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Using threshold Cox models to
estimate change points in
exposure-response relationships
In an occupational
epidemiological study of
respirable crystalline silica and
silicosis risk

Diezhang Wu, Kenneth A. Mundt and Jing Qian*

Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA,
United States

Introduction: In occupational epidemiology, accurately quantifying exposure-
response relationships is crucial.

Methods: We introduce a threshold Cox model that includes a change point
term to identify the optimal threshold. To address bias associated with maximum
likelihood estimation under monotone likelihood, we employ Firth's penalized
likelihood approach. The methodology was validated using simulation studies
that evaluated model performance under various censoring rates and sample
sizes. We applied our threshold Cox model to data from an occupational
epidemiological study of respirable crystalline silica (RCS) exposure and risk of
silicosis (defined as ILO category 1/0 or higher). To improve the condition of the
data for analysis using Cox regression, which is sensitive to small proportions
of events, we included all silicosis cases, and for each case we density-sampled
four non-cases from workers in the same production areas (mostly materials
preparation).

Results: Thresholds for (a) cumulative RCS exposure and (b) average RCS
exposure intensity over 2 years and 5 years were identified as 4.038 mg/m3—years
(95 Cl: 3.109-4.967), and 0.264 mg/m?> (95 Cl: 0.207-0.321), and 0.324 mg/m?3
(95 CI: 0.263-0.385), respectively.

Results and Discussion: These quantified exposure thresholds may be useful in
verifying that occupational exposure limits are protective against silicosis and
for quantitative risk assessment. This methodology also could be applied to
other exposure-disease relationships to identify and quantify possible exposure
thresholds.

KEYWORDS

change point, exposure-response relationship, Firth’s penalized likelihood, heavy
censoring, occupational epidemiology, respirable crystalline silica, silicosis, threshold
Cox model

1 Introduction

The Cox model is frequently used in epidemiological studies to examine the association
between environmental exposure levels and health outcome. Typically, continuous
exposure levels are categorized, and the results help determine whether certain exposure
levels carry a higher risk compared to a reference group. For instance, a study by Birk
etal. (1) explored the risk of silicosis associated with quantitative estimates of occupational
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exposure to respirable crystalline silica (RCS). They reported
increased risk among workers in the categories with estimated
average exposure > 0.15 mg/m’> and cumulative exposure
> 1.0 mg/m>-years, respectively. However, conventional Cox
models with transformed exposure variables fail to provide
precise estimates of the exposure level above which risk is
statistically significantly increased above background, especially
when the incremental exposure categories analyzed are wide.
This undefined value is referred to as an exposure threshold or
change point. In this paper, we introduce a threshold Cox model
capable of simultaneously identifying optimal threshold values
and the corresponding regression coefficients and 95% confidence
intervals. We also extend this model to accommodate situations
where outcomes are relatively rare, and illustrate the methods using
the data from Birk et al. (1), in which silicosis was diagnosed in <1%
of the total cohort.

Following this introduction, we provide details on the notation
of the proposed model in Section 2, along with two estimation
procedures to obtain parameter estimates. In Section 3, we
present two simulation studies to validate the model and evaluate
its performance under different scenarios. We then apply the
model to real-world data from a recently published occupational
epidemiological study in Section 4. Lastly, in Section 5 we briefly
discuss the key findings, strengths and weaknesses, and provide
ideas for future research.

2 Methodology

2.1 Threshold Cox model with change
point

2.1.1 Notations of the threshold Cox model
Consider a cohort of #n independent individuals, where each
individual i is associated with an exposure level Z;, such as the
concentration of respiratory silica in the air, and a vector of
Xi1, Xin, - - .
gender and smoking status. The time to the event of interest, such

covariates X; = ,Xip)T, which might include age,
as the onset of a disease, is denoted by T;. The time at which the
individual is right-censored (i.e., the event has not occurred by the
end of follow-up) is presented by C;. The observed data consist
of the observed event time Y; = min(T;, C;), and the censoring
indicator 8; = I(T; < C;), which equals 1 if the event is observed
and 0 if the observation is right-censored. In a standard Cox model
(2), the hazard function A(f) at time ¢ is modeled as a product of
the baseline hazard 1((#) and an exponential function of a linear
combination of covariates and exposure levels:

