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Objective: Liver fat content (LFC) and hepatic fibro-inflammation (HFI) 
accumulation are the primary pathological manifestation of steatohepatitis. 
The association between intake of sugary beverages (SBs), including artificially-
sweetened beverages (ASB), sugar-sweetened beverages (SSB), and natural 
juices (NJs), and LFC or HFI remains unclear.
Methods: The study included 25,885 participant who completed at least one 
online dietary assessment and magnetic resonance imaging. LFC and HFI were 
quantified using the liver proton density fat fraction (PDFF) and iron-corrected 
T1 (cT1).
Results: Compared to those without ASB and SSB intake, the arithmetic mean 
difference (AMD) of PDFF was 0.15 (95% Cl: 0.06 to 0.24) and 0.21 (95% Cl, 0.12 
to 0.29), and the AMD of cT1 was 3.86 (95% CI, 1.26 to 6.79) and 2.43 (95% CI, 
1.31 to 3.57) in individuals with ≥1 serving/d, respectively. Individuals with 0–1 
serving/d had lower PDFF (AMD: −0.10 95%Cl: −0.19 to −0.01) than those without 
NJs intake. In Quantile G-computation models, SSB and ASB contributed most 
in the AMD of PDFF (54.7%) and cT1 (53.1%), respectively. When replacing ASB 
and SSB with water, the progress of PDFF was improved.
Conclusion: Artificially-sweetened beverages and SSB intake were positively 
associated with LFC and HFI, and moderate NJs intake was slightly negatively 
associated with LFC but not HFI.
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Introduction

Liver fat content (LFC) is a hallmark of metabolic dysfunction-associated steatotic liver disease 
(MASLD), affecting over 30% of the global population and imposing a significant economic 
burden (1, 2). While hepatic fibro-inflammation (HFI) reflects the severity of MASLD, excessive 
LFC accumulation is a precursor to HFI, which further leads to liver cirrhosis, liver failure, and 
hepatocellular carcinoma (3). Moreover, studies reported that elevated LFC and HFI exacerbate 
the progression of extrahepatic diseases including diabetes, hypertension, and other 
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cardiometabolic conditions (4, 5). Despite the need for effective 
interventions, there is a paucity of medications to reduce LFC and HFI, 
making diet intervention a cornerstone of current guidelines (5, 6). 
However, as a crucial part of dietary interventions, the relationship 
between LFC, HFI, and sugary beverages (SBs), including artificially-
sweetened beverages (ASB), sugar-sweetened beverages (SSB), and 
natural juices (NJs), remains unclear.

Previous research and guidelines have highlighted the detrimental 
effects of SSB on LFC (7, 8). Yet, the association between ASB and NJs 
intake and LFC development is not well-established. For example, two 
randomized controlled trials have indicated that replacing SSB with ASB 
might decrease LFC (9, 10), suggesting that ASB could serve as a 
potential substitute for SSB due to their lower calorie and sugar content 
(11). However, these studies were limited by short follow-up periods, 
small sample sizes, and a focus on overweight and obese populations. 
Additionally, ASB have been shown to negatively affect intestinal 
microecology, glucose homeostasis, adipose tissue deposition, weight 
gain, and metabolic syndrome (12, 13). Moreover, numerous studies 
have also linked ASB consumption to cardiometabolic diseases, 
including type 2 diabetes, cardiovascular diseases, thrombosis, and 
mortality (14–16). Thus, caution should be exercised when considering 
ASB as a substitute for SSB in managing steatotic liver disease (SLD) and 
non-alcoholic steatohepatitis (NASH). Natural juices, another category 
of SBs, contain both harmful and beneficial bioactive molecules like 
fructose, micronutrients, and antioxidants, potentially impacting LFC 
development (17, 18). However, few studies have explored the 
relationship between NJs intake and LFC. Moreover, to our knowledge, 
there have been no studies that have yet explored the relationship 
between sugary beverages (SBs) and hepatic fibro-inflammation (HFI) 
levels. Therefore, further research with long-term follow-up and large 
populations is necessary to elucidate these associations.

