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Background: Digital-intelligent technologies (DIT), positioned at the 
convergence of artificial intelligence and digital transformation, have become 
pivotal to the modernization of physical education (PE). Although widely 
discussed within the context of Wisdom Education, their specific applications in 
PE have not been systematically synthesized. This study aimed to systematically 
review the scope, educational impacts, and implementation challenges of DIT 
in PE.

Methods: A systematic review was conducted on 85 empirical studies published 
between January 2014 and November 2024. Following PRISMA guidelines, the 
review examined application scenarios, technological architectures, educational 
outcomes, and implementation barriers.

Results: Digital Intelligent technologies (DIT) have been adopted across 
all stages of PE, forming a closed-loop system that includes (a) intelligent 
instructional design, (b) real-time process visualization, and (c) data-driven 
evaluation and feedback. Key innovations involved adaptive learning platforms, 
virtual simulation tools, multimodal assessment systems, and health behavior 
monitoring. Challenges remain in algorithmic accuracy, data privacy, and 
unequal access to digital resources.

Conclusion: Digital-intelligent technologies (DIT) have reshaped physical 
education by enabling more intelligent, personalized, and data-informed 
instructional practices. To fully realize their potential, future efforts must 
prioritize algorithmic advancement, ethical safeguards, and the promotion of 
digital equity.
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1 Introduction

The convergence of digital technologies and artificial intelligence has led to the emergence 
of “digital-intelligent integration,” a key trend in the evolution of educational technologies that 
has driven significant transformations in education systems (1). In this context, educational 
paradigms shifted from technology-driven informatization to a phase of “wisdom education,” 
characterized by intelligent decision-making, personalized learning, and adaptive instruction. 
This transition reflected a closer alignment between technological innovation and pedagogical 
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objectives, accompanied by a stronger emphasis on learner-centered 
design and support strategies (2, 3).

As a discipline integrating cognitive development with physical 
practice, physical education has undergone notable transformations 
driven by technological innovations. In recent years, emerging 
technologies such as wearable devices, big data platforms, motion 
recognition systems, and virtual reality (VR) have been increasingly 
applied to physical education instruction, athletic performance 
assessment, and student health monitoring. These technologies have 
partially addressed long-standing challenges in traditional physical 
education, including spatial and temporal constraints, delayed 
feedback, and unequal access to resources (4, 5). Unlike cognition-
oriented disciplines, however, physical education remains inherently 
embodied, with learning processes rooted in physical participation 
and kinesthetic experience. This technological infusion presents 
critical opportunities for the advancement of wisdom-driven physical 
education (6). Therefore, effective integration of digital-intelligent 
technologies (DIT) into physical education requires not only technical 
functionality but also pedagogical alignment with content 
characteristics and embodied learning modalities. While several 
systematic reviews have examined artificial intelligence or virtual 
reality in physical education, most have focused on isolated 
technologies or specific instructional contexts, lacking a 
comprehensive synthesis of broader trends, practical effectiveness, and 
long-term educational implications (7).

Building on this foundation, the present review systematically 
synthesized recent practices and research developments related to DIT 
in physical education (8). The study aimed to explore how DIT is 
applied in educational contexts, assess its impact on teaching and 
learning, and examine the key challenges associated with its 
implementation. Through this analysis, the review provides a 
theoretical foundation and practical guidance to support the digital-
intelligent transformation of physical education in both national and 
international settings.

2 Literature review

Digital-intelligent technology (DIT) represents an integrated 
innovation paradigm resulting from the convergence of artificial 
intelligence, the Internet of Things (IoT), big data, and other advanced 
technologies built upon digital foundations. It extends beyond simple 
tool use by emphasizing the creation of synergistic ecosystems for 
multi-intelligent technologies within educational environments (9). 
In education, DIT has propelled instructional models toward “wisdom 
education,” characterized by the generation of personalized learning 
pathways, dynamic optimization of teaching strategies, and improved 
efficiency in educational governance. In the context of embodied 
learning, physical education has seen the emergence of “Wisdom 
Physical Education” (WPE) through digital-intelligent integration 
(10), marked by real-time data collection and analysis to develop 
personalized training programs, thereby advancing intelligent 
transformation across the full cycle of teaching, learning, practice, 
assessment, and management.

Digital-intelligent technologies have been comprehensively 
integrated into the physical education process through the synergistic 
application of wearable devices, big data analytics systems, and large 
AI models (5). Physical educators used wearable devices to collect 

students’ movement data, which were then analyzed using machine 
learning algorithms. Generative AI was further employed to construct 
learner profiles and develop personalized exercise plans, enabling 
data-informed instructional decision-making (11). This approach not 
only improved teaching efficiency but also promoted students’ self-
awareness of performance and self-regulation of motor behaviors (12).

Currently, researchers have not reached a unified understanding 
of the concept of “Wisdom Physical Education” (WPE). Most scholars 
have interpreted the integration of modern information technologies 
into physical education as “Artificial Intelligence Physical Education” 
(AIPE) (5, 7, 13). Existing review studies have shown that research has 
primarily focused on virtual reality applications or evaluated the 
effectiveness of artificial intelligence in instructional feedback and 
health monitoring. However, these investigations have predominantly 
adopted a technological instrumentalist perspective, often overlooking 
the alignment between technologies and key human actors—such as 
teachers, students, and their interactive networks (11, 13–18).

Consequently, this study focused on the alignment between digital-
intelligent technologies and human actors in physical education contexts. 
It systematically examined the types of applications, implementation 
modes, and practical constraints of these technologies, discussed their 
developmental trajectories in physical education, and provided reference 
points for future theoretical development and empirical investigation.

3 Methods

3.1 Study design

This study adopted a systematic review methodology in accordance 
with the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines (19). As this review is narrative and 
qualitative in nature, it was not registered in PROSPERO, which 
primarily tracks reviews with quantitative synthesis. It synthesized the 
application landscape, technological ecosystem, and practical 
implications of digital-intelligent technologies (DIT) in physical 
education, covering the period from January 2014 to November 2024. 
The review was guided by the following research questions:

RQ1: What characterized the application landscape of DIT in 
physical education?

RQ2: How was the technological ecosystem of DIT in 
physical education?

RQ3: What were the practical implications of implementing 
DIT in physical education?

As this review did not involve human participants or animal 
subjects and relied solely on previously published data, ethical 
approval was not required.

3.2 Database search

A structured Boolean search strategy was implemented across 
Web of Science, Scopus, EBSCO, ACM Digital Library, Taylor & 
Francis, and Wiley Online Library. The search was refined to include 
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only open-access, English-language records categorized as “Articles.” 
Two major keyword clusters were developed: (1) DIT-related terms 
(e.g., “Artificial Intelligence,” “Machine Learning,” “ChatGPT,” “Virtual 
Reality,” “Knowledge Graph,” “Intelligent Tutoring System”), and (2) 
PE-related terms (e.g., “Physical Education,” “Physical Education 
Teaching,” “School Physical Education,” “Sports Study”).

