therapy to detect and mitigate depression (70), and Tess
delivers emotional support to reduce anxiety and depression
levels (71). Additionally, iHelpr facilitates depressive symptom
self-assessment with improvement recommendations (72).
Contemporary AI applications exhibit enhanced specialization and
comprehensiveness in psychotherapy.

The primary consideration lies in supplementing or replacing
traditional treatment methods. M and Nallasamy (73) demonstrate
that chatbots delivering behavioral therapy through virtual
coaching can enhance clinical outcomes, reduce social stigma,
and bridge treatment gaps. Vahedifard et al. (74) analyze
ChatGPT’s potential in psychiatry, acknowledging its emotional
support capabilities while examining privacy and ethical concerns.
Eid et al. (75) leverage AI-powered patient data analysis
to optimize depression treatment plans to enable precision
medication customization.

Special population factors constitute another critical
dimension. Habicht et al. (76) reveal through studies on
marginalized groups (e.g., bisexual individuals) that AI chatbots
significantly lower treatment barriers compared to conventional
approaches, promoting equitable access to mental health services.
Wang and Li (77) establish through comparative experiments that
AI interventions not only alleviate geriatric depression but also
reduce economic burdens.

Regarding therapeutic efficacy for student mental health,
Mahmud and Porntrakoon (78) propose AI as a viable complement
or alternative to traditional treatments for Thai university students,
though AI requires enhanced user-friendly designs and privacy
safeguards. Moreover, Oghenekaro and Okoro (79) validate
through combined quantitative-qualitative assessments that AI
technologies provide personalized support significantly improving
psychological states. Klos et al. (80) confirmed Tess’s (https://

tess.x2ai.com/) intervention potential for anxiety and depression
in Argentine university students via controlled trials. Liu et al.
(81) demonstrated that chatbot-based self-help interventions
outperformed bibliotherapy in depression management, andWang
et al. (82) documented high trust levels of middle school students
in using AI wristbands for mental health intervention.

Notably, current research predominantly focuses on
hospital patients and university populations (83). Research
on middle school students, particularly in rural areas, remain
critically underexplored.

2.3 Unified theory of acceptance and use of
technology (UTAUT) in AI applications for
mental health

The UTAUT model provides robust theoretical foundation
for investigating users‘ acceptance and adoption behaviors
toward emerging technologies. Through its core constructs
of Performance Expectancy, Effort Expectancy, and Social
Influence, this framework systematically analyzes key drivers
underlying rural secondary school students’ utilization of AI-
powered psychotherapeutic tools. The model enables systematic
understanding and prediction of this population’s acceptance of
AI mental health interventions, offering theoretical guidance for
future implementation designs. Several scholars have employed
UTAUT to explore AI applications in mental health contexts. For
instance, Alojail (84) utilized UTAUT to examine user acceptance
of digital mental health interventions, revealing that perceived
usefulness, perceived ease of use, and facilitating conditions exerted
positive effects on user attitudes and behavioral intentions, whereas
social influence demonstrated non-significant effects. Henkel et al.
(85) extended UTAUT to LGBTQIA+ populations inmental health
chatbot adoption studies, identifying Performance Expectancy,
Social Influence, Willingness to Self-disclose, and Trust as critical
determinants of behavioral intention, with gender showing
no moderating effects. Li et al. (136) investigated Americans
with depression/anxiety, finding Performance Expectancy, Price
Value, and Descriptive Norms were all positively related to
behavioral intention for both treatment-naïve and experienced
cohorts, while Effort Expectancy was negatively associated with
behavioral intention.

These findings suggest AI adoption intentions correlate
closely with perceived usefulness, perceived ease of use, and
risk perceptions. Therefore, applying the UTAUT framework
to investigate influencing factors in rural adolescents’
acceptance of AI-assisted mental health education proves
methodologically appropriate.

3 Research methods

3.1 Theoretical model

The UTAUT is an Integrated Technology Acceptance Model
proposed by Venkatesh et al. (86) through synthesizing and refining
prior Technology Acceptance Model (TAM) research. Venkatesh
et al. (87) further refined and validated the UTAUT framework,
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introducing the UTAUT2 model. This enhanced framework
incorporates additional variables to comprehensively explain and
predict users’ acceptance and adoption behaviors toward emerging
technologies. The UTAUT2 model operationalizes seven core
constructs including Performance Expectancy, Effort Expectancy,
Social Influence, Hedonic Motivation, Price Value, Facilitating
Conditions, and Habit, along with three moderators which are
Gender, Age, and Experience. Empirical validation demonstrates
that this model explains 74% of the variance in behavioral
intention across diverse cultural and social contexts, significantly
outperforming the original UTAUT framework (88). Consequently,
UTAUT2 serves as the theoretical foundation for this study.