Consequently, our study aimed to investigate the association 
between SBs intake (ASB, SSB, and NJs), LFC, and HFI, as well as to 
assess their joint associations and relative importance based on a large 
community-based cohort with long-term follow-up. Additionally, the 
study explores the effects of beverage substitution and potential 
mediators on these associations.

Materials and methods

Study design and population

The data originated from the UK Biobank, an extensive, 
prospective cohort study encompassing more than 500,000 
participants within the age range of 37–63 years. Affirming their 
voluntary participation, the individuals provided written consent via 
electronic questionnaires for the collection of their data. The study 
incorporated comprehensive magnetic resonance imaging (MRI) 
derived from a multimodal imaging initiative, yielding a rich dataset 

of imaging information. Adhering to stringent ethical research 
standards, the UK Biobank study has received clearance from the 
Northwest Multicenter Research Ethics Committee. Authorization for 
the utilization of this dataset has also been granted by the Human 
Ethics Committee of West China Hospital, Sichuan University.

A total of 210,948 participants completed at least one 24-h dietary 
recall. Participants were excluded if they had existing liver disease 
(Supplementary Table S1, n = 1,148), implausible energy intake levels 
(women: <500 or >3,500 kcal/day; men: <800 or >4,000 kcal/day, 
n  = 2,896), or lacked MRI data (n  =  181,055). Following these 
exclusions, the study included 25,885 eligible individuals (Figure 1).

Assessment of intake of beverages

Participants were asked to complete online 24-h dietary assessments, 
providing detailed recalls of their consumption of 206 common foods 
and 32 beverages over the preceding 24 h. Daily beverage intake was 
assessed by following question: “How many glasses, cans, or cartons 
containing 250 mL of sugar-sweetened beverages, artificially sweetened 
beverages, or natural juices did you drink yesterday?” Participants were 
categorized into 3 groups based on the distribution of these products: 0, 
0 to 1 and ≥1 serving per day. From 2009 to 2012, participants were 
asked online five times, and those who completed at least one dietary 
assessment were included in the study by calculating their mean beverage 
intake. The beverages intake levels were comparable with the national 
data in the UK (19).

Assessment of liver fat content and hepatic 
fibro-inflammation

The Proton Density Fat Fraction (PDFF), ascertained through 
Magnetic Resonance Imaging (MRI), represents the proportion of 
protons associated with fat relative to the overall proton count 
within the liver. This method allows for the direct measurement of 
LFC, eliminating the need for invasive biopsy, which was considered 
as the most accurate noninvasive method (20). Previous study 
showed MRI was an excellent assessment compared with liver biopsy 
(Spearman correlation coefficient = 0.85) (21) and can classify 
grades of hepatic steatosis with areas under the summary receiver 
operating characteristic curves ≥90% (22). A cardiac-gated 
Shortened Modified Look-Locker Inversion sequence was utilized 
to measure liver T1 values, and it can be adjusted to account for the 
influence of iron, resulting in an cT1 score, which is expressed in 
milliseconds (ms) and serves as an indirect indicator of hepatic 
fibro-inflammatory activity. This metric, derived from MRI, has 
been confirmed for accuracy by comparison with liver histology and 
has shown its practical use in clinical settings going forward (23–26).

Covariates assessment

Our models were adjusted for several covariates: sex (male and 
female), age, Townsend deprivation index, education statues, alcohol 
intake (g/d), smoking status (never, current, former), BMI (<25.0, 25.0 
to <30, ≥30 kg/m2), abdominal obesity (yes and no), physical activity 
(metabolic equivalents [MET] hours per day for all physical activity), 

