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Objective: Liver fat content (LFC) and hepatic fibro-inflammation (HFI)
accumulation are the primary pathological manifestation of steatohepatitis.
The association between intake of sugary beverages (SBs), including artificially-
sweetened beverages (ASB), sugar-sweetened beverages (SSB), and natural
juices (NJs), and LFC or HFI remains unclear.

Methods: The study included 25,885 participant who completed at least one
online dietary assessment and magnetic resonance imaging. LFC and HFI were
quantified using the liver proton density fat fraction (PDFF) and iron-corrected
T1(cT1).

Results: Compared to those without ASB and SSB intake, the arithmetic mean
difference (AMD) of PDFF was 0.15 (95% Cl: 0.06 to 0.24) and 0.21 (95% Cl, 0.12
to 0.29), and the AMD of cT1 was 3.86 (95% Cl, 1.26 to 6.79) and 2.43 (95% Cl,
1.31 to 3.57) in individuals with >1 serving/d, respectively. Individuals with 0-1
serving/d had lower PDFF (AMD: —0.10 95%Cl: —0.19 to —0.01) than those without
NJs intake. In Quantile G-computation models, SSB and ASB contributed most
in the AMD of PDFF (54.7%) and cT1 (53.1%), respectively. When replacing ASB
and SSB with water, the progress of PDFF was improved.

Conclusion: Artificially-sweetened beverages and SSB intake were positively
associated with LFC and HFI, and moderate NJs intake was slightly negatively
associated with LFC but not HFI.

KEYWORDS

sugary beverages, liver fat content, hepatic fibro-inflammation, magnetic resonance
imaging, proton density fat fraction

Introduction

Liver fat content (LFC) is a hallmark of metabolic dysfunction-associated steatotic liver disease
(MASLD), affecting over 30% of the global population and imposing a significant economic
burden (1, 2). While hepatic fibro-inflammation (HFI) reflects the severity of MASLD, excessive
LFC accumulation is a precursor to HFI, which further leads to liver cirrhosis, liver failure, and
hepatocellular carcinoma (3). Moreover, studies reported that elevated LFC and HFI exacerbate
the progression of extrahepatic diseases including diabetes, hypertension, and other
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cardiometabolic conditions (4, 5). Despite the need for effective
interventions, there is a paucity of medications to reduce LFC and HFJ,
making diet intervention a cornerstone of current guidelines (5, 6).
However, as a crucial part of dietary interventions, the relationship
between LFC, HFI, and sugary beverages (SBs), including artificially-
sweetened beverages (ASB), sugar-sweetened beverages (SSB), and
natural juices (NJs), remains unclear.

Previous research and guidelines have highlighted the detrimental
effects of SSB on LFC (7, 8). Yet, the association between ASB and NJs
intake and LFC development is not well-established. For example, two
randomized controlled trials have indicated that replacing SSB with ASB
might decrease LFC (9, 10), suggesting that ASB could serve as a
potential substitute for SSB due to their lower calorie and sugar content
(11). However, these studies were limited by short follow-up periods,
small sample sizes, and a focus on overweight and obese populations.
Additionally, ASB have been shown to negatively affect intestinal
microecology, glucose homeostasis, adipose tissue deposition, weight
gain, and metabolic syndrome (12, 13). Moreover, numerous studies
have also linked ASB consumption to cardiometabolic diseases,
including type 2 diabetes, cardiovascular diseases, thrombosis, and
mortality (14-16). Thus, caution should be exercised when considering
ASB as a substitute for SSB in managing steatotic liver disease (SLD) and
non-alcoholic steatohepatitis (NASH). Natural juices, another category
of SBs, contain both harmful and beneficial bioactive molecules like
fructose, micronutrients, and antioxidants, potentially impacting LEC
development (17, 18). However, few studies have explored the
relationship between NJs intake and LFC. Moreover, to our knowledge,
there have been no studies that have yet explored the relationship
between sugary beverages (SBs) and hepatic fibro-inflammation (HFI)
levels. Therefore, further research with long-term follow-up and large
populations is necessary to elucidate these associations.