3.2 Variable selection and hypotheses

3.2.1 Variable selection
This study retains four core constructs from the original

UTAUT2 model: Performance Expectancy (PE), Effort Expectancy
(EE), Social Influence (SI), and Hedonic Motivation (HM).
Facilitating Conditions (FC) and Price Value (PV) were excluded
because education departments will provide schools with
equipment and training for free to facilitate students’ use. Given
the exploratory nature of AI-assisted mental health education in
rural Chinese secondary schools, we removed habit and experience
variables from UTAUT2. This decision was also influenced by
students’ limited experience and developing autonomy. However,
we retained gender as a moderator. The age variable has been
replaced by the grade moderating variable to examine behavioral
intention variations across different academic stages. Considering
that students in rural Chinese secondary schools have less exposure
to AI technology, they may be concerned about privacy risks when

using such unfamiliar tools. Moreover, as mental health education
involves emotional interactions, human-like chatbots may affect
students’ attitudes toward usage. Therefore, Perceived Risk (PR)
and Perceived Anthropomorphism (PA) are included as variables.
Our research model is shown in Figure 1.

3.2.2 Hypotheses development
Performance expectancy is defined as the degree to which an

individual believes using the system will enhance job performance
(89). Huang et al. (90) confirmed in their research on health
chatbots that performance expectancy is a crucial variable.
As a well-established predictor of behavioral intention (86),
performance expectancy in this context reflects rural adolescents’
perceptions that AI chatbots can improve mental health outcomes.
Students who perceive AI as effective in addressing psychological
issues or enhancing wellbeing aremore likely to demonstrate higher
behavioral intention. We derive the following hypothesis from this:

H1. PE positively influences rural students’ BI toward AI-
assisted mental health education.

Effort expectancy is defined as the perceived ease or difficulty
of utilizing a technology (87). Prior studies have shown that effort
expectancy plays a vital role in the use of Learning Management
System (LMS) and AI Tools (91, 92). Specifically, effort expectancy
in this study measures the effort and time investment required
for rural students to achieve desired psychological improvements
through AI chatbot interactions. If students perceive the AI system
as user-friendly, easy to understand and demanding minimal
learning effort, their willingness to adopt the technology will
markedly increase. Thus, the following hypothesis was proposed:

FIGURE 1

Research model for measuring the adoption of AI chatbots.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1619535
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1619535

H2. EE positively influences rural students’ BI toward AI-
assisted mental health education.

Social influence refers to the extent to which an individual
is influenced by the behavior of groups from outside (87).
Nurkhin (93) confirmed that social influence has a positive impact
on the willingness to use online learning. In this study, social
influence refers to whether rural secondary school students are
influenced by their peers, parents, and teachers when using AI
chatbots. If students’ peers or people around them widely recognize
and actively use AI chatbots, students themselves may also be
more inclined to adopt them. Therefore, the following hypothesis
was proposed:

H3. SI positively influences rural students’ BI toward AI-
assisted mental health education.

Hedonic motivation denotes the fun and pleasure consumers
feel when using a technology (87). Earlier investigations have
found that hedonic motivation has the strongest influence on the
behavioral intention to use mobile applications (94, 95). In this
study, hedonic motivation refers to whether or not rural secondary
school students feel pleasure when using an AI chatbot. If students
find that using the chatbot leads to a pleasurable experience, it
may increase their willingness to continue using it. We deduce the
following hypothesis:

H4. HM positively influences rural students’ BI toward AI-
assisted mental health education.

Perceived risk refers to users’ uncertainty regarding potential
risks associated with technology adoption (87). For example,
concerns about data privacy vulnerabilities (96). Empirical
evidence indicates a negative correlation between perceived privacy
loss and chatbot acceptance (97). Wu et al. (98) substantiated that
perceived risk (PR) significantly negatively impacts students’ AI-
assisted learning. In this study, students’ behavioral intentions may
diminish if they perceive AI technologies as posing privacy threats.
Thus, we propose:

H5. PR negatively influences rural students’ BI toward AI-
assisted mental health education.

Perceived anthropomorphism in AI chatbots refers to
endowing machines with human-like traits, thereby enabling
natural language conversational capabilities (99). For users, the
presence of empathy and empathic abilities in therapeutic chatbots
is positively correlated with their behavioral intention (100). In this
study, the degree of anthropomorphism influences students’ trust
and emotional affinity toward AI chatbots. If a chatbot exhibits
higher anthropomorphic features, students may show greater
willingness to interact with it, thereby increasing their adoption
intention. This leads to the following hypothesis:

H6. PA positively influences rural students’ BI toward AI-
assisted mental health education.

Gender and age are recognized moderators of technology
acceptance (101). In this study, age is operationalized as grade level,

with both gender and grade hypothesized to shape attitudes toward
chatbots. Hence, the hypotheses:

H7.Gendermoderates the effects of HM (H7a), PR (H7b), and
PA (H7c) on BI.
H8. Grade moderates the effects of HM (H8a), PR (H8b), and
PA (H8c) on BI.

4 Scale design and data collection

This article designed scales based on the characteristics
of each variable and collected data through the distribution
of questionnaires.