Abbreviations: AMD, arithmetic mean difference; ASB, artificially-sweetened 

beverages; HFI, hepatic fibro-inflammation; LFC, Liver fat content; MASLD, 

metabolic dysfunction-associated steatotic liver disease; MRI, magnetic resonance 

imaging; NJs, natural juices; PDFF, Proton Density Fat Fraction; QGC, Quantile 

G-computation; SBs, sugary beverages; SLD, steatotic liver disease; SSB, sugar-

sweetened beverages.
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hypertension (yes and no), glucose (mmol/L), triglyceride (mmol/L), 
cholesterol (mmol/L), C-reactive protein (mg/L), and platelet 
distribution width (%), total energy (kcal/d), total sugar (g/d), and 
healthy diet score (0–7). Healthy diet score were based on following 
criterion (27): total vegetables, ≥4 servings per day; total fruit, ≥4 
servings per day; total fish, ≥2 servings per week; processed meat, ≤1 
servings per week; red meat, ≤1.5 servings per week; whole grains, ≥3 
servings per day; refined grains, ≤1.5 servings per day and achieving 
one of the above criteria is scored as one point (ranged from 0 to 7). 
Covariates were collected by professionals through questionnaires, 
physical examinations, and biological samples (28). The detailed 
descriptions of covariates were performed in Supplementary material 
according to previous research (27).

Statistical analysis

Continuous variables were presented as means with standard 
deviations and categorical variables were depicted as counts and 
percentages. According to previous study (29), we  performed 
univariate and multivariate linear regression models and calculated 
the arithmetic mean difference (AMD) and 95% confidence intervals 
(CIs) to explore the correlation PDFF, cT1, and SBs consumption. In 
addition, we  defined hepatic steatosis as PDFF ≥ 5% (30) and 
hepatitis as cT1 ≥ 800 ms (31), and investigated their associations 
with beverage intake. Restricted cubic splines with three knots (knots 
placed at the quartile of each beverage intake) were used in unadjusted 
and fully adjusted models to explore the dose–response relationships 
between SBs intake, PDFF, and cT1, respectively. Additionally, 
subgroup analyses were conducted to explore the relationship of 

AMD of PDFF and cT1 with SBs intake across different subgroups, 
categorized by age (<55 vs. ≥55), sex (male vs. ≥female), alcohol 
intake (<10 g/d vs. ≥10 g/d), BMI (<25.0 vs. 25.0 to <30 vs. ≥30 kg/
m2) physical activity (whether met WHO physical activity guidelines: 
150 min of moderate activity per week or 75 min of vigorous activity) 
(32). Quantile G-computation (QGC) (33) model was employed to 
comprehensively evaluate the relative importance and joint 
association of various beverage intakes on Proton Density Fat 
Fraction (PDFF) and contrast-enhanced T1-weighted imaging (cT1) 
outcomes. The dietary questionnaire inquires about the servings of 
beverages consumed within 24 h (250 mL = 1 serving). Therefore, 
we utilized substitution models to assess the effect of replacing one 
serving of a beverage with another (34). Moderation analysis was 
conducted to investigate which covariates moderated the effect of 
ASB and SSB intake on PDFF and cT1. We  also performed a 
mediation analysis to quantify the proportion of PDFF and cT1 
explained by indirect factors as well as the direct association of SSB 
intake and ASB intake. The detailed descriptions of statistical analysis 
were provided in Supplementary material.

To robust our findings, several sensitivity analyses were 
conducted. First, we divided health diet score into the original seven 
parts for adjustment. Second, we  additionally adjusted for 
carbohydrates intake, use of medication (aspirin, cholesterol lowering, 
hypoglycemic, and antihypertensive medication) due to potential 
confounding. Third, the percentage change of PDFF also expressed by 
linear regression models. Fourth, the linear regression models was 
repeated in participants who completed at least 2 dietary assessments.

Statistical significance was set at a two-tailed p-value of <0.05. All 
statistical analyses were performed using SPSS (version 27.0; IBM Corp., 
Armonk, NY, United States) and R software 3.5.0 (Vienna, Austria).