Mt) = ro(t) exp{B™X + aZ}. (1)

Here, 8 = (B1, B2 - -

the covariates X, and « is the coefficient representing the effect

. ﬂp)T are the coefficients associated with

of the exposure Z on the hazard function. However, this model
assumes that the effect of the exposure remains constant across all
levels of Z, which may be unrealistic in cases where the exposure
increases the hazard rate only above a certain exposure threshold,
or when there is a shift in the effect of exposure at a certain point
(after which the risk plateaus, e.g., a step function).
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To account for this possibility, the threshold Cox model
introduces a change point 7, representing a certain exposure level at
which the effect of Z on the hazard function changes. The threshold
Cox model is expressed as:

At) = ro(t) exp(B'X +aZ+y(Z - 1)), )

where (Z — )T =
the idea that the effect of the exposure Z on the log hazard

max(0,Z — 7). This formula captures

ratio changes at rate o for values below the threshold r,
but once the exposure exceeds 7, an additional effect y is
introduced. The threshold Cox model is highly versatile, as it
can be further extended to include multiple change points or to
accommodate more complex interactions between covariates and
exposures. These extension, however, are beyond the scope of the
present work.

2.1.2 Partial likelihood function of the threshold
Cox model

In a standard Cox model (Equation 1), regression coefficients
are estimated through maximizing the partial likelihood function
(3), which is given by:

.o n exp{B"X; + aZ;} ”
LB ") = H [ZZZII(n > Yi) exp{ﬁTXk+aZk}] -0

i=1

The exponentiation by §; ensures that only the terms
corresponding to uncensored events contribute to the product in
the likelihood function. The contribution of censored observations
is indirectly handled through the risk set Y j_, I(Yy >
Y;)exp{B"X; + «Z}, which represents the set of individuals
still at risk of experiencing the event of interest at the time
Y;, when the event occurs for the i-th individual. The partial
likelihood circumvents the need to specify the baseline hazard
function parametrically, rendering the Cox model a flexible semi-
parametric approach.

The partial likelihood function of the threshold Cox model
(Equation 2) is similar to that of the standard Cox model, as
shown in Equation 3, but includes additional complexity due to the
presence of the change point. The partial likelihood function for the
threshold Cox model is given by:

i

LBy = [ | SR XitoZit vz 0)')
1 | e IV = Vi) exp{B' X + aZ
+y7(Zx— 1"}
)
In addition to regression coefficients 8 and e, the threshold Cox
model simultaneously estimates the threshold effect coefficient y
and the change point 7.

2.2 Estimation procedure
2.2.1 Two-step grid search procedure

To estimate (ﬂT,a,y,r)T in the threshold Cox model, we
developed a two-step grid search procedure, which explores
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candidate values of v within a pre-specified range to identify
the optimal change point where the partial likelihood is
maximized. In this procedure, we first construct a grid over
the interval [a,b], which is assumed to contain the true value
of the change point 7, with a chosen resolution. For each
candidate value & on the grid, we compute the maximum
partial likelihood with respect to (ﬁT,oz,y)T. We then select
the value of & that yields the overall maximum of these
maximized partial likelihoods as the estimated change point
7. The corresponding parameter estimates B\T,&\,? ! are
maximum likelihood estimates (MLE) obtained from the partial
likelihood maximized at 7. The following procedure outlines the
algorithm step-by-step.

Procedure 1. Two-step grid search method.

Step 1: Finding optimal change point T

1.1: Define the grid range. Create a grid §' = {£1,&,..., &m), where a =
min(Zy, ..., Zn) < & < - < &v < max(Zy,..., Z,) = b, and
Em —Em_1 = eform = 2,..., M. Here, the interval [a, b] contains the
true change point value 7*, and ¢ is the resolution of this grid.

1.2: Calculate the maximum partial likelihood for each grid point. For
each possible value &, in the grid, maximize the partial likelihood with
respect to (ﬂT, «, y)T and evaluate the partial likelihood function, as defined
in Equation 4, at the corresponding maximum likelihood estimates, i.e.,
L (B @, T im)-

1.3: Select the optimal change point. Once the maximum partial likelihood has
been computed for all &’s, the optimal change point T is defined as the value
of & that yields the overall maximum of these maximized partial likelihoods:

T =argmaxL (E:ﬂ,&m, Vm.ém) .
§meé

o~ T
Step 2: Estimating model parameters. (ﬁT,Zi, ?) Obtaining the

~7 T
corresponding parameter estimates (ﬂT, Q, )7) from the partial likelihood

maximized at T.