To reduce false-positive results, Boolean operators such as AND and 
OR were strategically used to combine terms and ensure topic relevance. 
Specifically, intersecting DIT and PE terms using AND restricted the 
retrieval to records that explicitly addressed both domains, while OR 
expanded within each keyword category to capture terminological 
variations. The search was further limited to the title (TI) and abstract 
(AB) fields to improve precision and filter out loosely related results. The 
complete query syntax is available in Supplementary material 1.

Concurrently, the PECOS framework (Population, Exposure, 
Comparator, Outcomes, Study Design) was applied to define the 
inclusion criteria. The target population focused on K–12 physical 
education settings, with digital-intelligent technologies (DIT) as the 
exposure variable, and empirical research designs (e.g., experiments, 
surveys, case studies) as the eligible study types. Following the initial 
database screening, a snowball sampling strategy was employed 
through Google Scholar to capture potentially overlooked studies 
(20), resulting in 2,945 candidate publications.

Two independent reviewers (Qiying Zhong and Jiajun Jiang) 
independently conducted the full-text screening process. Inter-rater 
reliability, assessed via Cohen’s Kappa (κ = 0.82), indicated substantial 
agreement. Any discrepancies were resolved through structured 
deliberation. Qiying Zhong additionally conducted the initial title and 
abstract screening, and both reviewers jointly confirmed the eligibility 
of full-text articles (see Table 1). Ultimately, 85 articles satisfied the 
eligibility criteria and were included in the final analysis of this 
systematic review (see Figure 1).

3.3 Data selection

The study employed a structured five-stage screening process to 
manage the retrieved literature: (a) Deduplication and temporal 
filtering: Duplicate records were removed, and publications outside 
the designated study timeframe were excluded; (b) Title screening: 
Literature was initially excluded based on irrelevance determined 
from the title; (c) Abstract screening: Abstracts were reviewed to 

eliminate studies that did not meet the inclusion criteria. As part of 
this process, articles not published in English were excluded to ensure 
analytical consistency and accessibility; (d) Full-text review: Two 
independent reviewers (Qiying Zhong and Jiajun Jiang) 
independently conducted the full-text screening process, they jointly 
confirmed the eligibility of full-text articles. Inter-rater reliability, 
assessed via Cohen’s Kappa (κ = 0.82), indicated substantial 
agreement; (e) Consensus resolution: Disagreements were resolved 
through discussion among the co-authors until consensus was 
reached (see Table 1). Ultimately, 85 articles satisfied the eligibility 
criteria and were included in the final analysis of this systematic 
review (see Figure 1).

3.4 Data analysis

This study employed bibliometric analysis (21), and qualitative 
content analysis (22) to extract and analyze data from the 85 included 
empirical studies. A classification framework was developed to 
categorize digital-intelligent technologies (DIT) application types in 
physical education, supported by representative examples. The 
framework was iteratively refined through discussions between two 
independent reviewers (Qiying Zhong and Jiajun Jiang) to ensure 
analytical consistency (23).

The data analysis process was independently conducted by Qiying 
Zhong and Jiajun Jiang to ensure analytical reliability. Data extraction 
utilized a standardized template including fields for study metadata 
(e.g., author, year, country), methodological characteristics (e.g., study 
design, sample size, type of Digital Intelligent Technology), functional, 
main findings, and quality appraisal indicators. The complete data 
extraction template is available in Supplementary material 2.

3.5 Risk of bias assessment

To ensure methodological rigor and evaluate the internal validity 
of the included studies, a structured risk of bias assessment was 
conducted using the Joanna Briggs Institute (JBI) critical appraisal 
tools, each aligned with the corresponding study design. Specifically, 
the JBI Critical Appraisal Checklist for Randomized Controlled Trials 
(24) was applied to studies utilizing random allocation; the JBI 

TABLE 1 The inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Studies must be peer-reviewed, empirical investigations addressing the application 

of digital intelligent technologies in physical education.

Exclude non-empirical publications, including review articles, book chapters, 

conference proceedings, news reports, posters, and editorial materials.

Eligible study designs include randomized controlled trials (RCTs), pre-post 

intervention studies, crossover trials, and high-quality cross-sectional studies that 

clearly report PICO elements and measurable outcomes.

Exclude observational studies lacking PICO components or without quantitative 

outcomes.

Studies must be published in English between January 2014 and November 2024. Exclude publications not in English or falling outside the specified timeframe.

Full-text availability must be ensured. Exclude retracted publications and those inaccessible due to paywalls or missing data.

Studies must be published in peer-reviewed academic journals.
Gray literature, including dissertations, theses, preprints, and non-peer-reviewed 

online reports, is excluded to maintain quality control.
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Revised Critical Appraisal Checklist for Quasi-Experimental Studies 
(2024 version) (25) was used for non-randomized intervention 
studies; and the JBI Critical Appraisal Checklist for Analytical Cross-
Sectional Studies (26) was applied to observational studies with 
correlational designs.

Each appraisal item was rated using a dichotomous scoring 
system: a score of 1 was assigned if the criterion was clearly met 
(“Yes”), and 0 if it was not met or insufficiently reported (“No” or 
“Unclear”). The total quality score for each study was calculated by 
summing the individual item scores. The total quality score for each 
study was calculated by summing the individual item scores. For 
interpretability, studies were categorized into three quality levels based 

on their total scores: high (≥80%), moderate (60–79%), and 
low (<60%).

Two independent reviewers conducted the appraisals, and any 
discrepancies were resolved through structured discussion until full 
consensus was achieved. Although no studies were excluded solely 
on the basis of quality scores, the assessed risk of bias was 
systematically integrated into the narrative synthesis to 
contextualize the strengths and limitations of the available evidence. 
Detailed item-level results, scoring matrices, and final quality 
classifications are available in Supplementary material 3. Of the 85 
studies included, 16 were rated as high quality, 68 as moderate, and 
1 as low.

FIGURE 1

PRISMA flow chart of selection process.
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4 Results

The database searches initially identified 2,945 candidate records, 
including Scopus (n = 2,213), Web of Science (n = 244), EBSCO 
(n = 256), ACM Digital Library (n = 59), Taylor & Francis (n = 31), 
and Wiley Online Library (n = 142). An additional 55 records were 
retrieved through snowball sampling via Google Scholar. After 
preliminary screening, 303 duplicate entries and 315 records published 
outside the designated timeframe were excluded, resulting in 2,382 
records for title screening. During the title and abstract screening 
phase, 2,083 studies were excluded due to irrelevance. A total of 299 
articles were retrieved for full-text assessment. Ultimately, 85 studies 
met the inclusion criteria and were subjected to quality appraisal. 
These included 16 high-quality, 68 moderate-quality, and 1 
low-quality study.