FIGURE 1

Study flow chart.
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Results

Baseline characteristics

A total of 25,885 participants (age: 55.3 ± 7.5 years, male: 12,228 
[47.2%]) were included in our study with a median follow-up of 10.3 
(4.5–16.3) years. Among these population, 5,511 (21.3%) individuals 
consumed ASB, 8859 (34.2%) individuals consumed SSB, and 14,567 
(66.3%) individuals consumed NJs. Compared to those without SBs 
intake, participants with ≥1 serving/d more likely to be  younger, 
current smoker and had higher BMI and energy intake and less 

physical activity. For biochemical examination, they had higher 
glucose, triglyceride, cholesterol, liver enzyme (Table  1 and 
Supplementary Table S2).

Linear and logistic regression analysis and 
restricted cubic splines

In the fully adjusted linear regression models (Table  2 and 
Supplementary Tables S3, S4), compared to those without ASB and 
SSB intake, the arithmetic mean difference (AMD) of PDFF was 0.15 

TABLE 1  Baseline characteristics of participants by sugar-sweetened beverages intake.

Characteristics Sugar-sweetened beverages p-value

0/d 0–1/d ≥1/d

Sample size, n(%) 17,026 (65.8%) 1,603 (6.3%) 7,202 (27.8%)

Male, n(%) 7,803 (45.8%) 777 (47.7%) 3,648 (50.7%) <0.001

Age (years) 55.36 (7.41) 55.28 (7.63) 53.44 (7.59) <0.001

Townsend deprivation Index −1.90 (2.72) −1.88 (2.66) −1.80 (2.74) 0.819

Education <0.001

 � College or University degree 8,817 (51.8%) 766 (47.0%) 3,567 (49.5%)

 � A AS level or equivalent 2,225 (13.1%) 217 (13.3%) 992 (13.8%)

 � O levels or equivalent 3,510 (20.6%) 371 (22.8%) 1,630 (22.6%)

 � Other 2,474 (14.5%) 276 (16.9%) 1,013 (14.1%)

Alcohol intake (g/d) 11.36 (9.81) 10.20 (9.12) 10.80 (10.54) <0.001

Smoking status, n(%) <0.001

 � Never 10,248 (60.2%) 1,038 (63.7%) 4,552 (63.2%)

 � Former 995 (5.8%) 88 (5.4%) 432 (6.0%)

 � Current 5,783 (34.0%) 504 (30.9%) 2,218 (30.8%)

Abdominal obesity, n(%) 3,925 (23.1%) 366 (22.5%) 1822 (25.3%) <0.001

BMI (kg/m2) 26.36 (4.02) 26.49 (4.02) 26.91 (4.26) <0.001

Physical activity (MET hours/week) 40.36 (36.25) 39.73 (35.74) 39.51 (39.11) <0.001