4.1 Questionnaire design

Based on the above hypotheses and theoretical framework,
this study developed a survey instrument by adapting validated
measurement scales from prior literature. The constructs of
performance expectancy, effort expectancy, social influence,
hedonic motivation, and behavioral intention were drawn directly
from the Unified Theory of Acceptance and Use of Technology
2 (UTAUT2) proposed by Venkatesh et al. (87). The original
items were slightly reworded to fit the context of AI chatbots
for mental health—for example, by replacing general terms such
as “technology” or “system” with “AI chatbot.” These subscales
have been widely validated and applied in studies involving both
general consumers and student populations. The perceived risk
scale was adapted from Liu and Tao (102), originally developed
in the context of smart healthcare services, while the perceived
anthropomorphism scale was adapted from Liu and Cao (103), who
examined users’ responses to human-like virtual chatbots. In both
cases, domain-specific terms (e.g., “smart healthcare services” or
“Alex/Robo”) were replaced with references to AI chatbots, while
preserving the original constructs. All items were further reviewed
to ensure clarity, contextual relevance, and age appropriateness for
secondary school students.

The questionnaire comprises two primary parts. Firstly, it
includes demographic information, namely gender and grade level.
Secondly, it contains influencing factor metrics. These metrics are
structured across seven dimensions, and there are a total of 21
measurement items in this section. For detailed information about
the instrument and source references, please refer to Table 1. All
items were quantified using a 5-point Likert scale, where 1 indicates
“strongly disagree” and 5 denotes “strongly agree.” Prior to formal
data collection, a pilot test was conducted with 65 respondents to
assess the questionnaire’s reliability and validity. The instrument
was subsequently refined based on pilot test outcomes to establish
the final version for official administration. Table 1 displays the
finalized items.

4.2 Data collection

China has established the world’s largest education system
(104). Henan Province, which has the largest basic education
population nationwide (105), represents a typical educational
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TABLE 1 Measurement items and corresponding references.

Construct Item Measurement Reference

Performance
expectancy

PE1 Using such an AI chatbot will
benefit my mental health

(87)

PE2 Using such an AI chatbot will
improve my mental health

PE3 Using such an AI chatbot will
improve my mental health
faster

Effort expectancy EE1 I find it easy to learn how to
use such an AI chatbot

(87)

EE2 The operation of such an AI
chatbot is clear and easy for
me to understand

EE3 I believe I could master using
such an AI chatbot without
external help.

Social influence SI1 My friends and family think I
should use such an AI
chatbot.

(87)

SI2 People around me will
influence me to use such an
AI chatbot.

SI3 My campus environment
supports my use of such an
AI chatbot

Hedonic
motivation

HM1 It is fun to use such an AI
chatbot.

(87)

HM2 Using such an AI chatbot is
an enjoyable experience

HM3 Using such an AI chatbot is
fulfilling

Perceived risk PR1 I am worried that using such
an AI chatbot will collect too
much personal information
from me

(102)

PR2 I am worried that such an AI
chatbot will use my personal
information for other
purposes without my
authorization.

PR3 I am concerned that such an
AI chatbot will share my
personal information with
other entities without my
authorization

Perceived
anthropomorphism

PA1 Communicating with such
an AI chatbot is like engaging
with a real human being

(103)

PA2 Such an AI chatbot is able to
socialize like a human and
has its own consciousness

PA3 Communicating with an AI
chatbot like this makes me
feel warm.

Behavioral
intention

BI1 I plan to use such an AI
chatbot in the future.

(87)

BI2 I plan to use this AI chatbot
frequently.

BI3 I would recommend this AI
chatbot to others.

TABLE 2 Demographic characteristics of participants (n = 317).

Variable Level Count Proportion (%)

Gender Male 185 58.36

Female 132 41.64

Grade 7 42 13.25

8 63 19.87

9 58 18.30

10 70 22.08

11 50 15.77

12 34 10.73

demographic. For instance, Zhoukou City contains a rural
population exceeding 50% of its total residents with 676,900
students enrolled in general secondary schools (106, 107). These
statistical profiles effectively reflect shared characteristics of
educational contexts in China’s rural areas. Consequently, Zhoukou
was selected as the case study area to investigate rural middle
school students’ behavioral intentions toward AI chatbots through
questionnaire surveys.

The formal survey via the Questionnaire Star platform (https://
www.wjx.cn/) consisted of two phases. In Phase I, questionnaires
were electronically distributed via WeChat parent-teacher groups,
yielding 202 responses (all participants from Zhoukou rural
schools). Before answering the questionnaire, all participants were
required to watch an embedded instructional video introducing
the concept, functions, and limitations of AI chatbots for mental
health support. This ensured that participants had a consistent
and objective understanding of the chatbot. After excluding
invalid responses (e.g., short-duration submissions and uniform
answers), 187 valid questionnaires were retained. In Phase II, a
stratified random sampling method was employed (25 students per
grade, none of whom participated in the first survey) to conduct
an in-person survey during noon study sessions. Participants
first viewed an AI chatbot instructional video, followed by
onsite questionnaire completion under researcher supervision.
From 150 collected responses, 130 met the validity criteria after
data cleansing.

This study was conducted ethically. All participants signed
an informed consent form prior to the survey. Participation was
voluntary and anonymous. Since the AI chatbot was presented
only in a simulated video, no real interaction or psychological risk
was involved.