However, since the change point 7T is selected from a pre-
specified grid, the algorithm does not directly provide a variance
estimate for T or account for its associated uncertainty. Instead,
the variance of T can be estimated using a non-parametric
bootstrap method.

The two-step grid search method is intuitive, computationally
feasible, and provides robust estimates of the model parameters. It
simplifies the optimization process by focusing on discrete values
of the change point, making it more manageable compared to
continuous optimization methods. Additionally, this method is
flexible and can be adapted to different resolutions and ranges of the
grid, allowing for fine-tuning based on the data and computational
resources available.

While the method efficiently estimates the change point and
the corresponding regression coefficients, the use of bootstrap
resampling to estimate the variance can be computationally
intensive, particularly for large sample sizes. Moreover, the
estimation of T depends on the range and resolution of the grid,
which are selected arbitrarily and may lead to inaccurate results if
not chosen appropriately.
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2.2.2 One-step MLE via maxLik ()

To address the previously mentioned drawbacks of the two-
step grid search method, we proposed a one-step MLE approach,
implemented using the R function maxLik () in the maxLik
R package. This method offers unbiased estimation for the
change point and regression coefficients. Unlike the grid-search
method, which estimates parameters in stages, the one-step MLE
provides simultaneous estimation of both the parameters and their
corresponding analytical variances.

The maxLik() function in R optimizes the likelihood
function through a Newton-Raphson algorithm, which iteratively
updates parameter estimates to maximize the log-likelihood. To
perform MLE estimation of the threshold Cox model using
maxLik (), three key inputs are required:

e Log-likelihood function: the log-likelihood function of the
threshold Cox model is given by:

n

log[L(B", e, 7, T)] = Z { [B'Xi+aZi+ y(Zi—1)7]

i=1

— log |:ZI(Yk > Y;)exp {ﬂTXk

k=1
+aZ + y(Zk — T)+}:| }5,‘.

®)

e Analytical gradient function: the gradient function contains
the first-order partial derivatives of the log-likelihood
Equation 5 with respect to (ﬂT, oY, r)T, which are given by

Yok 1Y = Y) X exp{ BT X
dlogL " +aZi+y(Z — )T}

gT = Z Xi — n T 8is
B pa Shy Yy > Yi)exp {B" X
+aZi + y(Zk — ‘E)+}

Y iy 1Yk = Y))Zy exp{B" X
i z +aZi+y(Z — 1)t}
i=1 it (Y = Y exp {B" X
+aZk+y(Z — 1)}

dlogL
da

n

dlogL
o _ Z. — 1)t
5y ; _( i—1)
e IV > Yi)(Z — ©)F exp { B Xk
+0£Zk+)/(Zk—‘C)+} 5
YU 1Yy = Yi)exp [ 87Xy )
+aZy + y(Zk — ‘r)+}
and

dlogL
—= = [(—y)l(z,- > 1)

i=1
Yo 1Y = Y)(=)I(Zg > 1)
exp {B"Xy + aZi + y(Z — 1)}

ZZ:I I(Yk > Yl‘) exp {,BTXk + O(Zk
+y(Z — 1)t}
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These four terms indicate the direction in which the likelihood
increases most rapidly. The Newton-Raphson algorithm
uses the gradient to iteratively refine parameter estimates
until convergence.

e Initial parameter values: the optimization process requires
specifying initial values for the parameter vector (87, o, y, r)T
to initialize the iterative estimation process. An initial value
for © may be chosen within its allowable range based on
subject-matter knowledge. Conditional on this value of 7, the
maximum likelihood estimates of (ﬂT, o, y)T can be obtained
following Step 1.2 in the two-step grid search procedure. These
estimates are then used as the initial values for (BT, o, )/)T.