Consequently, our study aimed to investigate the association
between SBs intake (ASB, SSB, and NJs), LFC, and HFI, as well as to
assess their joint associations and relative importance based on a large
community-based cohort with long-term follow-up. Additionally, the
study explores the effects of beverage substitution and potential
mediators on these associations.

Materials and methods
Study design and population

The data originated from the UK Biobank, an extensive,
prospective cohort study encompassing more than 500,000
participants within the age range of 37-63 years. Affirming their
voluntary participation, the individuals provided written consent via
electronic questionnaires for the collection of their data. The study
incorporated comprehensive magnetic resonance imaging (MRI)
derived from a multimodal imaging initiative, yielding a rich dataset

Abbreviations: AMD, arithmetic mean difference; ASB, artificially-sweetened
beverages; HFI, hepatic fibro-inflammation; LFC, Liver fat content; MASLD,
metabolic dysfunction-associated steatotic liver disease; MRI, magnetic resonance
imaging; NJs, natural juices; PDFF, Proton Density Fat Fraction; QGC, Quantile
G-computation; SBs, sugary beverages; SLD, steatotic liver disease; SSB, sugar-

sweetened beverages.
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of imaging information. Adhering to stringent ethical research
standards, the UK Biobank study has received clearance from the
Northwest Multicenter Research Ethics Committee. Authorization for
the utilization of this dataset has also been granted by the Human
Ethics Committee of West China Hospital, Sichuan University.

A total of 210,948 participants completed at least one 24-h dietary
recall. Participants were excluded if they had existing liver disease
(Supplementary Table S1, n = 1,148), implausible energy intake levels
(women: <500 or >3,500 kcal/day; men: <800 or >4,000 kcal/day,
n =2,896), or lacked MRI data (n = 181,055). Following these
exclusions, the study included 25,885 eligible individuals (Figure 1).

Assessment of intake of beverages

Participants were asked to complete online 24-h dietary assessments,
providing detailed recalls of their consumption of 206 common foods
and 32 beverages over the preceding 24 h. Daily beverage intake was
assessed by following question: “How many glasses, cans, or cartons
containing 250 mL of sugar-sweetened beverages, artificially sweetened
beverages, or natural juices did you drink yesterday?” Participants were
categorized into 3 groups based on the distribution of these products: 0,
0to 1 and >1 serving per day. From 2009 to 2012, participants were
asked online five times, and those who completed at least one dietary
assessment were included in the study by calculating their mean beverage
intake. The beverages intake levels were comparable with the national
data in the UK (19).

Assessment of liver fat content and hepatic
fibro-inflammation

The Proton Density Fat Fraction (PDFF), ascertained through
Magnetic Resonance Imaging (MRI), represents the proportion of
protons associated with fat relative to the overall proton count
within the liver. This method allows for the direct measurement of
LFC, eliminating the need for invasive biopsy, which was considered
as the most accurate noninvasive method (20). Previous study
showed MRI was an excellent assessment compared with liver biopsy
(Spearman correlation coefficient = 0.85) (21) and can classify
grades of hepatic steatosis with areas under the summary receiver
operating characteristic curves >90% (22). A cardiac-gated
Shortened Modified Look-Locker Inversion sequence was utilized
to measure liver T1 values, and it can be adjusted to account for the
influence of iron, resulting in an cT1 score, which is expressed in
milliseconds (ms) and serves as an indirect indicator of hepatic
fibro-inflammatory activity. This metric, derived from MRI, has
been confirmed for accuracy by comparison with liver histology and
has shown its practical use in clinical settings going forward (23-26).