As shown in Table 2, the sample comprised 185 male
participants (58.36%) and 132 female participants (41.64%).
Regarding academic progression, 51.42% were junior high school
students, while 48.58% were senior high school students.

5 Data analysis

This study employed SPSS 26 and AMOS 23 for data
processing and hypothesis testing. The analytical procedure
consisted of five stages. First, reliability analysis of the scales was
conducted using SPSS. Subsequently, confirmatory factor analysis
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TABLE 3 Reliability analysis using Cronbach’s α.

Construct Cronbach’s α Composite
Cronbach’s α

Performance expectancy 0.768 0.817

Effort expectancy 0.779

Social influence 0.809

Hedonic motivation 0.780

Perceived risk 0.834

Perceived anthropomorphism 0.768

Behavioral intention 0.798

(CFA) was performed in AMOS to assess structural validity,
and exploratory factor analysis (EFA) in SPSS was employed
concurrently to examine dimensionality and discriminant validity.
Next, descriptive statistics and normality tests were conducted
through SPSS. Then, structural equation modeling (SEM) was
constructed via AMOS. Finally, hierarchical regression analysis was
implemented to evaluate the impacts of demographic variables on
research outcomes.

5.1 Reliability analysis

To ensure measurement quality, scale reliability was initially
verified as a prerequisite for subsequent analyses. Internal
consistency across dimensions was evaluated using Cronbach’s
alpha coefficient (α), where values range from 0 to 1 with
higher coefficients indicating superior reliability. The established
thresholds were: <0.6 (unacceptable), 0.6–0.7 (acceptable), 0.7–0.8
(good), 0.8–0.9 (excellent) and >0.9 (ideal). Using 317 completed
questionnaires, the calculated α values for all seven latent variables
exceeded 0.7 (Table 3). These results confirm the measurement
scale demonstrates satisfactory internal consistency and meets
psychometric standards.

5.2 Validity test

Validity tests were conducted to verify whether the observed
variables accurately reflect the latent variables, ensuring the
validity of the questionnaire. Since all observed variables in this
questionnaire were derived from previously validated scales,
confirmatory factor analysis (CFA) was employed to examine
the alignment between factor-observed variable relationships
and theoretical assumptions. In this study, confirmatory
factor analysis (CFA) was conducted using AMOS software
(IBM SPSS, Chicago, OH, USA), with the analytical results
illustrated in Figure 2. As shown in Table 4, the model fit
indices demonstrated satisfactory performance: the CMIN/DF
(chi-square/degrees of freedom ratio) of 2.502 fell within the
recommended range of 1–3, and the RMSEA (root mean
square error of approximation) of 0.059 remained below the
0.08 threshold, indicating acceptable model fit. Furthermore,

other indices including the NFI (normed fit index) and CFI
(comparative fit index) achieved good levels exceeding 0.9.
These results confirm the model’s strong fit, validating the
questionnaire’s effectiveness.

CFA encompasses convergent validity and discriminant
validity. Convergent validity was assessed via composite reliability
(CR) and average variance extracted (AVE). The AVE value,
a critical metric for evaluating convergent validity, determines
the strength of relationships between measurement items and
their corresponding factors. Higher AVE values indicate greater
reliability and convergent validity of the construct, with an ideal
threshold exceeding 0.5. Composite reliability (CR) reflects the
internal consistency of observed variables, where higher CR values
signify stronger internal consistency and convergence. As shown
in Table 5, all seven latent variables exhibited CR values above 0.7
and AVE values exceeding 0.5, confirming satisfactory composite
reliability and convergent validity. Additionally, all standardized
factor loadings surpassed 0.7, indicating strong explanatory power
of individual items for their respective dimensions. Collectively,
these results demonstrate robust convergent validity and composite
reliability across all dimensions.

The data were subjected to varimax rotation to elucidate
factor-item correlations. Given the seven predefined variables in
the theoretical model, principal component analysis extracted
seven common factors, yielding the rotated component matrix
in Table 6. Analysis of factor loading coefficients (highlighted in
bold) revealed communality values exceeding 0.4 for all items,
indicating strong item-factor associations and effective information
extraction by the factors. Furthermore, the grouping patterns
of measurement indicators under each variable aligned with
theoretical expectations.

Discriminant validity, which ensures the distinct measurement
of different constructs, was evaluated by comparing the
square roots of AVE values with inter-factor correlation
coefficients. As presented in Table 7, all AVE square roots
exceeded the absolute values of corresponding inter-factor
correlations, confirming adequate discriminant validity of the
measurement model.

5.3 Descriptive statistics and normality test

Table 8 presents descriptive statistics and normality test results
for the measured constructs in this study. The analysis of
descriptive statistics reveals that all variables’ mean scores range
between 3 and 4. Given the 1–5 positive scoring scale, these results
indicate that participants’ awareness of using AI chatbots formental
health education assistance is above medium level. Normality
tests for measurement items were conducted through skewness
and kurtosis analyses. Following Kline’s (137) criteria (absolute
skewness < 3; absolute kurtosis < 8), the data were considered
approximately normally distributed. As evidenced in Table 8, all
measurement items’ absolute skewness and kurtosis values fall
within these thresholds, confirming their compliance with normal
distribution assumptions.
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FIGURE 2

Confirmatory factor analysis results.