This one-step MLE approach overcomes the limitations of
the grid search method by providing unbiased point estimates
and the variance associated with the point estimates in a single,
streamlined process. It offers a comprehensive solution for fitting
the threshold Cox model to survival data with a change point.
While some may prefer bootstrap methods for variance estimation
due to their flexibility and robustness, our approach offers a direct
and efficient solution for fitting the threshold Cox model to survival
data with change points. We will further discuss the relative merits
of bootstrap-based inference in Section 4.

2.3 Firth's penalized MLE for monotone
likelihood under extreme censoring

In survival analysis, particularly under certain challenging
conditions, including extreme censoring or the presence of strong
covariates, the MLE approach may result in biased estimates. This
phenomenon, referred to as monotone likelihood, occurs due to the
non-existence of a true maximum likelihood in such cases (4, 5).
When modeling datasets with monotone likelihood, convergence
issues often arise, leading to severely biased parameter estimates.
This issue needed to be addressed, as the example in which we
apply the threshold Cox model reflects a real-world scenario where
the silicosis outcome (i.e., failure) is rare and the censoring rate in
our dataset exceeds 99%. Such extreme censoring rates introduce
monotone likelihood, and require adjustment to prevent the bias.

Firth’s
recommended in the literature (6-8), is used to adjust the
MLE of the threshold Cox model to reduce biases caused by
monotone likelihood. Firth’s approach modifies the estimation

penalization method, which has been widely

process by applying a small penalty term to the likelihood function.
Let L denote the partial likelihood function and Z the information
matrix for a standard Cox model, the penalized likelihood function
proposed by Firth is given by:

log Lgiy, = log L + 0.5log |Z]. (6)

Here, the penalty term 0.5log|Z|, also known as Jeffrey’s
invariant prior, is asymptotically negligible. It prevents the
likelihood function from becoming infinite and ensures that the
MLE converges to a reasonable value.

The  penalized likelihood
can be extended to the threshold Cox model.

function (Equation 6)

In this
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case, the penalized log partial likelihood function takes

the form:

log [LFi‘rth (ﬁT’a> V> ‘E)] = lOgL (ﬂT)a) )/,T)
+ 0.5log|Z (B", oy, 1)

(D

Z(B"ay,7)|
is the observed information matrix that is defined as:

92 logL(BT,a,y,r) :|

where log L (BT,a, Y, ‘C) is defined in Equation 5,

T(8%a,y,7) = -E .
(B c.y.) |:8(ﬂT,a,y,r)3(ﬂT,a,y,r)

To optimize the penalized log-likelihood function (Equation 7)
with max1lik(), we employ the score function, which
incorporates the derivative of the penalty term using Jacobi’s
formula. The score function of the penalized log-likelihood is
given by:

dlogL (B",a,y,7)
3 (B, a,y,7)

d1og L, (B", a7, 7)
3 (B, a,y,7)

+ ;tr|:I (,BT,ot, Y, r)fl

AL (B" . y,7)
(BN ay.7) |

where tr(A) denotes the trace of a square matrix A, i.e., the sum of
the elements on its main diagonal.

2.4 Software

All statistical analyses were conducted using R version 4.4.0
(9). The MLE estimation was performed with R package “maxLik”
version 1.5-2.1 (10). A sample code showing the application
of maxLik() with a simulated dataset is attached in the
Supplementary material.

3 Simulation study

3.1 Simulation set up

We conducted two simulation studies under varying conditions
to evaluate the robustness and performance of the proposed
estimation procedures for the threshold Cox model. The datasets
for both simulation studies were constructed from the same
data generation step. We first generated the covariate X and
the exposure Z, where X follows a Bernoulli distribution with
Pr(X =
with rate parameter 0.5. The survival time T was then simulated

1) = 0.55 and Z follows an exponential distribution

based on a simple version of the proposed threshold Cox
model, A(t) = Ao(t)exp {B*X +a*Z+y*(Z—1*)"}, using
true parameter values (8%, a*, y*,t*) = (0.75,0.25,0.5,4). The
censoring time C is drawn from a uniform distribution U(a, b), with
different combinations of a and b to control the censoring rate.
The observed time Y = min(T, C) and the censoring indicator
8 = I(T < Q) are derived from the simulated event time and
censoring time. We ran 1,000 simulations for each scenario. The
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evaluation metric for both studies includes bias, mean squared
error (MSE), and coverage probability, which helps to interpret
the results and provides insight into the model’s reliability under
different data constraints.