Covariates assessment

Our models were adjusted for several covariates: sex (male and
female), age, Townsend deprivation index, education statues, alcohol
intake (g/d), smoking status (never, current, former), BMI (<25.0, 25.0
to <30, >30 kg/m?), abdominal obesity (yes and no), physical activity
(metabolic equivalents [MET] hours per day for all physical activity),
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| 502,413 The UK Biobank Participants (2006-2010) ’
210,948 Participants completed at least one 24-hour
dietary questionnaire
1,148 Existing liver disease
2,896 Implausible energy intake
181,055 Without MRI data
25,885 Eligible individuals
* 5,511 (21.3%) individuals consumed ASB
+ 8,859 (34.2%) individuals consumed SSB
* 14,567 (66.3%) individuals consumed NJs
Follow-up: 10.3 (4.5-16.3) years
Endpoint: liver fat content and hepatic fibro-inflammation
FIGURE 1
Study flow chart.

hypertension (yes and no), glucose (mmol/L), triglyceride (mmol/L),
cholesterol (mmol/L), C-reactive protein (mg/L), and platelet
distribution width (%), total energy (kcal/d), total sugar (g/d), and
healthy diet score (0-7). Healthy diet score were based on following
criterion (27): total vegetables, >4 servings per day; total fruit, >4
servings per day; total fish, >2 servings per week; processed meat, <1
servings per week; red meat, <1.5 servings per week; whole grains, >3
servings per day; refined grains, <1.5 servings per day and achieving
one of the above criteria is scored as one point (ranged from 0 to 7).
Covariates were collected by professionals through questionnaires,
physical examinations, and biological samples (28). The detailed
descriptions of covariates were performed in Supplementary material
according to previous research (27).

Statistical analysis

Continuous variables were presented as means with standard
deviations and categorical variables were depicted as counts and
percentages. According to previous study (29), we performed
univariate and multivariate linear regression models and calculated
the arithmetic mean difference (AMD) and 95% confidence intervals
(ClIs) to explore the correlation PDFF, ¢T1, and SBs consumption. In
addition, we defined hepatic steatosis as PDFF > 5% (30) and
hepatitis as cT1 > 800 ms (31), and investigated their associations
with beverage intake. Restricted cubic splines with three knots (knots
placed at the quartile of each beverage intake) were used in unadjusted
and fully adjusted models to explore the dose-response relationships
between SBs intake, PDFE and cT1, respectively. Additionally,
subgroup analyses were conducted to explore the relationship of
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AMD of PDFF and cT1 with SBs intake across different subgroups,
categorized by age (<55 vs. >55), sex (male vs. >female), alcohol
intake (<10 g/d vs. >10 g/d), BMI (<25.0 vs. 25.0 to <30 vs. >30 kg/
m?) physical activity (whether met WHO physical activity guidelines:
150 min of moderate activity per week or 75 min of vigorous activity)
(32). Quantile G-computation (QGC) (33) model was employed to
comprehensively evaluate the relative importance and joint
association of various beverage intakes on Proton Density Fat
Fraction (PDFF) and contrast-enhanced T1-weighted imaging (cT1)
outcomes. The dietary questionnaire inquires about the servings of
beverages consumed within 24 h (250 mL = 1 serving). Therefore,
we utilized substitution models to assess the effect of replacing one
serving of a beverage with another (34). Moderation analysis was
conducted to investigate which covariates moderated the effect of
ASB and SSB intake on PDFF and cT1. We also performed a
mediation analysis to quantify the proportion of PDFF and cT1
explained by indirect factors as well as the direct association of SSB
intake and ASB intake. The detailed descriptions of statistical analysis
were provided in Supplementary material.

To robust our findings, several sensitivity analyses were
conducted. First, we divided health diet score into the original seven
parts for adjustment. Second, we additionally adjusted for
carbohydrates intake, use of medication (aspirin, cholesterol lowering,
hypoglycemic, and antihypertensive medication) due to potential
confounding. Third, the percentage change of PDFF also expressed by
linear regression models. Fourth, the linear regression models was
repeated in participants who completed at least 2 dietary assessments.