TABLE 4 Model fit indices and criteria.

Indicator Judgment criteria Suitability Test
results

Acceptable Good

CMIN/DF 3–5 1–3 2.502 Good

GFI >0.8 >0.9 0.889 Acceptable

CFI >0.8 >0.9 0.955 Good

NFI >0.8 >0.9 0.927 Good

RMSEA <0.08 <0.05 0.059 Acceptable

5.4 Structural equation analysis

As shown in Table 9, PE (β = 0.261, p < 0.001), EE (β = 0.281,
p < 0.001), SI (β = 0.136, p < 0.01), and PA (β = 0.176, p < 0.01)
exerted significant positive effects on BI. Thus, H1, H2, H3 and H6

were supported. PR (β =−0.154, p < 0.01) demonstrated a negative
association with BI, validating H5. Contrary to expectations, HM
(β = −0.052, p > 0.10) showed no significant relationship with BI,
leading to the rejection of H4.

The effect size for each predictor was evaluated using Cohen’s
f ², which indicates the unique contribution of each variable to the
explained variance in BI. According to Cohen’s (108) benchmarks,
f ² values of 0.02, 0.15, and 0.35 represent small, medium, and large
effects respectively. In this study, PE, EE, and PA showed medium
to large effect sizes, SI and PR exhibited a small effect size.

5.5 E�ect of moderating variables

The path analysis results indicate that the hypothesized
relationship between HM and BI (H4) was not supported.
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TABLE 5 Convergent validity and construct reliability.

Construct Item Factor
loading

AVE CR

Performance expectancy PE1 0.877 0.762 0.906

PE2 0.838

PE3 0.927

Effort Expectancy EE1 0.866 0.781 0.914

EE2 0.857

EE3 0.938

Social influence SI1 0.858 0.778 0.913

SI2 0.848

SI3 0.920

Hedonic motivation HM1 0.854 0.771 0.910

HM2 0.859

HM3 0.902

Perceived risk PR1 0.861 0.773 0.911

PR2 0.873

PR3 0.878

Perceived anthropomorphism PA1 0.849 0.767 0.928

PA2 0.901

PA3 0.906

Behavioral intention BI1 0.909 0.822 0.933

BI2 0.905

BI3 0.877

Consequently, hypotheses H7a and H8a were rejected, and their
moderation effects were not further examined.

This study employed hierarchical regression analysis to
investigate the moderating effects of gender and grade. The
analytical framework positioned PR and PA as independent
variables, and BI as the dependent variable, with gender and grade
as moderators. Interaction terms were systematically incorporated
into sequential regression models.

As shown in Table 10, with gender included in Model 2, neither
the PR × Gender (β = 0.008, p > 0.05) nor PA × Gender (β =

−0.03, p > 0.05) interaction terms reached statistical significance.
These results confirm that there are no gender moderation effects
on the relationship between PR and BI. Similarly, there are no
such effects on the relationship between PA and BI. As a result,
hypotheses H7b and H7c are rejected.

As shown in Table 11, after incorporating grade into the model,
the interaction term PR × Grade showed a significantly positive
coefficient (β = 0.132, p < 0.05), indicating that grade exerts a
significant positive moderating effect on the relationship between
PR and BI, thus supportingHypothesis H8b. Thismoderation effect
corresponds to a 1R² of 0.017, indicating a moderate level of effect
size. In contrast, the PA×Grade interaction term had no significant
effect on BI (β = −0.014, p > 0.05), demonstrating that the
moderator grade does not significantly influence the relationship
between PA and BI, leading to the rejection of Hypothesis H8c.

To comprehensively understand the specific mechanism of
grade moderation and the overall model configuration, we
conducted further analyses which involving three nested models.
Model 1 includes the independent variable (PR). Model 2 adds
the moderator variable (grade) to Model 1. Model 3 enhances
explanatory power by incorporating the interaction term (PR ×

Grade) into Model 2. Here, we use the unstandardized coefficient
B to report the specific moderating effects of grade. As shown in
Table 12, model 3 reveals significant coefficients for the interaction
terms “PR×Grade 3.0” (B= 0.543, t = 2.436, p= 0.015∗) and “PR
× Grade 5.0” (B = 0.697, t = 3.056, p = 0.002∗∗), demonstrating
grade-specific moderation effects on the PR-BI relationship at
grades 9 and 11.

6 Discussion

The primary objective of this study was to investigate
key determinants influencing rural secondary school students’
adoption of AI chatbots for mental health education support. This
discussion juxtaposes empirical findings with research hypotheses
to elucidate mechanisms underlying behavioral intention toward
AI chatbot utilization.