4.1 RQ1. Current application landscape of 
DIT in physical education

4.1.1 Current research status and developments
Research on digital-intelligent technologies (DIT) in physical 

education has exhibited significant growth in recent years (see 
Figure 2). Since emerging as a focal topic in 2016, the number of 
empirical studies increased markedly between 2017 and 2020, 
reaching its peak in 2022—reflecting a surge in academic attention. 
Although publication volume stabilized after 2023, approximately 10 
studies continue to be  published annually, indicating sustained 
research interest and developmental potential in this evolving field.

Geographically, the 85 included studies originated from 11 
countries or regions, with China contributing the majority (n = 67, 

79%)—far surpassing other nations and reflecting increased research 
productivity driven by national digital education initiatives. Spain 
(n  = 5, 6%), South Korea (n  = 4, 5%), and Poland (n  = 2, 2%) 
established recognizable research presences. In addition, Japan, the 
United States, Portugal, Malaysia, Oman, Vietnam, and Kazakhstan 
each contributed one study, highlighting the growing global 
engagement with digital-intelligent technologies in physical education.

Furthermore, the 85 included studies were published across 45 
distinct academic journals, reflecting the diversity of dissemination 
pathways. Mobile Information Systems featured the highest number of 
publications (n = 9, 11%), followed by Computational Intelligence and 
Neuroscience (n = 8, 9%) and Scientific Programming (n = 6, 7%). 
These patterns highlight the strong cross-disciplinary appeal of 
digital-intelligent technologies within the domains of information 
science and intelligent computing.

4.1.2 Application targets
The target populations of digital-intelligent technologies (DIT) 

applications in physical education exhibited clear stage-specific and 
group-based characteristics.

In terms of educational stages, the majority of studies focused on 
higher education (n = 68, 80%), which may reflect the advantages of 
universities in resource availability, curricular flexibility, and 
technological readiness. In contrast, relatively fewer studies addressed 
primary education (n = 11, 13%) and secondary education (n = 8, 
9%), while only one study involved preschool settings (n = 1, 1%) (27), 
indicating the early-stage implementation of digital-intelligent 
technologies (DIT) in physical education for younger learners.

Regarding group-based focus, most studies investigated 
student populations (n = 60, 71%), emphasizing their central role 
in personalized learning, training feedback, and health promotion 
(28). Studies involving educators accounted for 29% (n = 25), 

FIGURE 2

The publication situation of empirical research on the DIT in physical education.
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primarily examining the potential of DIT to support instructional 
delivery and teacher professional development (29). Across all 
included studies, typically developing populations comprised 98% 
(n = 83), while only two studies addressed special populations (30, 
31), highlighting a critical need for future research on DIT 
applications for students with disabilities, chronic health 
conditions, and other special educational needs in 
physical education.

4.1.3 Application scenarios
Digital-intelligent technologies (DIT) applications in physical 

education were predominantly implemented in offline physical 
education courses, accounting for 86% (n = 73) of cases. These 
studies primarily leveraged intelligent devices, AI analytics, and big 
data monitoring to enhance teaching efficiency and students’ 
kinesthetic experiences (32). In contrast, the use of DIT in online 
physical education courses (n = 5, 6%) and blended physical 
education courses (n = 7, 8%) was comparatively limited. Despite the 
momentum generated by the COVID-19 pandemic in advancing 
digital education, integration depth and research coverage in these 
environments remained limited.

Regarding curricular contexts, DIT was predominantly applied 
within in-school courses (n = 81, 95%), with significantly fewer 
applications in after-school sports activities (n = 4, 5%). This 
distribution reflects an enduring research emphasis on formal 
instructional settings, while non-formal learning contexts and after-
school sports engagement continue to be underexplored.

4.1.4 Functional realization
The functional realization of digital-intelligent technologies 

(DIT) in physical education spans four key stages of the 
instructional cycle: curriculum planning, implementation, 
assessment, and feedback.

During curriculum planning, DIT facilitated intelligent 
scheduling of time–space resources and equipment allocation through 
intelligent curriculum systems (n = 7, 8%), reducing resource 
inefficiencies while also tracking student attendance and activity 
engagement (33).

The implementation phase demonstrated the most diverse 
applications, including intelligent teaching system (n = 35, 41%), 
auxiliary learning system (n = 21, 25%), and health risk monitoring 
(n = 7, 8%). Intelligent teaching system supported personalized 
training plans and incorporated VR to create immersive learning 
environments (34). Auxiliary learning system utilized 
multidimensional visual analytics to enhance kinesthetic 
immersion, promote engagement, and improve motor skill 
acquisition (35). Health surveillance tools employed wearable 
biosensors for real-time biomechanical monitoring to anticipate 
potential injury risks (36).

For automated teaching quality assessment (n = 8, 9%), DIT 
enabled automated performance evaluation using big data analytics 
and machine learning algorithms to conduct multidimensional 
analysis and generate instructional recommendations (37). In the 
feedback phase, the wisdom scheduling systems (n = 7, 8%) provided 
precise movement feedback through computer vision and AI systems 
that delivered real-time motion analysis and corrective guidance to 
improve athletic proficiency (38).

4.2 RQ2. The integrated framework of DIT 
in physical education

4.2.1 Foundational algorithms
Algorithmic architectures form the operational backbone of 

digital-intelligent technologies (DIT), with machine learning (ML) 
algorithms playing a central role in enabling pattern recognition, 
behavioral prediction, and personalized recommendation through 
continuous training on multimodal datasets. Among the 85 included 
studies, 49 applied ML algorithms, of which 41 specified algorithm 
types—collectively identifying 21 commonly used algorithms across 
six taxonomic categories (see Table 2).

Convolutional Neural Networks (CNNs) were the most frequently 
adopted, known for their ability to process grid-structured data and 
extract spatiotemporal features from dynamic movement imagery in 
physical education contexts (39). CNNs were often integrated with 
other technologies to enhance system functionality. For example, 
Guangde (40) combined CNNs with positioning systems and 
computer vision to develop a Deep Learning–based Physical 
Education and Emergency Response System (PEERS-DL), which used 
GPS-enabled monitoring to track athletic activities in real-time and 
achieved a peak risk detection accuracy of 97.61%. Similarly, Cao, 
Xiang et  al. (41) introduced the Intelligent Physical Education 
Tracking System (IPETS), integrating big data analytics, VR, and 
intelligent recognition to evaluate students’ motion trajectories. 
Furthermore, Zong, Lipowski et al. (28) incorporated CNNs into IoT 
infrastructures to enable real-time classroom analytics, leading to a 
substantial improvement in students’ emotional regulation—from 
scores below 60 to above 79 on standardized metrics.