Statistical significance was set at a two-tailed p-value of <0.05. All
statistical analyses were performed using SPSS (version 27.0; IBM Corp.,
Armonk, NY, United States) and R software 3.5.0 (Vienna, Austria).
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Results
Baseline characteristics

A total of 25,885 participants (age: 55.3 + 7.5 years, male: 12,228
[47.2%]) were included in our study with a median follow-up of 10.3
(4.5-16.3) years. Among these population, 5,511 (21.3%) individuals
consumed ASB, 8859 (34.2%) individuals consumed SSB, and 14,567
(66.3%) individuals consumed NJs. Compared to those without SBs
intake, participants with >1 serving/d more likely to be younger,
current smoker and had higher BMI and energy intake and less

10.3389/fpubh.2025.1624848

physical activity. For biochemical examination, they had higher
glucose, triglyceride, cholesterol, liver enzyme (Table 1 and
Supplementary Table S2).

Linear and logistic regression analysis and
restricted cubic splines

In the fully adjusted linear regression models (Table 2 and
Supplementary Tables S3, S4), compared to those without ASB and
SSB intake, the arithmetic mean difference (AMD) of PDFF was 0.15

TABLE 1 Baseline characteristics of participants by sugar-sweetened beverages intake.

Characteristics

Sugar-sweetened beverages

0-1/d

Sample size, (%) 17,026 (65.8%) 1,603 (6.3%) 7,202 (27.8%)
Male, n(%) 7,803 (45.8%) 777 (47.7%) 3,648 (50.7%) <0.001
Age (years) 55.36 (7.41) 55.28 (7.63) 53.44 (7.59) <0.001
Townsend deprivation Index —1.90 (2.72) —1.88 (2.66) —1.80 (2.74) 0.819
Education <0.001

College or University degree 8,817 (51.8%) 766 (47.0%) 3,567 (49.5%)

A AS level or equivalent 2,225 (13.1%) 217 (13.3%) 992 (13.8%)

O levels or equivalent 3,510 (20.6%) 371 (22.8%) 1,630 (22.6%)

Other 2,474 (14.5%) 276 (16.9%) 1,013 (14.1%)
Alcohol intake (g/d) 11.36 (9.81) 10.20 (9.12) 10.80 (10.54) <0.001
Smoking status, 71(%) <0.001

Never 10,248 (60.2%) 1,038 (63.7%) 4,552 (63.2%)

Former 995 (5.8%) 88 (5.4%) 432 (6.0%)

Current 5,783 (34.0%) 504 (30.9%) 2,218 (30.8%)
Abdominal obesity, 11(%) 3,925 (23.1%) 366 (22.5%) 1822 (25.3%) <0.001
BMI (kg/m?) 26.36 (4.02) 26.49 (4.02) 26.91 (4.26) <0.001
Physical activity (MET hours/week) 40.36 (36.25) 39.73 (35.74) 39.51(39.11) <0.001
Hypertension, n(%) 6,662 (39.1%) 655 (40.2%) 2,704 (37.5%) 0.033
Diabetes, n(%) 503 (3.0%) 34 (2.1%) 139 (1.9%) <0.001
Albumin (g/L) 45.36 (2.52) 45.43 (2.53) 45.52 (2.52) <0.001
Glucose (mmol/L) 5.36 (0.97) 4.99 (0.93) 542 (0.91) <0.001
Triglyceride (mmol/L) 1.36 (0.91) 1.63 (0.91) 1.76 (1.06) <0.001
Cholesterol (mmol/L) 5.36 (1.10) 5.75 (1.10) 5.65 (1.07) 0.304
C-reactive protein (mg/L) 1.36 (3.27) 2.07 (3.90) 2.18 (3.80) <0.001
Platelet count (10”L) 248.9 (64.54) 247.8 (65.15) 250.9 (65.37) <0.001
HDL-c (mmol/L) 1.36 (0.38) 1.47 (0.37) 1.42 (0.36) <0.001
LDL-c (mmol/L) 3.36 (0.84) 3.61(0.83) 3.55 (0.81) <0.001
ALT (U/L) 22.36 (12.42) 22.62 (14.08) 23.79 (15.64) <0.001
AST (U/L) 25.36 (7.83) 25.56 (10.72) 26.27 (10.47) <0.001
GGT (U/L) 31.36 (32.93) 32.31(28.60) 33.78 (28.70) <0.001
Energy (kJ/d) 8520.36 (2026.19) 8821.54 (2020.28) 9296.56 (2080.84) <0.001
Sugar intake (g/d) 117.36 (38.52) 129.53 (39.53) 148.02 (43.37) <0.001
Healthy diet score 3.36 (1.34) 2.98 (1.35) 2.91 (1.41) <0.001

BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; ALT, alkaline phosphatase; AST, glutamic oxaloacetic transaminase; GGT,

glutamyl transpeptidase; MET, metabolic equivalent.
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(95% CI, 0.06 to 0.24, p < 0.001) and 0.21 (95% CI: 0.12 to 0.29,
p <0.001), and the AMD of cT1 was 3.86 (95% CI, 1.26 to 6.79,
p <0.001) and 2.43 (95% CI: 1.31 to 3.57, p < 0.001) in individuals
with >1 serving/d, respectively. Additionally, there were both higher
PDEFF and cT1 for each additional serving of ASB and SSB intake.
Compared to non-NJs intake population, those with 0-1 serving/d
had decreased PDFF (AMD: —0.10, 95%CI: —0.19 to —0.01). However,
this association was not significant between NJs and cT'1. In addition,
using PDFF > 5% as the threshold for hepatic steatosis and
cT1 > 800 ms as the threshold for hepatitis, we found that compared
to those without ASB and SSB intake, the odds ratio of hepatic
steatosis was 1.08 (95% CI, 1.03 to 1.15, p = 0.05) and 1.14 (95% CI:
1.02 to 1.23, p = 0.008) and the OR of hepatitis was 1.33 (95% CI, 1.10
to 1.65, p <0.001) and 1.29 (95% CI: 1.12 to 1.48, p <0.001) in
individuals with >1 serving/d, respectively (Supplementary Table S5).

In fully adjusted restricted cubic splines (Figure 2), ASB intake
showed linear dose-response association with PDFF and cT1, and there
was a non-linear dose-response association of SSB with PDFF (P for
nonlinear = 0.048), with PDFF plateauing when SSB intake reaches 2
servings/day. However, significant dose-response association between
NJs intake, PDFE and cT1 were not observed (P for overall >0.05).

Joint and substitution association analyses

In fully adjusted QGC models (Figure 3), for each extra serving of
SBs intake, the AMD of PDFF was 0.20 (95%CI: 0.12 to 0.28), and SSB

10.3389/fpubh.2025.1624848

contributed the most (54.7%); While, the AMD of cT1 was 3.18
(95%CI: 1.48 to 4.87), and ASB contributed the most (53.1%).

In substitution analysis (Table 3), the PDFF was decreased when
substituting SSB with NJs and water, and substituting ASB with water.
Moreover, a decrease in cT1 (AMD: —1.78, 95%CI: —2.76 to —0.80)
was observed after substituting ASB with water.

Subgroup, moderation, mediation and
sensitivity analyses

In subgroup analyses (Supplementary Tables S6-S10), the
associations of PDFE, cT1, and SBs intake were broadly similar in
different subgroups of sex, age, BMI, and physical activity (P for
interaction >0.05). However, there was a stronger association among
those who consumed more alcohol (P for interaction = 0.002). In
moderation analysis (Supplementary Tables S11, S12), we found
alcohol intake (ASB: P for interaction = 0.002; SSB: P for interaction
<0.001) and sugar intake (ASB: P for interaction = 0.009; SSB: P for
interaction = 0.004) had a positive moderating effect (f > 0) on the
association of ASB and SSB consumption with PDFE Moreover,
abdominal obesity was also a significant moderate factor for cT1.