Hypertension, n(%) 6,662 (39.1%) 655 (40.2%) 2,704 (37.5%) 0.033

Diabetes, n(%) 503 (3.0%) 34 (2.1%) 139 (1.9%) <0.001

Albumin (g/L) 45.36 (2.52) 45.43 (2.53) 45.52 (2.52) <0.001

Glucose (mmol/L) 5.36 (0.97) 4.99 (0.93) 5.42 (0.91) <0.001

Triglyceride (mmol/L) 1.36 (0.91) 1.63 (0.91) 1.76 (1.06) <0.001

Cholesterol (mmol/L) 5.36 (1.10) 5.75 (1.10) 5.65 (1.07) 0.304

C-reactive protein (mg/L) 1.36 (3.27) 2.07 (3.90) 2.18 (3.80) <0.001

Platelet count (109/L) 248.9 (64.54) 247.8 (65.15) 250.9 (65.37) <0.001

HDL-c (mmol/L) 1.36 (0.38) 1.47 (0.37) 1.42 (0.36) <0.001

LDL-c (mmol/L) 3.36 (0.84) 3.61 (0.83) 3.55 (0.81) <0.001

ALT (U/L) 22.36 (12.42) 22.62 (14.08) 23.79 (15.64) <0.001

AST (U/L) 25.36 (7.83) 25.56 (10.72) 26.27 (10.47) <0.001

GGT (U/L) 31.36 (32.93) 32.31 (28.60) 33.78 (28.70) <0.001

Energy (kJ/d) 8520.36 (2026.19) 8821.54 (2020.28) 9296.56 (2080.84) <0.001

Sugar intake (g/d) 117.36 (38.52) 129.53 (39.53) 148.02 (43.37) <0.001

Healthy diet score 3.36 (1.34) 2.98 (1.35) 2.91 (1.41) <0.001

BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; ALT, alkaline phosphatase; AST, glutamic oxaloacetic transaminase; GGT, 
glutamyl transpeptidase; MET, metabolic equivalent.
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(95% CI, 0.06 to 0.24, p  < 0.001) and 0.21 (95% CI: 0.12 to 0.29, 
p  < 0.001), and the AMD of cT1 was 3.86 (95% CI, 1.26 to 6.79, 
p < 0.001) and 2.43 (95% CI: 1.31 to 3.57, p < 0.001) in individuals 
with ≥1 serving/d, respectively. Additionally, there were both higher 
PDFF and cT1 for each additional serving of ASB and SSB intake. 
Compared to non-NJs intake population, those with 0–1 serving/d 
had decreased PDFF (AMD: −0.10, 95%CI: −0.19 to −0.01). However, 
this association was not significant between NJs and cT1. In addition, 
using PDFF ≥ 5% as the threshold for hepatic steatosis and 
cT1 ≥ 800 ms as the threshold for hepatitis, we found that compared 
to those without ASB and SSB intake, the odds ratio of hepatic 
steatosis was 1.08 (95% CI, 1.03 to 1.15, p = 0.05) and 1.14 (95% CI: 
1.02 to 1.23, p = 0.008) and the OR of hepatitis was 1.33 (95% CI, 1.10 
to 1.65, p  < 0.001) and 1.29 (95% CI: 1.12 to 1.48, p  < 0.001) in 
individuals with ≥1 serving/d, respectively (Supplementary Table S5).

In fully adjusted restricted cubic splines (Figure  2), ASB intake 
showed linear dose–response association with PDFF and cT1, and there 
was a non-linear dose–response association of SSB with PDFF (P for 
nonlinear = 0.048), with PDFF plateauing when SSB intake reaches 2 
servings/day. However, significant dose–response association between 
NJs intake, PDFF, and cT1 were not observed (P for overall >0.05).

Joint and substitution association analyses

In fully adjusted QGC models (Figure 3), for each extra serving of 
SBs intake, the AMD of PDFF was 0.20 (95%CI: 0.12 to 0.28), and SSB 

contributed the most (54.7%); While, the AMD of cT1 was 3.18 
(95%CI: 1.48 to 4.87), and ASB contributed the most (53.1%).

In substitution analysis (Table 3), the PDFF was decreased when 
substituting SSB with NJs and water, and substituting ASB with water. 
Moreover, a decrease in cT1 (AMD: −1.78, 95%CI: −2.76 to −0.80) 
was observed after substituting ASB with water.

Subgroup, moderation, mediation and 
sensitivity analyses

In subgroup analyses (Supplementary Tables S6–S10), the 
associations of PDFF, cT1, and SBs intake were broadly similar in 
different subgroups of sex, age, BMI, and physical activity (P for 
interaction >0.05). However, there was a stronger association among 
those who consumed more alcohol (P for interaction = 0.002). In 
moderation analysis (Supplementary Tables S11, S12), we  found 
alcohol intake (ASB: P for interaction = 0.002; SSB: P for interaction 
<0.001) and sugar intake (ASB: P for interaction = 0.009; SSB: P for 
interaction = 0.004) had a positive moderating effect (β > 0) on the 
association of ASB and SSB consumption with PDFF. Moreover, 
abdominal obesity was also a significant moderate factor for cT1.

In mediation analyses (Figure 4 and Supplementary Tables S13, S14), 
body fat, healthy diet, and inflammation showed an partial mediation 
effect on the association of ASB and SSB consumption with PDFF and 
cT1. On the other hand, sugar intake and triglycerides also served as 
an adverse mediated factors for SSB. Considering that there was no 

TABLE 2  Linear regression models were performed to analyze the association between category of beverages intake and PDFF as well as cT1.