Furthermore, several studies applied ML algorithms in 
combination with optimization techniques and swarm intelligence to 
improve model stability and performance. For instance, Li (42) 
developed the Intelligent Behavioral State Parsing in PE (IBSPE) 
model using Backpropagation Neural Networks (BPNN) and Hidden 
Markov Models (HMM), which achieved behavioral state recognition 
accuracy exceeding 96%, offering predictive support for instructional 
goal setting. Li and Zhong (43) employed Hybrid Particle Swarm 
Optimization (HPSO) to refine a Firefly Algorithm–optimized Neural 
Network (FA-NN), significantly boosting prediction accuracy through 
metaheuristic optimization.

4.2.2 Heterogeneous system integration patterns
Effective implementation of digital-intelligent technologies (DIT) 

in physical education requires the integration of multiple technological 
enablers. Based on an analysis of the 85 included empirical studies, 
this review identified three core technological clusters that underpin 
current DIT system architectures: the Human–Computer Interaction 
(HCI) Cluster, the Artificial Intelligence (AI) Cluster, and the Internet 
of Things (IoT) Integration Cluster. These clusters represent distinct 
but interrelated pathways for realizing wisdom educational 
environments and serve as foundational structures for subsequent 
technical development and pedagogical application.

First, The Human–Computer Interaction (HCI) Cluster centers 
on computer graphics technologies—particularly virtual and 
augmented reality (VR/AR)—and somatosensory interaction systems. 
These are frequently integrated with IoT sensor networks, big data 
analytics platforms, and machine learning algorithms to construct 
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intelligent systems that support skill acquisition in physical education. 
Jiang, Wu et al. (12) designed an embedded sensor system specifically 
for basketball motion recognition, enabling the assessment of students’ 
fundamental basketball skills through motion analysis. Moreno-
Guerrero, García et al. (44) implemented AR-based spatial orientation 
training, which significantly improved student engagement, academic 
performance, and technology acceptance. Liang, Zhang et al. (45) 
developed real-time 3D motion modules using the Unity 3D engine 
and instructional videos, further enhanced with tangible manipulatives 
aligned to curriculum content.

Second, The Artificial Intelligence (AI) Cluster centers on 
machine learning algorithms and their integration with multi-
objective optimization, swarm intelligence, decision support systems 
(DSS), and big data analytics platforms. These technologies are 
primarily applied to instructional decision-making and learning 
assessment systems, enabling precise evaluation and predictive 
analysis of pedagogical effectiveness. For instance, Wang, Lima et al. 
(37) enhanced fuzzy evaluation methods by incorporating gray system 
theory with relational analysis, effectively reducing misclassification 
risks in kinematic data. Li, Wang et al. (29) integrated natural language 
processing and machine learning through fuzzy control rules to 

develop the Multi-feature Fuzzy Evaluation Model (MFEM-AI), 
which assessed technological proficiency in collegiate physical 
education. Similarly, Li (42) achieved dynamic behavioral state 
recognition and temporal classification using a combined BPNN–
HMM architecture, resulting in motion recognition accuracy 
exceeding 96%.

Third, The Internet of Things (IoT) Cluster centers on 5G mobile 
communication networks and integrates software-defined networking 
(SDN), edge computing nodes, spatiotemporal big data platforms, and 
multimodal machine learning algorithms. This cluster emphasizes 
real-time data processing, distributed architectures, and high-level 
data interconnectivity, thereby supporting platform development and 
remote assessment in physical education. For instance, Wang (46) 
leveraged IoT architectures and wireless networks—combined with 
conventional campus infrastructure—to develop e-physical education 
platforms capable of visualizing instructional content and capturing 
real-time pedagogical activity data. Yao, Wang et al. (47) developed 
the IoT-based Technological Acceptance Learning Management 
Framework (IoT-TALMF), which achieved 97.33% identity 
verification accuracy, a 96.20% student performance ratio, and 97.12% 
system reliability. This system conducted statistical analysis of 

TABLE 2 Machine learning algorithms have been applied in Physical Education.

Algorithm Principle Application Scenario n Ref.

Unsupervised learning

Spectral Clustering
Graph theory and feature 

decomposition

Data clustering

1 (37)

k-means Distance-based partitioning 3 (70–72)

Canopy-K-means Pre-cluster optimization 1 (73)

Deep Topological Clustering Deep learning + topological structure 1 (33)

Supervised learning

Support Vector Machine (SVM) Maximizing the margin between classes

Classification tasks

6 (43, 74–78)

KNN Voting based on nearest neighbors 2 (59, 78)

Probabilistic Neural Network (PNN) Probability density estimation 1 (79)

Elastic Net L1 + L2 regularization Regression tasks 1 (53)

Sequence modeling

Hidden Markov Model (HMM) Hidden State Sequence Modeling Sequence Prediction 3 (42, 51, 79)

RNN/LSTM Recurrent Memory Unit Sequence Processing 2 (27, 80)

Ensemble learning

AdaBoost Weak Classifier Integration Classification 1 (53)

LightGBM Gradient Boosting Tree
Classification/Regression

1 (81)

Random Forest Decision Tree Ensemble 2 (82, 83)

Deep learning

CNN/1D-CNN Convolutional Feature Extraction Image/Sequence Processing 7
(28, 40, 41, 77, 84–

86)

BPNN/DNN Multi-layer Perceptron General Prediction 6 (42, 57, 87–90)

SOM Competitive Learning Mechanism Data Visualization 1 (91)

Hybrid model

Dynamic Bayesian Hybrid Model Dynamic Network + Hybrid Modeling Multi-task Processing 1 (92)

Multifunctional Fuzzy Evaluation Model Fuzzy Logic + AI Complex Evaluation 1 (29)
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curricular content to define learning objectives and optimize resource 
allocation. Ning, Li et  al. (11) built the Physical Education IoT 
Monitoring and Training System (PE-IoMT), in which cloud servers 
were used for data storage, analytics, and processing. The system 
comprehensively evaluated physical states and generated personalized 
training regimens designed to prevent sports injuries.

4.2.3 Hierarchical support infrastructures
The functional realization of digital-intelligent technologies (DIT) 

in physical education critically depends on the integrated deployment 
of multiple intelligent systems (48). Based on a synthesis of the 
included studies, this review classified these support systems into six 
typologies: (a) intelligent curriculum management systems, (b) 
intelligent teaching systems, (c) auxiliary learning systems, (d) health 
risk monitoring systems, (e) automated teaching quality assessment 
systems, and (f) wisdom scheduling systems. Each category is 
described in detail below:

Intelligent curriculum management systems primarily support the 
administration of instructional and facility-related resources and can 
be categorized into two subtypes: (a) Sports Resource Assessment 
Indices (n = 3), and (b) Instructional Information Service Platforms 
(n = 4). For example, Hao and Zhou (49) developed an IoT-based 
Digital Twin System for sports facilities, which integrated edge 
computing and collaborative filtering algorithms to dynamically 
match user activity demands with venue resources, thereby improving 
facility utilization. Liu (50) designed a big data–enabled Instructional 
Information Platform that centralized the management of course 
registration, grading, and fitness assessment data, significantly 
enhancing processing efficiency and reducing teachers’ 
administrative burdens.