Inmediationanalyses (Figure 4and Supplementary Tables S13,514),
body fat, healthy diet, and inflammation showed an partial mediation
effect on the association of ASB and SSB consumption with PDFF and
cT1. On the other hand, sugar intake and triglycerides also served as
an adverse mediated factors for SSB. Considering that there was no

TABLE 2 Linear regression models were performed to analyze the association between category of beverages intake and PDFF as well as cT1.

Category of
beverage

intake

Unadjusted
difference
(95%Cl)

PDFF

p

Adjusted
difference
(95%Cl)

Unadjusted
difference
(95%Cl)

Adjusted
difference
(95%Cl)

Artificially-sweetened beverage
0 serving/d reference reference reference reference
0-1 serving/d 0.36 (0.10, 0.63) 0.006 —0.04 (—0.24,0.17) 0.696 8.48 (6.63,10.34) <0.001 2.48 (0.75,4.21) 0.005
>1 serving/d 0.62 (0.51, 0.74) <0.001 0.15 (0.06, 0.24) <0.001 9.32(4.82,13.82) <0.001 3.86 (1.26,6.79) <0.001
Per 1 serving/d

0.33(0.27,0.39) <0.001 0.07 (0.02, 0.12) 0.003 5.06 (4.08, 6.05) <0.001 1.67 (0.76, 2.59) <0.001

increased

Sugar-sweetened beverages
0 serving/d reference reference reference reference
0-1 serving/d 0.18 (0.01, 0.35) 0.037 0.19 (0.05, 0.34) 0.007 5.80 (2.83,8.77) <0.001 1.94 (0.40, 3.49) 0.014
>1 serving/d 0.38 (0.29, 0.48) <0.001 0.21 (0.12, 0.29) <0.001 6.34 (4.70,7.97) <0.001 2.43 (1.31, 3.57) <0.001
Per 1 serving/d

0.26 (0.20, 0.31) <0.001 0.12 (0.07, 0.16) <0.001 3.59 (3.01, 4.90) <0.001 1.06 (0.35, 1.97) 0.007

increased

Nature juices
0 serving/d reference reference reference reference

—0.10 (—0.19,

0-1 serving/d —0.30 (—0.40, —0.19) <0.001 0.01) 0.027 —2.03 (—3.88,-0.19) 0.031 —0.14 (—1.86, 1.56) 0.866
>1 serving/d —0.14 (—0.23, —0.04) 0.007 0.01 (—0.07, 0.10) 0.706 0.35 (—1.34,2.04) 0.684 0.77 (—0.84, 2.38) 0.394
Per 1 serving/d
. d —0.05 (—0.13, 0.02) 0.150 0.03 (—0.03, 0.09) 0.348 1.27(0.02, 2.57) 0.045 0.94 (—0.23,2.12) 0.116
increase

Models were adjusted for age, sex, Deprivation Index, education, alcohol intake, smoking status, hypertension, diabetes, physical activity, laboratory measurements (glucose, triglyceride,
cholesterol, C-reactive protein and platelet distribution width), dietary intake (total energy, total sugar, and healthy diet score), body mass index and abdominal obesity.
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FIGURE 2

Restricted cubic splines models for the association between sugary beverages intake, PDFF, and cT1. (A) ASB intake and PDFF, (B) SSB intake and PDFF,

(C) NJs intake and PDFF; (D) ASB intake and cTZ1; (E) SSB intake and cTZ1; (F) NJs intake and cT1. Models were adjusted for age, sex, Deprivation Index,
education, alcohol intake, smoking status, physical activity, hypertension, diabetes, laboratory measurements (glucose, triglyceride, cholesterol, C-reactive
protein and platelet distribution width), dietary intake (total energy, total sugar, and healthy diet score), body mass index and abdominal obesity.

dose-response association between NJs intake, PDFFE, and cT1, the
mediation analysis did not conducted for NJs.