Category of 
beverage 
intake

PDFF cT1

Unadjusted 
difference 

(95%Cl)

P Adjusted 
difference 

(95%Cl)

P Unadjusted 
difference 

(95%Cl)

P Adjusted 
difference 

(95%Cl)

P

Artificially-sweetened beverage

 � 0 serving/d reference reference reference reference

 � 0–1 serving/d 0.36 (0.10, 0.63) 0.006 −0.04 (−0.24, 0.17) 0.696 8.48 (6.63, 10.34) <0.001 2.48 (0.75, 4.21) 0.005

 � ≥1 serving/d 0.62 (0.51, 0.74) <0.001 0.15 (0.06, 0.24) <0.001 9.32 (4.82, 13.82) <0.001 3.86 (1.26, 6.79) <0.001

 � Per 1 serving/d 

increased
0.33 (0.27, 0.39) <0.001 0.07 (0.02, 0.12) 0.003 5.06 (4.08, 6.05) <0.001 1.67 (0.76, 2.59) <0.001

Sugar-sweetened beverages

 � 0 serving/d reference reference reference reference

 � 0–1 serving/d 0.18 (0.01, 0.35) 0.037 0.19 (0.05, 0.34) 0.007 5.80 (2.83, 8.77) <0.001 1.94 (0.40, 3.49) 0.014

 � ≥1 serving/d 0.38 (0.29, 0.48) <0.001 0.21 (0.12, 0.29) <0.001 6.34 (4.70, 7.97) <0.001 2.43 (1.31, 3.57) <0.001

 � Per 1 serving/d 

increased
0.26 (0.20, 0.31) <0.001 0.12 (0.07, 0.16) <0.001 3.59 (3.01, 4.90) <0.001 1.06 (0.35, 1.97) 0.007

Nature juices

 � 0 serving/d reference reference reference reference

 � 0–1 serving/d −0.30 (−0.40, −0.19) <0.001
−0.10 (−0.19, 

−0.01)
0.027 −2.03 (−3.88, −0.19) 0.031 −0.14 (−1.86, 1.56) 0.866

 � ≥1 serving/d −0.14 (−0.23, −0.04) 0.007 0.01 (−0.07, 0.10) 0.706 0.35 (−1.34, 2.04) 0.684 0.77 (−0.84, 2.38) 0.394

 � Per 1 serving/d 

increased
−0.05 (−0.13, 0.02) 0.150 0.03 (−0.03, 0.09) 0.348 1.27 (0.02, 2.57) 0.045 0.94 (−0.23, 2.12) 0.116

Models were adjusted for age, sex, Deprivation Index, education, alcohol intake, smoking status, hypertension, diabetes, physical activity, laboratory measurements (glucose, triglyceride, 
cholesterol, C-reactive protein and platelet distribution width), dietary intake (total energy, total sugar, and healthy diet score), body mass index and abdominal obesity.
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dose–response association between NJs intake, PDFF, and cT1, the 
mediation analysis did not conducted for NJs.

In sensitivity analyses (Supplementary Tables S15–S18), the 
associations remained robust after adjusting additional covariates, 
including original seven parts of healthy diet score, carbohydrate 
intake, aspirin, and lowering cholesterol, hypoglycemic, and 
antihypertensive medication; including population completed at least 
2 dietary questionnaires; and representing difference as percentage 
change of PDFF.

Discussion

To best of our knowledge, this is the first study to investigate the 
relationship between beverage consumption, LFC, and HFI with 
community-based design and MRI measurement. In our research, 
population with ≥1 serving/d of ASB and SSB had higher LFC and HFI 
than those without ASB or SSB intake. Furthermore, ASB and SSB 
consumption showed a positive dose–response association with 
LFC. Notably, moderate NJs intake (0–1 serving per day) was inversely 
with LFC, but this association not remain significant for HFI. Our 
study provided novel evidence for the prevention of SLD and indicated 
that management of beverage intake may be  a useful approach to 
preventing chronic liver disease.