Intelligent teaching systems support human–AI collaboration 
and cognitive augmentation within classroom settings. This category 
includes four subtypes: (a) Educational Exergaming Systems (n = 2), 
(b) Wisdom Gymnasium Infrastructures (n = 3), (c) Pedagogical 
Robotics (n = 3), and (d) Interactive AI Tutoring Systems (n = 20). 
For example, Xu, Zhai et  al. (51) developed a Kinect-based 
exergaming framework for children, enabling real-time motion 
trajectory extraction and motor skill assessment. The system 
incorporated adaptive learning path optimization algorithms that 
dynamically generated personalized intervention strategies based on 
learner performance metrics. When performance deficits were 
detected, the system triggered additional instructional scaffolding 
within the game environment. Traditional physical education is 
increasingly converging with modern e-learning modalities—
including mobile internet, big data, and cloud computing—while 
being augmented by VR-enhanced interactive learning ecologies that 
demonstrably improve classroom interactivity and student 
engagement (35).

Auxiliary learning systems primarily operate within an Extended 
Reality (XR) framework, integrating multimodal human–computer 
interaction (HCI) technologies such as virtual reality (VR) and 
augmented reality (AR) to construct biomechanically grounded 
virtual simulations of three-dimensional human movement. Through 
immersive head-mounted displays (HMDs), haptic feedback gloves, 
and voice interaction modules, learners interact with motion-capture–
driven 3D avatars for skill transfer training. These systems apply 
multimodal sensory integration to enhance cross-modal feedback 
across visual, auditory, and proprioceptive channels, significantly 

improving kinesthetic experiences and learning efficacy in physical 
education (36).

Health risk monitoring systems enable continuous tracking of 
students’ physiological responses to physical activity through wearable 
devices and IoT sensor networks. This system category comprises two 
subtypes: (a) Exercise Load Monitoring (n = 2) and (b) Biometric 
Data Surveillance (n = 4). These systems collect real-time physiological 
metrics—such as exercise intensity load, heart rate variability (HRV), 
gait characteristics, and locomotor distance—via wearable sensors. 
Built upon IoT frameworks, they facilitate cloud-synchronized 
transmission of multimodal data and integrate big data analytics with 
data mining techniques to develop predictive models for recovery 
optimization and injury risk assessment. Additionally, GPS-enabled 
geofencing monitoring is employed, with real-time biofeedback 
mechanisms delivering early injury alerts and supporting preventive 
interventions (28, 40).

Automated teaching quality assessment systems utilize deep 
convolutional neural network (CNN) architectures integrated with 
multi-source IoT sensor data to establish a Transfer Learning–based 
Educational Assessment Paradigm (TLEAP). This system architecture 
comprises three key components: (a) a Multimodal Data Perception 
Layer, which collects real-time instructional data from various sensory 
inputs; (b) an Enhanced ResNet Feature Extraction Module, which 
processes spatiotemporal teaching behavior patterns; and (c) a FAHP–
GRA hybrid knowledge graph model (Fuzzy Analytic Hierarchy 
Process – Gray Relational Analysis), which enables effective mapping 
between expert knowledge and AI-derived feature spaces. Attention 
mechanisms are further employed to quantify correlations between 
instructional behaviors and quality evaluation metrics, thereby 
improving the system’s adaptability and real-time responsiveness 
(28, 37).

Wisdom scheduling systems encompass two subtypes: (a) Motor 
Skill Assessment Feedback Systems (n = 4) and (b) Athletic 
Performance Prediction Systems (n = 2). These systems typically 
employ decision tree algorithms integrated with machine learning, 
statistical analysis, intelligent databases, and neural network 
technologies. By mining data from contemporary physical education 
assessment databases, such algorithms generate latent evaluation 
models to support instructional administrators and policymakers 
(52). The constructed models draw on behavioral data collected in 
physical education classrooms—such as velocity, technical proficiency, 
and strength indicators—to enable real-time behavioral performance 
analytics and feedback generation (53).

4.3 RQ3. Implications and challenges of 
DIT in physical education

4.3.1 Impacts

4.3.1.1 Creating virtual athletic environments
The integration of digital-intelligent technologies (DIT) into 

physical education facilitates the construction of high-fidelity virtual 
reality (VR) training environments, immersing learners in interactive 
three-dimensional scenarios while supporting the formation of 
accurate motor schemas through multimodal sensory channels (54). 
The fusion of virtual environments and embodied physical experiences 
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overcomes the spatial and temporal constraints of traditional 
pedagogy. Dynamic scene reconstruction addresses limitations such 
as equipment scarcity, training monotony, and outdoor safety risks 
(55). Human–computer interaction (HCI)-enabled intelligent 
collaboration systems allow geographically dispersed teachers and 
students to engage in synchronous skill demonstrations and receive 
real-time corrective feedback. Empirical findings by Wang, Abdul 
Rahman et  al. (56) indicate that 80.0% of participants reported 
increased learning motivation, 75% demonstrated enhanced 
attentional engagement, and 63% experienced improved learning 
efficiency. By combining immersive kinesthetic experiences with 
biomechanically grounded feedback, such systems significantly 
enhance learners’ self-efficacy and attentional regulation during 
complex motor skill acquisition.

4.3.1.2 Enhancing instructional decision-making 
capabilities

AI-driven automated teaching quality assessment systems, by 
integrating multisensory data, enable real-time monitoring and 
analysis of pedagogical processes. Embedded decision-support 
modules generate personalized instructional strategy 
recommendations. For example, Yang, Oh et al. (57) found that voice-
interactive pedagogical robots in physical education enhanced 
teacher–student communication and supported real-time query 
resolution, leading to a 21-point increase in learning interest and a 
9.8-point improvement in learning attitudes on standardized 
evaluation scales. In addition, intelligent motion demonstration 
units—utilizing 3D biomechanical deconstruction and standardized 
motion template matching—established visual reference frameworks 
for skill acquisition. Meanwhile, cloud computing and big data 
analytics were integrated with physiological sensors, multi-terminal 
resource distribution systems, and learning behavior visualization 
modules to develop a comprehensive instructional support platform. 
This unified platform enabled high-frequency teacher–student 
interaction through instant messaging and formative assessment tools, 
facilitating continuous calibration of learning objectives (57, 58).