In sensitivity analyses (Supplementary Tables S15-S18), the
associations remained robust after adjusting additional covariates,
including original seven parts of healthy diet score, carbohydrate
intake, aspirin, and lowering cholesterol, hypoglycemic, and
antihypertensive medication; including population completed at least
2 dietary questionnaires; and representing difference as percentage
change of PDFE

Discussion

To best of our knowledge, this is the first study to investigate the
relationship between beverage consumption, LFC, and HFI with
community-based design and MRI measurement. In our research,
population with >1 serving/d of ASB and SSB had higher LFC and HFI
than those without ASB or SSB intake. Furthermore, ASB and SSB
consumption showed a positive dose-response association with
LFC. Notably, moderate NJs intake (0-1 serving per day) was inversely
with LFC, but this association not remain significant for HFI. Our
study provided novel evidence for the prevention of SLD and indicated
that management of beverage intake may be a useful approach to
preventing chronic liver disease.

The adverse impact of SSB and ASB intake on LFC is consistent in
different sex, age, BMI and physical activity level. However, individuals
with higher alcohol and sugar intake may be more susceptible to LFC
development when consuming ASB and SSB. BMI, healthy diet score
and C-reaction protein both partly mediated the association between
beverage intake and LFC. Furthermore, platelet function and
periodontitis may be potential reasons for association between ASB

Frontiers in Public Health

intake, LFC, and HFL It indicated that, although ASB can reduce sugar
and calorie intake, they can still exacerbate liver pathological changes
through other pathways, such as inflammation, platelet function, and an
unhealthy diet. Which is consistent with previous studies (16, 35).
Contrary to previous research, we found that substituting SSB with ASB
was not associated with reduced LFC or HFI, indicating that ASB is not
an appropriate alternative to SSB. Moreover, only water can be reliable
replacement to reduce the impact of ASB or SSB on LFC or HFL

Our findings can be supported by several previous studies. A
prospective study showed that more ASB consumption was associated
with higher incidence of MASLD and moderated NJs consumption
was not associated with lower incidence of MASLD (36). Many studies
found the positive association between SSB intake and fatty liver
disease (7, 8, 37). However, a Framingham Heart Study cohorts study
revealed that diet soda intake (a type of ASB) was not positively related
with risk of fatty liver disease (8). Two small clinical intervention
studies (n = 47, n = 27) and a meta-analysis showed that replacing SSB
with ASB would decrease deposition of fat in liver (9-11). These
contradictory results may contribute to differences in experimental
design, heterogeneity of population, sample sizes, assessment of
beverage intake, and measurement of LFC. Notably, evidence
regarding the relationship between SBs and HFI is lack. Therefore, our
study is the first to reveal the long-term adverse impact of ASB and
SSB intake on LFC and HFI development with large population.

Although the mechanism of the relationship between beverages
intake and liver histology is not fully clarified, several reasons may
be explained. First, SSB is a major contributor to free sugar intake,
which can lead to increased calorie consumption, high glycemic load,
elevated blood glucose, hyperinsulinemia, and insulin resistance,
thereby increasing LFC (38, 39). Second, in animal models, artificial
sweeteners have adverse influence on component and function of host
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FIGURE 3

Joint associations and relative contributions of sugary beverages to PDFF (A-D) and cT1 (E-H). A/E): joint associations and relative contributions of ASB
and SSB; B/F): joint associations and relative contributions of ASB and NJs; C/G): joint associations and relative contributions of SSB and NJs; D/H):
joint associations and relative contributions of ASB, SSB and NJs.

TABLE 3 Substitution analysis examining the association between PDFF as well as cT1 and category of beverage intake.