6.1 Performance expectancy, e�ort
expectancy, social influence and behavioral
intention

As hypothesized, PE, EE, and SI demonstrated significant
positive correlations with BI. Consistent with prior research,
PE emerged as the strongest predictor of technology adoption
(109). This suggests rural adolescents’ conviction in AI chatbots’
efficacy for mental health improvement constitutes a pivotal
adoption driver.

As AI chatbots are digital devices, their ease of use strongly
impacts users’ BI to adopt and continue usage (110). While general
technological proficiency with digital devices among Chinese
students is relatively high (111), rural students’ limited access to
AI technologies creates unique usability challenges. Overly complex
interaction mechanisms may result in user disengagement and
eventual discontinuation of use. Furthermore, inadequate usability
design of the chatbots may hinder teachers’ capacity to deliver
essential technical assistance.

According to the findings, the more rural secondary school
students perceived social support for chatbot use, the higher their
BI. Peer influence, teacher support, and parental input are critical in
rural settings. Therefore, AI chatbots should be embedded in rural
educational practices by creating a supportive community in rural
school settings and encouraging students to use the devices.

6.2 Perceived anthropomorphism and
behavioral intention

Moreover, anthropomorphic cues—such as facial expressions,
human-like voice tone, and emotionally resonant responses—can
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TABLE 6 Factor loadings after varimax rotation.

Item Factor loading

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

PE1 0.198 0.077 0.116 0.284 0.162 0.812 0.220

PE2 0.221 0.136 0.036 0.182 0.185 0.818 0.235

PE3 0.193 0.185 0.185 0.213 0.212 0.752 0.211

EE1 0.256 0.128 0.035 0.179 0.853 0.132 0.191

EE2 0.252 0.088 0.123 0.170 0.819 0.138 0.184

EE3 0.107 0.138 0.165 0.185 0.823 0.250 0.145

SI1 0.166 0.878 0.077 0.153 0.110 0.113 0.166

SI2 0.114 0.901 0.061 0.104 0.111 0.042 0.049

SI3 0.100 0.868 0.087 0.118 0.081 0.164 0.137

HM1 0.082 0.160 0.129 0.840 0.210 0.189 0.213

HM2 0.096 0.125 0.027 0.820 0.181 0.212 0.229

HM3 0.161 0.143 0.072 0.830 0.134 0.198 0.206

PR1 0.038 0.124 0.902 0.068 0.107 0.102 0.072

PR2 −0.045 −0.004 0.905 0.085 0.068 0.067 0.080

PR3 −0.018 0.090 0.910 0.031 0.075 0.065 0.073

PA1 0.161 0.086 0.110 0.248 0.180 0.244 0.809

PA2 0.123 0.212 0.084 0.244 0.217 0.227 0.780

PA3 0.269 0.148 0.122 0.246 0.175 0.203 0.790

BI1 0.859 0.167 −0.001 0.067 0.157 0.253 0.153

BI2 0.877 0.110 −0.042 0.123 0.184 0.182 0.142

BI3 0.879 0.137 0.001 0.133 0.218 0.097 0.161

Bold values indicate the highest factor loading for each item, representing its primary association with a specific component after varimax rotation.

TABLE 7 Discriminant validity test results.

Construct PE EE SI HM PR PA BI

PE 0.873

EE 0.520 0.884

SI 0.365 0.333 0.882

HM 0.566 0.487 0.368 0.878

PR 0.256 0.245 0.189 0.204 0.879

PA 0.611 0.525 0.388 0.596 0.250 0.876

BI 0.496 0.492 0.345 0.357 0.041 0.467 0.907

The values on the diagonal (in bold) are the square root of average variance extracted

(AVE) estimates.

enhance adolescents’ emotional engagement with chatbots by
triggering social cognitive mechanisms similar to those activated in
human–human interaction (112). These features reduce perceived
psychological distance and promote trust by making the AI appear
more intentional and empathetic (113). In therapeutic contexts,
trust is crucial for fostering self-disclosure and sustained use
(114–116). When adolescents feel the chatbot “understands” them
emotionally, they are more likely to share private thoughts and

continue using the tool for support—especially in environments
where human contact is limited or stigmatized.

6.3 Perceived risk and behavioral intention

PR exhibited a negative association with BI, where privacy
concerns significantly deterred adoption. This aligns with
existing evidence (117). From a neuropsychological perspective,
perceived risk may disrupt adolescents’ emotional development by
overstimulating brain regions associated with threat processing
(118). These areas, when hyperactivated by digital threats like
privacy breaches, impair emotion regulation control systems (119).
This imbalance can heighten anxiety, reduce trust, and lead to
withdrawal from AI-assisted tools intended for mental health
support (120–122), thereby limiting their therapeutic effectiveness
among rural adolescent.

6.4 Hedonic motivation and behavioral
intention

Contrary to our hypotheses, HM demonstrated no significant
correlation with BI. This suggests rural adolescents do not

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1619535
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1619535

TABLE 8 Descriptive statistics and normality test results.