4.3.1.3 Enhancing physical-psychological wellbeing
Physical education fundamentally embodies somatic pedagogy, 

wherein the application of digital-intelligent technologies (DIT) 
ultimately aims to promote student health and wellbeing. Through the 
deep learning capabilities of augmented learning, feedback, and health 
monitoring systems, intelligent assessment mechanisms have been 
established that support bidirectional cognitive–behavioral regulation. 
Adaptive algorithms dynamically quantify students’ motor 
competencies and health conditions, generate personalized exercise 
prescriptions, and implement tiered interventions—effectively 
enhancing psychophysiological adaptation for individuals with 
exercise anxiety or motor impairments (59). Moreover, digitally 
reconstructed training environments with calibrated task difficulty 
allow students with participation barriers—such as low motivation, 
physical limitations, or skill deficiencies—to attain comparable 
learning outcomes to their motor-advantaged peers (16). These 
interventions are further supported by AR-based real-time 
achievement visualization systems, which significantly improve 
students’ kinesthetic self-awareness and sustain their engagement 
intentions. Collectively, DIT leverages multimodal human–computer 
interaction and big data analytics to construct immersive 

skill-acquisition ecologies tailored to digital natives, thereby achieving 
concurrent improvement in motor proficiency and overall health 
outcomes (38).

4.3.2 Challenges

4.3.2.1 Insufficient algorithm adaptability
Current intelligent physical education systems primarily rely on 

general-purpose educational models that lack specificity for the 
unique demands of sports contexts (60). For instance, existing 
algorithms for classroom attention monitoring and static behavior 
recognition perform inadequately when addressing the high-
frequency, unstructured, and dynamic movement patterns 
characteristic of physical education settings. Within “Learning 
Feedback Systems” and “Augmented Learning Support Systems,” 
although multi-source perceptual data—such as the real-time fusion 
of Kinect skeletal tracking and inertial sensor inputs—are jointly 
analyzed, a robust modeling framework for cross-modal temporal 
alignment remains notably absent.

Moreover, algorithmic modeling of key variables—such as 
personalized exercise pathways, non-normative movement 
learning, and complex physiological load responses—is substantially 
underdeveloped. This limitation constrains critical functionalities 
such as early warning of sports injuries, adaptive management of 
feedback latency, and real-time generation of instructional 
strategies. Most current approaches still depend on rule-based 
matching to detect erroneous movements and have yet to establish 
highly reliable deep learning models with generalizability and 
temporal sensitivity (37). Insufficient algorithm adaptability thus 
represents a significant bottleneck, undermining system 
performance in context-specific adaptation, motion feedback 
precision, and real-time responsiveness.

4.3.2.2 User data leakage risks
The application of digital intelligence technologies in sports 

education necessitated processing massive datasets encompassing 
students’ motor performance, physiological states, and spatial 
trajectories. Such data were typically acquired in real-time via IMU 
sensors and environmental collection devices, then uploaded to 
cloud platforms for processing and analysis. The core functionalities 
of “health risk monitoring systems” and “automated teaching 
quality assessment systems” were precisely built upon these high-
frequency, multimodal datasets. However, most current systems 
had yet to establish comprehensive data governance mechanisms 
covering the entire lifecycle, exhibiting significant deficiencies 
particularly in critical aspects such as dynamic access control, 
privilege tiering, and data anonymization. On one hand, existing 
platforms lacked attribute-based encryption (ABE) enabled fine-
grained access control strategies, impeding effective differentiation 
of data access privileges across distinct user roles; On the other 
hand, key technologies like differential privacy and federated 
learning remained immature in educational contexts, especially 
regarding systematic validation of privacy-enhancing techniques 
deployed at edge computing nodes (38, 40). These issues could 
trigger systemic risks including leakage of students’ sensitive 
information, misuse of physiological data, and reverse inference of 
behavioral models, substantially impeding the adoption of digital 
intelligence technologies in sports education.
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4.3.2.3 Imbalanced digital resource allocation
The successful implementation of digital-intelligent technologies 

in physical education depends heavily on teachers’ digital literacy, 
institutional infrastructure readiness, and support from the regional 
digital ecosystem. As a result, significant challenges persist in 
technological integration and pedagogical adaptation across diverse 
teaching environments (61). Effective application in physical 
education specifically requires high-performance hardware, stable 
network connectivity, and teachers’ autonomous operational 
competencies. However, substantial disparities in technological 
preparedness and resource accessibility exist across regions and 
teacher demographics. On one hand, experienced teachers often face 
difficulties in operating wearable devices, managing data interfaces, 
and navigating instructional software systems (62, 63). On the other 
hand, structural mismatches between the high cost of digital 
equipment (e.g., AR/VR platforms, motion capture systems) and the 
limited funding available in remote or K–12 school settings 
significantly impede scalable deployment (64). Moreover, the lack of 
standardization and transferability in digital instructional materials 
and motor skill visualization resources reduces the efficiency of 
instructional scenario reuse and limits content coverage, thereby 
undermining system scalability across different educational levels 
and contexts.

5 Discussion

This study systematically reviewed and analyzed the application 
of digital-intelligent technologies in physical education, yielding three 
key findings: (1) The adoption of digital-intelligent technologies in 
physical education has entered a phase of stable diffusion, 
characterized by stage-specific developmental trajectories; (2) Existing 
intelligent systems continue to face technical bottlenecks related to 
algorithmic adaptability, data processing efficiency, and pedagogical 
scenario modeling; (3) Future advancements should prioritize the 

development of teacher–student interactive systems and the 
establishment of flexible, adaptive governance frameworks to promote 
the deep integration of digital-intelligent technologies with 
educational goals. These findings not only illuminate the current state 
of development in the field but also provide a theoretical foundation 
for future roadmapping and the identification of critical 
implementation challenges.

5.1 Evolution of DIT applications in physical 
education

Consistent with the findings of Zhou, Wu et al. (7), tan integrated 
technological architecture—encompassing data-driven decision-
making mechanisms, intelligent assistance systems, and IoT-enabled 
perception networks—is progressively reshaping the spatial 
configurations and pedagogical practices of physical education. This 
transformation has driven the field toward increased intelligence and 
personalization, exhibiting a distinct diffusion trajectory. Since 2022, 
coinciding with the shift of artificial intelligence into the “large-scale 
model training” phase, research on digital-intelligent technologies in 
physical education has experienced a significant surge, with 66 peer-
reviewed empirical studies published within just 2 years. This 
expansion aligns closely with the S-curve model described in 
innovation diffusion theory (65) (see Figure 3), thereby validating the 
“critical mass” effect proposed by the theory. At present, the 
development of digital-intelligent technologies in physical education 
has entered a stabilized diffusion phase, characterized by increasing 
societal recognition and institutional integration, alongside 
continuous technological optimization and refinement.