Substitution ASB SSB NJs Water
analysis . . . .
y Difference Difference Difference Difference
(95%Cl) (95%Cl) (95%Cl) (95%Cl)
PDFF
With ASB reference - —0.05 (=0.12, 0.02) 0.177 0.05 (—0.13, 0.02) 0.179 0.06 (0.01, 0.12) 0.014
With SSB 0.05 (—0.02, 0.12) 0.177 reference - 0.09 (0.02, 0.17) 0.016 0.11 (0.06, 0.16) <0.001
—0.09 (-0.17, reference -
With NJs —0.05 (=0.02,0.13) 0.179 ) 0.016 —0.01 (=0.07, 0.05) 0.775
—0.02
—0.06 (—0.12, —0.11 (—0.16, reference -
With water 0.014 <0.001 0.01 (=0.05, 0.07) 0.775
—0.01) —0.06)
CT1
With ASB reference - 1.08 (=0.31,2.48) 0.126 0.90 (=0.59, 2.39) 0.235 1.78 (0.80, 2.76) <0.001
With SSB —1.08 (—2.48,0.31) 0.126 reference - 0.03 (—1.45, 1.50) 0.973 0.83 (—0.12, 1.79) 0.087
With NJs —0.90 (—2.39, 0.59) 0.235 —0.03 (—1.50, 1.45) 0.973 reference - 0.86 (—0.37, 2.09) 0.171
—1.78 (=2.76, reference -
With water 050) <0.001 —0.83 (=1.79,0.12) 0.087 —0.86 (—2.09, 0.37) 0.171

ASB, artificially-sweetened beverage; SSB, sugar-sweetened beverages; NJs, nature juices. Models were adjusted for age, sex, Deprivation Index, education, alcohol intake, smoking status,
physical activity, hypertension, diabetes, laboratory measurements (glucose, triglyceride, cholesterol, C-reactive protein and platelet distribution width), dietary intake (total energy, total sugar,
and healthy diet score), body mass index and abdominal obesity. Bold figures denote P < 0.05.
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intestinal microecology, glucose homeostasis, inflammation and
adipose tissue deposition. In addition, evidence from human studies
associates the consumption of artificial sweeteners with weight gain
and metabolic syndrome (12, 13). Third, for NJs, on the one hand,
more natural sugar (such as fructose) may increase the lipid
accumulation in liver by promoting the expression of fatty acid
synthase (40, 41). On the other hand, NJs have a large content of
bioactive molecules, such as vitamin C (17), carotenoids (18) and
flavonoids (42), potentially lowering inflammation and oxidative stress
in liver and then inhibit the pathological progression. Further study is
urgently needed to clarify the mechanism.

Our study has several limitations. First, as a prospective cohort
study, this analysis cannot establish a causal relationship between
beverage intake and LFC or HFIL Second, although dietary
questionnaires were collected on five separate occasions, this recall-
based method is inevitably subject to recall bias, which may lead to
either an over- or underestimation of habitual intake for certain foods.
Moreover, the population is mainly aged over 50 years and caucasians,
which may restrict the generalizability of our findings. Previous studies
have shown that food preferences, nutrient metabolism, and disease
susceptibility vary by age and ethnicity (43, 44), which may alter the
strength or even the direction of the diet-disease associations observed
here. Therefore, whether these conclusions apply to younger individuals
or to other ethnic groups remains to be verified. Forth, the baseline of
MRI measurements is lack in database so that we cannot assess changes
in LFC or HFI over time; only a single measurement is available as the
outcome. Furthermore, although our models adjusted for multiple
covariates, residual confounding from incompletely controlled
factors—such as insulin resistance, socioeconomic status, and types of
artificial sweeteners—may still bias the results.

Frontiers in Public Health

Conclusion

In conclusion, ASB and SSB intake were positively associated with
LFC and HFJ, while moderate NJs intake was inversely associated with
LFC, but not HFI. The combined consumption of SBs was associated
with development of LFC and HF], and ASB intake showed a stronger
positive association with HFI progression than SSB intake. Moreover,
replacing ASB with water was associated with protective effect on both
LFC and HFI. Overall, our findings support substitution strategies as
a potential approach, but randomized controlled intervention trials
are still needed to confirm its efficacy and safety.
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