Construct Item Mean scores Standard deviation Kurtosis Skewness

PE PE1 3.669 1.106 −0.786 −0.004

PE2 3.650 1.139 −0.639 −0.403

PE3 3.653 1.093 −0.651 −0.251

EE EE1 3.804 1.079 −0.897 0.299

EE2 3.817 1.045 −0.681 −0.309

EE3 3.842 0.997 −0.759 0.124

SI SI1 3.221 1.148 −0.403 −0.693

SI2 3.350 1.161 −0.419 −0.724

SI3 3.262 1.155 −0.301 −0.741

HM HM1 3.703 1.013 −0.611 −0.153

HM2 3.675 1.144 −0.781 −0.082

HM3 3.625 1.035 −0.734 0.166

PR PR1 3.845 0.874 −0.896 1.094

PR2 3.804 0.941 −0.930 0.873

PR3 3.845 0.927 −0.912 0.919

PA PA1 3.580 1.027 −0.765 0.205

PA2 3.634 0.999 −0.651 0.012

PA3 3.612 1.051 −0.784 0.051

BI BI1 3.438 1.088 −0.568 −0.325

BI2 3.385 1.184 −0.437 −0.693

BI3 3.404 1.151 −0.422 −0.677

TABLE 9 Standardized path coe�cients of the model.

Path Unstandardized estimation S.E. C.R. p β f² Results

PE → BI 0.275 0.065 4.252 0.000 0.261 0.326 Supported

EE → BI 0.313 0.063 5.005 0.000 0.281 0.319 Supported

SI → BI 0.137 0.050 2.726 0.006 0.136 0.135 Supported

HM → BI −0.057 0.065 −0.864 0.387 −0.052 - No effect

PR → BI −0.196 0.059 −3.294 0.001 −0.154 0.002 Negatively correlated

PA → BI 0.200 0.072 2.791 0.005 0.176 0.279 Supported

prioritize recreational features as critical adoption determinants—
a finding contradicting prior investigations (123, 124). A potential
explanation is that, as Digital Natives (125), students maintain
frequent exposure to digital technologies and demonstrate
a high level of interest in AI systems (126), which may
shape their expectations of smart systems’ inherent hedonic
properties. Concurrently, instrumental utility may outweigh
recreational value, with students prioritizing practical therapeutic
assistance over entertainment features. However, this does not
imply that hedonic design should be neglected. Rather, AI
chatbots should incorporate basic entertainment functionalities
commonly found in electronic products, while emphasizing
practical effectiveness.

6.5 The moderating e�ects of gender and
grade

First, we examine the moderating factors affecting the
relationship between PR and BI. Our study found that gender
did not significantly moderate the relationship between PR
and BI. Owing to diminishing gender stereotyping and the
structural transition of Chinese rural communities to “semi-
familiarity societies” (127–130), women’s need for rigorous privacy
management as a strategy to maintain social image has decreased.
Furthermore, digital-native adolescents exhibit technology usage
patterns characterized by diminished gender disparities, resulting
in comparable technology acceptance behaviors across genders
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TABLE 10 Gender moderation e�ects analyzed using hierarchical regression.

PR Dependent variable: BI PA Dependent variable: BI

Model 1 Model 2 Model 3 Model 4

PR 0.047 0.041 PA 0.466∗∗ 0.466∗∗

Gender 0.044 0.044 Gender 0.022 0.023

PR× Gender / 0.008 PA× Gender / −0.03

R2 0.004 0.004 R2 0.219 0.22

1R2 0.002 0.000 1R2 0 0.001

F 0.566 0.379 F 43.936∗∗ 29.355∗∗

∗p < 0.05, ∗∗p < 0.01.

TABLE 11 Grade moderation e�ects analyzed using hierarchical regression.

PR Dependent variable: BI PA Dependent variable: BI

Model 1 Model 2 Model 3 Model 4

PR 0.027 0.031 PA 0.460∗∗ 0.459∗∗

Grade 0.115∗ 0.101 Grade 0.066 0.067

PR× Grade / 0.132∗ PA× Grade / −0.014

R2 0.015 0.032 R2 0.223 0.223

1R2 0.013 0.017 1R2 0.004 0.000

F 2.359 3.459∗ F 44.931∗∗ 29.890∗∗

∗p < 0.05, ∗∗p < 0.01.

among rural students. The moderating effect of grade level can be
ascribed to the structural pressures that students in grade 9 and
grade 11 are confronted with. At this stage in China’s education
system, they are at the critical juncture of universal-vocational
streaming and subject selection (131, 132). As a result, they are in
desperate need of mental health support. Meanwhile, to prevent
new pressures caused by privacy violations, the potential risks of
AI technology.

Then, Regarding the relationship between PA and BI, rural
participants’ limited AI exposure indicated stronger functional
orientation in technology adoption decisions. PA demonstrated
an inverted U-shaped relationship with BI, where excessive
anthropomorphism decreased adoption likelihood (133). These
patterns showed no significant variation by gender or grade level,
confirming the absence of moderation effects.

6.6 Suggestions

Based on the aforementioned findings, it is evident that
multiple factors must be considered when developing a mental
health chatbot for rural middle school students.