3.2 Study 1: model validation under various
censoring rates

The first simulation study aims to validate the accuracy and
stability of the model across different censoring rates. For each
replication, we generated five simulated datasets of size N = 10,000
observations. These datasets were simulated for increasing rates of
censoring at 20%, 40%, 60%, 85%, and 98%. The dataset with a
censoring rate of 98% was intended to demonstrate the situation
where monotone likelihood occurs. R package segmented( ) can
be used to fit regression models with broken-line relationship for
survival outcomes (11), similar to the approach described in this
paper. We included coefficient estimation using segmented( ) in
our simulation for comparison.

We present in Figure 1 the simulation results in terms of
absolute bias (Figure 1a), MSE (Figure 1b), and empirical coverage
rates of 95% confidence interval (CI) (Figure Ic) for B, o, v,
and 7. For all parameters, the absolute biases remain close
to zero at the first four censoring rates of 20%, 40%, 60%
and 85%, but spike at the extreme censoring rate of 98%.
A similar pattern is observed for the MSE, which increases
slightly with rising censoring rates before increasing drastically
at 98%. Coverage rates for the 95% CI of f, «, and y remain
close to the nominal 95% threshold for all levels of censoring.
However, for 7, the coverage rate decreases as the censoring
rate increases. Figure 2 provides a visual comparison of point
estimates and 95% CIs obtained with the standard maxLik () and
Segmented( ) approaches at non-extreme censoring rates. The
results indicate that both methods yield highly comparable point
estimates and uncertainty levels, suggesting similar performance in
these scenarios.

Despite adding the penalty term, some replications at 98%
censoring rate still fail to converge due to the high censoring
rate. To ensure a fair comparison, we excluded the replications
that failed to converge and summarized the simulation results for
the regular, penalized, and segmented approaches in Table 1. As
shown, the penalized model generally results in lower absolute bias
compared to the regular model for 8 and 7, but higher bias for «
and y. For instance, Ehas a smaller absolute bias in the penalized
model, whereas @ has a higher bias at 0.05 compared to 0.04.
In addition, the penalized model generates lower or comparable
MSE across all parameters, most notably for t. All models produce
similar analytical SE values across the parameters, with slightly
lower SEs observed in the penalized model. The regular model
tends to provide higher coverage rates than the penalized model,
particularly for v where the coverage drops from 85.1% in the
regular model to 77.8% in the penalized model. In summary, the
penalized model improves bias and MSE for certain parameters,
particularly for 8 and 7, at the cost of slightly reduced coverage
for some parameters.
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FIGURE 1
Simulation results for study 1 model validation. The evaluation
metric includes (a) absolute bias, (b) MSE, and (c) coverage rates of
95% ClI.
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Comprison between parameter estimations using maxLik () and Segmented().

TABLE 1 Absolute bias, MSE, analytical SE, and empirical coverage rate of 95% Cl using the regular, penalized maxLik () and Segmented( ) approaches
with adjusted number of replications under 98% censoring rate.

Param Abs. bias(% Rel. bias) Analy SE Coverage

Reg. Pen. Seg. Reg. Reg. Pen. Seg. Reg. Pen. Seg.
B 0.01(1.6) | 0.00(0.5) | 0.01(1.6) 0.03 0.03 0.03 0.16 0.16 0.16 93.0 93.4 93.0
o 0.04(15.2) | 0.05(20.4) | 0.03(12.9) 0.02 0.02 0.02 0.10 0.10 0.10 93.4 93.0 92.8
y 0.05(9.4) | 0.07(13.2) | 0.04(8.5) 0.02 0.02 0.02 0.12 0.11 0.12 96.3 93.8 96.7
T 007 (1.7) | 0.03(0.7) | 0.02(0.6) 0.67 0.54 0.56 0.59 0.50 0.60 85.1 77.8 88.3

3.3 Study 2: comparing model
performance with varying sample sizes

In this study, we evaluated the model’s performance across
a range of sample sizes, with N = 250, 500, and 1,000. For
each dataset of a given sample size, we evaluated the model’s
performance under varying censoring rates of 20%, 40%, 60%, and
85%. Results for 10,000 observations from study 1 were added as
a comparison.