The adverse impact of SSB and ASB intake on LFC is consistent in 
different sex, age, BMI and physical activity level. However, individuals 
with higher alcohol and sugar intake may be more susceptible to LFC 
development when consuming ASB and SSB. BMI, healthy diet score 
and C-reaction protein both partly mediated the association between 
beverage intake and LFC. Furthermore, platelet function and 
periodontitis may be potential reasons for association between ASB 

intake, LFC, and HFI. It indicated that, although ASB can reduce sugar 
and calorie intake, they can still exacerbate liver pathological changes 
through other pathways, such as inflammation, platelet function, and an 
unhealthy diet. Which is consistent with previous studies (16, 35). 
Contrary to previous research, we found that substituting SSB with ASB 
was not associated with reduced LFC or HFI, indicating that ASB is not 
an appropriate alternative to SSB. Moreover, only water can be reliable 
replacement to reduce the impact of ASB or SSB on LFC or HFI.

Our findings can be  supported by several previous studies. A 
prospective study showed that more ASB consumption was associated 
with higher incidence of MASLD and moderated NJs consumption 
was not associated with lower incidence of MASLD (36). Many studies 
found the positive association between SSB intake and fatty liver 
disease (7, 8, 37). However, a Framingham Heart Study cohorts study 
revealed that diet soda intake (a type of ASB) was not positively related 
with risk of fatty liver disease (8). Two small clinical intervention 
studies (n = 47, n = 27) and a meta-analysis showed that replacing SSB 
with ASB would decrease deposition of fat in liver (9–11). These 
contradictory results may contribute to differences in experimental 
design, heterogeneity of population, sample sizes, assessment of 
beverage intake, and measurement of LFC. Notably, evidence 
regarding the relationship between SBs and HFI is lack. Therefore, our 
study is the first to reveal the long-term adverse impact of ASB and 
SSB intake on LFC and HFI development with large population.

Although the mechanism of the relationship between beverages 
intake and liver histology is not fully clarified, several reasons may 
be explained. First, SSB is a major contributor to free sugar intake, 
which can lead to increased calorie consumption, high glycemic load, 
elevated blood glucose, hyperinsulinemia, and insulin resistance, 
thereby increasing LFC (38, 39). Second, in animal models, artificial 
sweeteners have adverse influence on component and function of host 

FIGURE 2

Restricted cubic splines models for the association between sugary beverages intake, PDFF, and cT1. (A) ASB intake and PDFF, (B) SSB intake and PDFF, 
(C) NJs intake and PDFF; (D) ASB intake and cT1; (E) SSB intake and cT1; (F) NJs intake and cT1. Models were adjusted for age, sex, Deprivation Index, 
education, alcohol intake, smoking status, physical activity, hypertension, diabetes, laboratory measurements (glucose, triglyceride, cholesterol, C-reactive 
protein and platelet distribution width), dietary intake (total energy, total sugar, and healthy diet score), body mass index and abdominal obesity.
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TABLE 3  Substitution analysis examining the association between PDFF as well as cT1 and category of beverage intake.

Substitution 
analysis

ASB SSB NJs Water

Difference 
(95%Cl)

P Difference 
(95%Cl)

P Difference 
(95%Cl)

P Difference 
(95%Cl)

P

PDFF

 � With ASB reference – −0.05 (−0.12, 0.02) 0.177 0.05 (−0.13, 0.02) 0.179 0.06 (0.01, 0.12) 0.014

 � With SSB 0.05 (−0.02, 0.12) 0.177 reference – 0.09 (0.02, 0.17) 0.016 0.11 (0.06, 0.16) <0.001