Despite the increasing prominence of digital-intelligent 
technologies in education, substantial disparities persist in adoption 
levels across educational stages. Higher education institutions typically 
demonstrate more advanced technological integration, benefiting 
from superior resource availability and technical capacity, whereas 

FIGURE 3

The evolutionary trends of DIT in the domain of physical education.
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primary and secondary education sectors remain comparatively 
underdeveloped. On March 15, 2022, the UK Department for 
Education released the report Education Technology: Exploring Digital 
Maturity in Schools (66), which revealed that the majority of K–12 
schools in the UK were still in the early stages of digital maturity, with 
only 9% achieving advanced levels—highlighting the uneven 
progression of digital transformation across the education system. 
This phenomenon of “gradient diffusion” underscores the critical 
importance of institutional support, technological infrastructure, and 
teacher competency as key determinants of diffusion trajectories. As 
adoption approaches a plateau, the marginal value-added potential of 
digital technologies trends toward saturation. According to Handy’s 
Second Curve Theory, as technologies mature and proliferate, their 
growth potential asymptotically approaches diminishing returns. In 
this context, physical education must proactively pursue discontinuous 
innovation pathways to transition digital-intelligent technologies from 
simple tool integration toward holistic value re-engineering. 
Extensible and scalable technological capacities will thus become 
decisive variables in driving the next phase of deep digital 
transformation in education (67).

However, the proliferation of technology does not inherently 
guarantee meaningful educational outcomes. The Global Education 
Monitoring Report (68) emphasizes the “Technology on Our Terms” 
principle, advocating for the prioritization of appropriateness, equity, 
and sustainability in educational technology adoption. In resource-
constrained regions, the deployment of digital-intelligent technologies 
often encounters financial limitations, infrastructural deficiencies, and 
pedagogical capacity gaps, resulting in pronounced structural 
inequities. Moreover, the adoption of such technologies may produce 
unintended negative consequences, including the erosion of core 
educational values and the emergence of new ethical dilemmas. For 
example, excessive dependence on data monitoring systems can 
undermine teacher–student interactions and hinder the development 
of students’ motor intuition. The collection of students’ physiological 
data raises serious privacy concerns, while algorithmic biases related 
to gender or physical constitution embedded in performance analytics 
risk reinforcing discriminatory practices in novel forms. These adverse 
factors directly undermine teachers’ perceived performance, social 
influence, and behavioral intention to adopt technology (69), thereby 
weakening the overall effectiveness of digital technology 
implementation and diffusion. Accordingly, there is an urgent need to 
strengthen educational systems’ adaptive regulatory capacities to 
ensure that digital-intelligent technologies are equitably accepted and 
responsibly integrated into physical education—serving the best 
interests of all students and ultimately realizing the vision of intelligent 
physical education.

5.2 Technological constraints of DIT in 
physical education

The current application of digital-intelligent technologies in 
physical education is undergoing a critical transition from traditional 
machine learning approaches to more advanced deep learning 
paradigms. This evolution fundamentally responds to the increasing 
demand for dynamic adaptability and personalized feedback in 
educational contexts. Now, the limitations of traditional machine 
learning algorithms have become increasingly evident, particularly 

when applied to complex, multimodal educational environments. (a) 
Traditional algorithms’ heavy reliance on manual feature engineering 
limits their ability to effectively process unstructured pedagogical data 
generated through teacher–student interactions (e.g., group 
movement trajectories), thereby constraining movement recognition 
dimensionality (57). (b) The lack of swarm intelligence technologies 
impedes the simulation of distributed cognitive processes in classroom 
environments, reducing the real-time responsiveness of pedagogical 
interventions. (c) Inadequate optimization algorithms result in low 
system stability when confronted with sensor signal drift or data loss, 
increasing the likelihood of misclassification and compromising the 
credibility of instructional analytics. This structural mismatch 
between algorithmic ecosystems and pedagogical scenario 
requirements reflects a “technology-first, education-lag” paradox, 
which constitutes a significant technical bottleneck hindering the 
scalability of DIT in basic education.

To address these challenges, next-generation explainable artificial 
intelligence (XAI) technologies are being developed to integrate 
multimodal perception, causal inference, federated learning (FL), and 
neuro-symbolic reasoning, aiming to construct more transparent, 
stable, and pedagogically aligned educational AI systems. Based on 
the synthesis of current research, XAI demonstrates strong potential 
to catalyze a shift in physical education from experience-based 
instruction to data-informed decision-making. By leveraging 
multimodal feedback, FL, and causal inference, XAI enables real-time 
visualization of instructional processes, enhances training attribution 
precision, and improves assessment reliability while ensuring data 
privacy and security (see Table 3).

However, the successful deployment of XAI in physical education 
classrooms hinges on balancing model complexity with interpretability 
and ensuring alignment with authentic pedagogical tasks. Achieving 
this goal necessitates continuous algorithmic innovation, alongside 
interdisciplinary collaboration spanning sport science, pedagogy, and 
human–computer interaction.

5.3 Evolutionary trajectories of DIT in 
physical education

Digital-intelligent technologies integrate a range of cutting-edge 
innovations—including augmented/virtual reality (AR/VR), artificial 
intelligence (AI), and edge computing—to construct virtual embodied 
learning environments that transcend the spatial and perceptual 
limitations of traditional physical education. This integration has 
facilitated the initial realization of digital-intelligent transformation in 
the field. However, several critical constraints have surfaced that 
hinder further advancement: imbalances between technological 
supply and pedagogical demand, unresolved data ethics risks, and 
deficits in teachers’ digital competencies. These barriers, as 
summarized in Table 4, highlight the necessity of addressing both 
technical and contextual factors in the next stage of digital-intelligent 
development in physical education (see Table 4).

Amid the ongoing wave of educational digital transformation, the 
integration of digital-intelligent technologies into physical education 
demands not only technical adaptation but also alignment with 
kinesiological principles and pedagogical contextualization. Drawing 
on the developmental experiences of AI in education, this study 
proposes a Teacher–DIT–Student Interaction Framework (see 
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TABLE 3 The technological framework for transparent AI decision-making in physical education.

Technology tool Core function Application scenario Application example Ref.

Multimodal Explanation Action Analysis and Feedback 

Visualization

Enables comprehensive cross-modal analysis through the 

integration of visual data (motion capture video), sensor-

derived data (wearable devices), and textual inputs (teaching 

reflections) to refine multimodal interpretation.

a. Motion Correction and Performance Optimization:

AI-powered analysis assesses students’ basketball shooting mechanics, producing natural 

language feedback (e.g., “Insufficient arm angle”) and pinpointing key video frames to aid 

coaches and students in efficiently identifying and addressing movement inefficiencies.

b. Comprehensive Physical Fitness Evaluation:

By leveraging multi-source data fusion (e.g., heart rate monitoring, gait analysis), the system 

analyzes declines in physical fitness by identifying underlying contributing factors (e.g., 

“Fatigue accumulation resulting from consecutive high-intensity training”).

(93–99)

Explainable Reinforcement 

Learning (XRL)

Dynamic Optimization of 

Training Strategies

The system devises personalized training programs through 

AI-driven decision-making, dynamically adjusting to 

students’ real-time performance metrics while offering 

transparent justifications for its recommendations.

a. Transparency in Training Strategy Adaptation:

Explainable Reinforcement Learning (XRL) improves the transparency of training strategy 

adaptation by providing explicit justifications for endurance training modifications (e.g., 

“Recent aerobic metabolism indicators failed to meet expected thresholds”).

b. Risk-Based Training Suspension Mechanism:

The system issues risk-based alerts by elucidating the rationale for suspending specific 

training activities (e.g., “Joint load surpasses the historical safety threshold”).