Figure 3 demonstrates the overall model performance across all
censoring rates for different sample sizes, focusing on absolute bias

Frontiersin Public Health

(Figure 3a), MSE (Figure 3b), and 95% CI coverage rate (Figure 3c).
As expected, the overall model performance decreases as the sample
size diminishes and the censoring rate increases. The absolute bias
and MSE show similar trends. For larger sample sizes, such as
n = 500 and n = 1,000, the model maintains a good estimation
efficiency even under high censoring rates of 60% to 85%. However,
for the smaller sample size at n = 100, acceptable estimation
efficiency is achieved at moderate censoring rates of 40% to 60%. As
in the first study, the 95% CI coverage rates for 8, o, and y remain
close to 95% across all conditions. While for 7, the coverage rate
declines with increasing censoring rates and smaller sample sizes.
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FIGURE 3
Simulation results for study 2 comparing model performance across
different sample sizes. The evaluation metric includes (a) absolute
bias, (b) MSE, and (c) coverage rate of 95% Cl.
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4 Application to an occupational
epidemiological study dataset

4.1 Silicosis dataset

The real-world application we present in this paper illustrates
the application of the threshold Cox model to identify the change
point in the exposure-response relationship between crystalline
silica exposure and silicosis diagnosis. We utilized the same dataset
previously analyzed by Birk et al. (12) and (1). The analysis
cohort consists of over 17,000 porcelain production workers from
over 100 porcelain manufacturing plants in the western states of
Germany, who participated in an initial medical screening for
silicosis between January 1, 1985, and December 31, 1987. The
follow-up period was extended through the end of 2020, or until
the worker was diagnosed with silicosis or dropped out of the
study, whichever occurred first. During the follow-up, participants
were required to receive a chest radiograph (x-ray) every 3 years to
monitor for signs of silicosis. In addition, medical records prior to
1975 were retrieved by the Berufsgenossenschaft der keramischen
und Glas-Industrie (BGGK), which provides insurance coverage
and safety services to workers in the ceramic and glass industries.
A rigorous two-stage radiographic review process was used to
diagnose silicosis, and in our analysis, a diagnosis was considered
positive if either of the two readings indicated silicosis (13). The
final cohort contains a total of 17,592 observations, with 156
confirmed cases of silicosis.

Although all cohort members were employed in porcelain
manufacturing, only a subset of those who worked directly on the
processing line were substantially exposed to crystalline silica and
therefore the majority were not at increased risk of the outcome. To
account for this and focus the analysis on relevant exposures, we
generated a sampled dataset from the total cohort to perform the
Cox threshold analysis. The sampled dataset was constructed using
a nested case-control sampling approach, with each case randomly
matched to 4 controls from the same production departments. The
final analysis dataset consists of 748 observations, including 156
cases; however, only 1 control could be matched to 3 cases due to
limited availability of appropriate matches.

Figure 4 shows the distribution of cumulative crystalline
silica exposure between individuals diagnosed with silicosis and
those without silicosis. The clear separation between the two
distributions indicates a distinct difference in exposure levels,
suggesting that higher cumulative exposure is potentially associated
with the onset of silicosis, even among those with comparable
exposure opportunity.

4.2 Exposure threshold modeling

We applied the threshold Cox model containing only exposure
to analyze the data. The model takes the formula A(f) =
ro(t)exp{aZ + y(Z — 1)}, where Z represents the cumulative
crystalline silica exposure. We implemented the two-step grid
search method and the one-step maxLik () approach to estimate
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TABLE 2 Parameter estimation for silicosis analysis.