First, it is essential to enhance the technical performance
of the chatbot. It is necessary to ensure that the algorithm can
accurately identify early signs of mental health disorders (e.g.,
depression, anxiety) and provide targeted interventions such
as relaxation training and time management. Concurrently,
real-time monitoring of psychological states and adaptive
feedback mechanisms are essential. Collaboration between
educational authorities and certified mental health institutions
should be established to develop teleconsultation modules for

clinical-grade support. Next, cartoon-style icons and hierarchically
simplified operational workflows aligned with adolescent
cognitive patterns are required to reduce usability barriers.
Supplementary graphic manuals and instructional videos must
be provided to facilitate technical proficiency among teachers
and students. To expand social influence, schools and education
departments should promote chatbot adoption through teacher
training workshops and parental awareness programs, thereby
improving credibility and acceptance in educational settings.
A home-school coordination platform is recommended to
enable real-time parental access to students’ psychological
data for early intervention. Anthropomorphic features such
as simulated gestures and emotional language processing can
significantly strengthen user emotional bonds and retention
rates (134). Therefore, natural language processing should
prioritize colloquial expressions over technical jargon to align
with adolescents’ linguistic habits. Given rural students’ dialect
preferences (135), dialect recognition modules must be integrated
to ensure interaction accuracy. Dynamic effects mimicking human
behaviors like nodding and blinking can further enhance user
immersion. Robust data protection mechanisms are critical.
During initial onboarding, clearly communicate the scope of
data collection, usage protocols, and encryption procedures to
users. End-to-end encryption technology should be employed to
secure chat logs and personal information during transmission
and storage. Additionally, anonymization options are necessary to
alleviate stigma-related concerns. Finally, implement personalized
content delivery systems. Leveraging machine learning algorithms,
tailor interventions for subgroups with distinct traits (e.g., high
academic stress, introversion), thereby addressing diverse needs
and improving user trust and engagement.
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TABLE 12 Grade moderation e�ects (in detail).

Variables Model 1 Model 2 Model 3

Constant 3.409∗∗ 2.906∗∗ 2.880∗∗

(56.618) (17.969) (17.924)

PR 0.052 0.027 −0.408∗

(0.730) (0.378) (−2.477)

Grade 1.0 (Reference item) - - -

Grade 2.0 0.507∗(2.428) 0.534∗ (2.578)

Grade 3.0 0.606∗∗(2.849) 0.659∗∗ (3.082)

Grade 4.0 0.777∗∗(3.792) 0.804∗∗ (3.946)

Grade 5.0 0.248(1.131) 0.287 (1.317)

Grade 6.0 0.749∗∗(3.071) 0.772∗∗ (2.981)

PR× Grade 2.0 0.461 (1.839)

PR× Grade 3.0 0.543∗ (2.436)

PR× Grade 4.0 0.430 (1.777)

PR× Grade 5.0 0.697∗∗ (3.056)

PR× Grade 6.0 0.444 (1.514)

R2 0.002 0.061 0.092

F F= 0.532 F= 3.380 F= 2.809

p= 0.466 p= 0.003 p= 0.002

1R2 0.002 0.060 0.031

1F F= 0.532 F= 3.944 F= 2.055

p= 0.466 p= 0.002 p= 0.071

The dependent variable is BI; ∗p < 0.05, ∗∗p < 0.01; The values in parentheses are t-values.

7 Research limitations and future
directions

This study explores the emerging field of AI chatbot
applications in mental health education for rural secondary
school students. To better align with the specific conditions of the
educational context, two external variables, perceived risk (PR)
and perceived anthropomorphism (PA), have been integrated
based on the UTAUT2 model. Valid data were obtained through
standardized questionnaires distributed to students in rural
secondary schools in Zhoukou, China, and a structural equation
model was developed for validation. Findings revealed that PE, EE,
SI, and PA were positively correlated with BI, while PR showed
a significant negative correlation. HM did not reach statistical
significance. Additionally, gender and grade exhibited significant
moderating effects. Practical recommendations include optimizing
chatbot functionality, streamlining operational workflows,
amplifying social influence, and enhancing user experience.

However, this study has limitations. First, the sample was
geographically concentrated in Zhoukou City, a single rural area in
central China. This site was chosen due to its large rural population
and representative educational characteristics, which broadly
reflect the conditions of many rural regions in China. While this
provides valuable insights, it may not fully capture the diversity
of rural areas nationwide in terms of culture, infrastructure, and

digital access. Therefore, future research should consider more
geographically and demographically diverse sampling to enhance
external validity and improve the generalizability of the findings.
Second, the questionnaire-based quantitative methodology, while
generating robust empirical data, failed to capture qualitative
dimensions of students’ psychological experiences. In response,
subsequent studies could adopt mixed-methods approaches such as
in-depth interviews and ethnographic observation. These methods
will allow researchers to gain deeper insights into students’ unmet
needs and emotional dynamics. Furthermore, a limitation of the
present study is the absence of qualitative interviews, which could
have offered more nuanced insights into participants’ experiences
with the AI chatbot. Future research should consider incorporating
such qualitative methods, alongside comparisons with traditional
mental health education, to gain a deeper understanding of user
perceptions and preferences.
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