(100–103)

Federated Learning with 

Privacy Protection

Cross-institutional Data 

Collaboration

Educational institutions, families, community organizations, 

and sports clubs engage in collaborative sharing of training 

models while upholding stringent data privacy protections.

a. Identification of Group-Specific Physical Fitness Trends:

Federated feature attribution facilitates the identification of shared physical fitness patterns 

among students across diverse regions (e.g., “Students in northern regions experience a more 

pronounced decline in flexibility during winter”) while safeguarding individual data privacy.

b. Distributed Performance Evaluation Mechanism:

Edge computing devices autonomously generate motion performance insights (e.g., 

“Improvements in jump power correlate with enhanced leg muscle activation”) and transmit 

only aggregated outcomes, thereby ensuring data security and minimizing exposure to 

centralized data repositories.

(104)

Causal Inference and Neuro-

Symbolic Methods

Training Effect Attribution and 

Rule Integration

Minimizes misleading correlations by eliminating spurious 

associations (e.g., erroneously attributing performance 

outcomes to morning exercise time when sleep quality serves 

as the primary determinant).

a. Causal Inference and Performance Evaluation:

Utilizes counterfactual validation to evaluate the efficacy of training methodologies (e.g., “A 

reduction in strength training frequency is projected to result in lower explosive power 

scores”).

b. Knowledge-Driven Model Optimization:

Incorporates sports science principles (e.g., “Maximal oxygen uptake is positively correlated 

with interval training duration”) into neural network models to derive expert-informed 

recommendations (e.g., “Increasing interval running volume directly enhances VO₂ max”).

(105, 106)
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Figure 4), guided by the principles of human-centered technological 
design. The framework comprises three core components: (a) Policy 
Safeguards: Establishing robust institutional mechanisms, including 
data ethics review boards, technology admissibility criteria, and teacher 
digital literacy certification systems, to ensure responsible and secure 
deployment of technologies. (b) Resource Infrastructure: Enhancing 
equitable resource allocation by constructing AI-enabled physical 
education environments and developing reliable intelligent systems 
customized for the unique demands of sports pedagogy. (c) Capacity 
Building: Embedding digital literacy development across the entire 
professional lifecycle of educators and reconfiguring human–AI 

collaborative pedagogical workflows to support adaptive 
instructional practices.

6 Conclusion and limitations

Through the systematic synthesis of empirical studies drawn 
from multidisciplinary academic databases, this review offers a 
comprehensive account of digital-intelligent technologies (DIT) 
applications in the physical education domain. The findings highlight 
three critical transformative dimensions: (1) motion data 

FIGURE 4

The triadic interaction system of “Teacher-DIT-Student”.
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visualization, which enables real-time monitoring and feedback on 
performance; (2) pedagogical personalization, which allows 
instructional strategies to be  tailored to learners’ individual 
characteristics; and (3) context-aware intelligence, which supports 
adaptive responses based on environmental cues and biometric data. 
Core technologies—including biosensors, virtual simulations, and 
adaptive learning platforms—are mitigating spatial–temporal 
constraints and redefining paradigms of embodied learning. To 
ensure that such technological advancements contribute substantively 
to holistic human development, the professional competencies of 
future physical educators must evolve along two principal 
dimensions: (a) pedagogical adaptation, entailing the effective 
incorporation of DIT tools into instructional design, and (b) 
scenario-based intelligence, which refers to the capacity to orchestrate 
collaborative learning environments involving human-AI interaction.

Despite its contributions, this systematic review is subject to 
several limitations. (1) Limited database coverage—While the 
review draws from major academic databases, relevant studies 
from non-indexed repositories or conference proceedings may 
have been excluded. (2) Methodological Heterogeneity—
Variations in study design, technology types, and outcome 
indicators hindered advanced synthesis (e.g., meta-analysis). (3) 
Lack of theoretical integration—The review does not fully 
incorporate educational theory, particularly concepts of embodied 

pedagogy, which limits its explanatory depth. (4) Exclusion of 
gray literature—By prioritizing peer-reviewed sources, the review 
excludes theses and preprints, which may introduce publication 
bias and lead to an overrepresentation of studies with statistically 
significant findings. (5) Geographic concentration—Around 75% 
of the included studies were conducted in China, which may limit 
the generalizability of the findings to broader educational settings. 
(6) Design-related interpretive limitations—Although risk-of-bias 
was assessed using appropriate JBI tools, the predominance of 
observational and quasi-experimental designs—often lacking 
randomization or control conditions—may compromise the 
internal validity and robustness of the findings. These design-
related risks were accounted for in the narrative synthesis but 
should be interpreted with caution.

7 Future directions

Future studies should address these limitations by incorporating 
gray literature, diversifying geographic data sources, and fostering 
interdisciplinary integration. In particular, bridging educational 
theory, sports science, and intelligent technology research is essential 
to facilitate a dialectical synthesis between technological innovation 
and pedagogical coherence.

TABLE 4 Developmental paradoxes of DIT in physical education.

Type Contradiction Proposed solution Ref.

Resource

The substantial investment required for the research and development 

of intelligent training systems stands in stark contrast to the fragmented 

distribution and limited accessibility of equipment in grassroots 

educational institutions.

Policy Framework and Technological Accessibility:

 a. Designate specialized funds for educational 

informatization to facilitate the development and 

deployment of intelligent training systems in 

grassroots educational institutions.

 b. Promote the integration of open-source technologies 

in education to mitigate technical barriers and 

improve accessibility.

(107–109)

Security

The inherent sensitivity of motion-related biological feature data 

presents significant challenges to data privacy and security, whereas the 

ongoing advancement of algorithms demands substantial data 

utilization for optimization.

Differential Privacy and Blockchain-Based Traceability 

Mechanisms:

 a. Desensitization of motion video data via key point 

skeleton extraction to safeguard individual privacy 

while retaining critical movement-

related information.

 b. Blockchain-enabled immutable records of data usage 

to enhance transparency, strengthen security, and 

facilitate comprehensive auditability of data access.

(110, 111)

Evolution

The frequent monthly iterations of AI algorithms stand in stark contrast 

to the conventional annual training cycle of educators, resulting in a 

pronounced disparity in technological adaptation and pedagogical 

integration.

Framework for Digital Literacy Certification:

 a. An integrated learning analytics dashboard designed 

to monitor user progress and generate real-time 

insights into the development of digital competencies.

 b. A systematic evaluation framework for intelligent 

teaching tools to assess their pedagogical efficacy, 

usability, and alignment with instructional objectives.

(112–116)
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