Method Parameter  Coef SE 95% ClI

Grid search T 4.040 2.175* (1.223,9.025)*
a 0.696 0.065 (0.569,0.823)
y —0.643 0.071 (—0.782, —0.504)

maxLik () T 4.038 0.474 (3.109, 4.967)
o 0.697 0.106 (0.489,0.905)
y —0.644 0.107 (—0.854, —0.434)

* indicated results from 1,000 non-parametric bootstrap resampling.

the model parameters. The parameter estimates are summarized
in Table 2. For both methods, the threshold parameter 7 is
estimated to be 4.04 mg/m3 . However, the standard error (SE)
for 7 differs significantly between the methods, with the grid
search method yielding a much larger SE of 2.175 based on 1,000
bootstrap resampling, resulting in a wider 95% CI. In contrast, the
maxLik () method produces a much smaller SE of 0.474 and a
narrower 95% CL. Bootstrap estimates the empirical distribution of
the 7 by resampling that captures additional sources of variability,
and provides a data-driven assessment of uncertainty. The MLE-
based variance estimation, on the other hand, relies on asymptotic
theory and assumes the model is correctly specified. In our analysis,
as the sample size is large enough and we are fairly confident on
the model assumptions, the variance estimated with maxLik ()
is preferred. The estimates for the exposure parameter « and the
post-threshold slope y are consistent across methods, with @ ~
0.696 and ¥ ~ —0.644. Both methods show similar SEs and Cls
for these parameters, indicating stable estimates regardless of the
method used.

We also applied the threshold Cox model using average
exposure intensity. Unlike the original analysis, we redefined
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average RCS exposure intensity based on estimated exposures
sustained in the first two and first 5 years of employment.
These time-periods were selected because analysis of average RCS
exposure estimates by year of employment indicated that most
workers demonstrated dramatic reductions in exposure after the
first several years of employment. Averaging intensities over their
entire employment duration resulted in greatly diluted annual
average intensity (note that this phenomenon has minimal effect on
cumulative exposure).

Table 3 summarizes parameter estimates for cumulative
exposure and for annual exposure intensity at 2 years and 5 years,
respectively. The models based on annual exposure intensity show
consistent threshold values across the 2-year and 5-year periods
(0.264 mg/m> and 0.324 mg/m>, respectively), suggesting that
disease risk increases once average yearly exposure exceeds these
levels. The threshold value identified using cumulative exposure for
2-year and 5-year periods is 0.527 mg/m>-yrs, and 1.623 mg/m>-
yrs. Dividing each cumulative exposure by its corresponding time
period results in exactly 0.264 mg/m>-yrs and 0.324 mg/m>-yrs,
demonstrating consistency in the model estimates across different
exposure metrics.

5 Discussion

In this paper, we described a new threshold Cox model
that can estimate a change point in the exposure-response
relationship between occupational exposure and a relatively rare
outcome of interest. The change point, or threshold, describes
the point on the exposure axis where the hazard ratio for
silicosis significantly departs from the “background” risk. We
proposed two estimation approaches: the two-step grid search
method and the one-step MLE using R function maxLik().
While the grid search method is straightforward, obtaining the
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TABLE 3 Estimated threshold value and other model parameters via maxLik () for cumulative exposure and annual exposure intensity for the silicosis

dataset.
Exposure type Time period Parameter Coef SE 95% ClI
(a) Cumulative exposure 2yr T 0.527 0.058 (0.413, 0.641)
o 5.052 0.645 (3.788, 6.316)
Y —4.338 0.676 (—5.663, —3.013)
5yr T 1.623 0.154 (1.321, 1.925)
o 1.757 0.187 (1.391, 2.123)
Y —1.517 0.201 (—1.911, —1.123)
(b) Annual exposure intensity 2yr T 0.264 0.029 (0.208, 0.320)
o 10.086 1.279 (7.579, 12.593)
Y —8.666 1.343 (—11.299, —6.033)
5yr T 0.324 0.031 (0.263, 0.385)
o 8.793 0.933 (6.964, 10.622)
y —7.594 1.003 (—9.560, —5.628)

variance estimate for the threshold parameter 7 through bootstrap
resampling is time-consuming and computationally intense. On
the other hand, the one-step MLE approach can provide point
estimates and confidence intervals for all model parameters
simultaneously. Under monotone likelihood, the MLE can be
biased, and Firth’s penalized MLE is incorporated to correct
such bias.