 � With NJs −0.05 (−0.02, 0.13) 0.179
−0.09 (−0.17, 

−0.02)
0.016

reference –
−0.01 (−0.07, 0.05) 0.775

 � With water
−0.06 (−0.12, 

−0.01)
0.014

−0.11 (−0.16, 

−0.06)
<0.001 0.01 (−0.05, 0.07) 0.775

reference –

CT1

 � With ASB reference – 1.08 (−0.31, 2.48) 0.126 0.90 (−0.59, 2.39) 0.235 1.78 (0.80, 2.76) <0.001

 � With SSB −1.08 (−2.48, 0.31) 0.126 reference – 0.03 (−1.45, 1.50) 0.973 0.83 (−0.12, 1.79) 0.087

 � With NJs −0.90 (−2.39, 0.59) 0.235 −0.03 (−1.50, 1.45) 0.973 reference – 0.86 (−0.37, 2.09) 0.171

 � With water
−1.78 (−2.76, 

−0.80)
<0.001 −0.83 (−1.79, 0.12) 0.087 −0.86 (−2.09, 0.37) 0.171

reference –

ASB, artificially-sweetened beverage; SSB, sugar-sweetened beverages; NJs, nature juices. Models were adjusted for age, sex, Deprivation Index, education, alcohol intake, smoking status, 
physical activity, hypertension, diabetes, laboratory measurements (glucose, triglyceride, cholesterol, C-reactive protein and platelet distribution width), dietary intake (total energy, total sugar, 
and healthy diet score), body mass index and abdominal obesity. Bold figures denote P < 0.05.

FIGURE 3

Joint associations and relative contributions of sugary beverages to PDFF (A–D) and cT1 (E–H). A/E): joint associations and relative contributions of ASB 
and SSB; B/F): joint associations and relative contributions of ASB and NJs; C/G): joint associations and relative contributions of SSB and NJs; D/H): 
joint associations and relative contributions of ASB, SSB and NJs.
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intestinal microecology, glucose homeostasis, inflammation and 
adipose tissue deposition. In addition, evidence from human studies 
associates the consumption of artificial sweeteners with weight gain 
and metabolic syndrome (12, 13). Third, for NJs, on the one hand, 
more natural sugar (such as fructose) may increase the lipid 
accumulation in liver by promoting the expression of fatty acid 
synthase (40, 41). On the other hand, NJs have a large content of 
bioactive molecules, such as vitamin C (17), carotenoids (18) and 
flavonoids (42), potentially lowering inflammation and oxidative stress 
in liver and then inhibit the pathological progression. Further study is 
urgently needed to clarify the mechanism.

Our study has several limitations. First, as a prospective cohort 
study, this analysis cannot establish a causal relationship between 
beverage intake and LFC or HFI. Second, although dietary 
questionnaires were collected on five separate occasions, this recall-
based method is inevitably subject to recall bias, which may lead to 
either an over- or underestimation of habitual intake for certain foods. 
Moreover, the population is mainly aged over 50 years and caucasians, 
which may restrict the generalizability of our findings. Previous studies 
have shown that food preferences, nutrient metabolism, and disease 
susceptibility vary by age and ethnicity (43, 44), which may alter the 
strength or even the direction of the diet–disease associations observed 
here. Therefore, whether these conclusions apply to younger individuals 
or to other ethnic groups remains to be verified. Forth, the baseline of 
MRI measurements is lack in database so that we cannot assess changes 
in LFC or HFI over time; only a single measurement is available as the 
outcome. Furthermore, although our models adjusted for multiple 
covariates, residual confounding from incompletely controlled 
factors—such as insulin resistance, socioeconomic status, and types of 
artificial sweeteners—may still bias the results.

Conclusion

In conclusion, ASB and SSB intake were positively associated with 
LFC and HFI, while moderate NJs intake was inversely associated with 
LFC, but not HFI. The combined consumption of SBs was associated 
with development of LFC and HFI, and ASB intake showed a stronger 
positive association with HFI progression than SSB intake. Moreover, 
replacing ASB with water was associated with protective effect on both 
LFC and HFI. Overall, our findings support substitution strategies as 
a potential approach, but randomized controlled intervention trials 
are still needed to confirm its efficacy and safety.
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