We conducted two simulation studies to assess the robustness
of the model across different sample sizes with varying censoring
rates. In Study 1, we evaluated the performance of the model
across different censoring rates at a large sample size N = 10,000,
focusing on absolute bias, MSE, and 95% CI coverage for key
parameters. The model performed well under moderate censoring
rates, maintaining low bias and reasonable coverage probabilities
for most parameters. As expected, extreme censoring approaching
or exceeding 98% resulted in substantial increases in both bias
and MSE. While the penalized MLE reduced bias and improved
estimation efficiency, itled to a drop in 95% CI coverage probability
for 7. This suggests a trade-off between reducing bias and
maintaining coverage, which was not widely addressed in previous
publications on penalized MLE applications. Study 2 examined the
impact of varying sample sizes on the model’s performance under
different censoring rates. As anticipated, model performance for
smaller datasets typically were inferior compared to larger datasets
with the same censoring rate. The results from this study highlight
several important considerations for applying the threshold Cox
model in practice. When the sample size is around 250, the
model performs well with a censoring rate below 40-60%. As the
sample size increases to around 500 to 1,000, the model maintains
strong performance even under moderate to high censoring rates.
Practitioners should be mindful of these limitations and consider
both sample size and censoring rate when applying the model in
real-world scenarios.

In addition to the simulation studies, we also demonstrated
the application of the threshold Cox model using a real-world
example. In the silicosis dataset, we successfully estimated a
threshold of 4.04 mg/m3 -yrs 95% Cl is (3.109, 4.967) for cumulative
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exposure of crystalline silica, with consistent results across the
grid search approach and the maxLik () estimation. Threshold
values estimations based on cumulative exposure and annual
exposure intensity for the same time period are consistent,
indicating the model’s ability to reliably estimate the threshold
across different exposure metrics. Such results provide a different
perspective for evaluating exposure-response relationships where
the risk is not best described using a strictly linear function.
The parameter estimates from both datasets provide evidence of
a change point in the risk associated with increasing exposure,
with exposure-response relationships possibly plateauing, declining
or increasing linearly beyond the initial threshold. The plateau
pattern is observed from the silicosis analysis, which is suggested
by the positive estimated « values and the negative estimated
y values, which are of similar magnitude to «. This trend is
different from the findings from the Cox model with categorized
exposure levels as demonstrated in the analysis by Birk et al. (1).
We verified the trend estimated from the threshold Cox model
through additional analyses with modeling exposure quintiles and
spline models (results not shown). These alternative methods
consistently supported the slower increased risk beyond the
estimated threshold.

Several limitations emerged during the analysis that may shed
light on future research opportunities. The current model only
accounts for right-censored observations; however, in occupational
studies, it is common to encounter left-truncated datasets. Left
truncation occurs when individuals experience the event of interest
before the observation period begins, thus excluding them from
the final sample and potentially introducing survival bias. For
example, in the silicosis analysis, only workers who survived
until 1985 are included in the dataset, while those who died
of silicosis prior to 1985 are absent from the analytic cohort.
Extending the model to accommodate left-truncated data would
allow for an estimation procedure more closely aligned with the
true underlying population.

The main challenge encountered was the convergence issues
in models with extreme censoring, as observed in the simulation
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study with a 98% censoring rate. This likely helps explain why
an earlier attempt to estimate exposure thresholds was unable to
derive an estimate for cumulative RCS exposure (14). Although
we applied a penalized maximum likelihood approach to address
this, the trade-off was a decreased coverage probability, for
particularly. Future research should explore alternative methods
to handle extreme censoring more effectively. For this study, we
generated a subset of the original cohort to maximize our ability to
differentiate generally high RCS exposures that increased silicosis
risk. Potential additional statistical approaches include refining
penalization techniques or employing Bayesian methods, both of
which could yield more robust estimates for highly censored data.

In summary, the proposed threshold Cox model extends the
traditional Cox model by enabling more accurate estimation of
change points in the exposure-response relationship. Simulation
studies demonstrated strong model performance under varying
censoring rates, and the real-world application illustrated its
utility in occupational epidemiology. Future methodological
developments could focus on enhancing the model’s ability to
handle left-truncated datasets and refining estimation techniques
to better address challenges posed by extreme censoring.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: the datasets presented in this article are not
readily available because they are owned by the German Social
Accident Insurance (DGUV) of the BG Administrative Sector
(VBG). Requests to access these datasets should be directed to
Kenneth A. Mundt, kmundt@umass.edu.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation
and the institutional requirements. All data obtained from the VBG
andanalyzed for this paper and for the source study publications
were fully anonymized.

Author contributions

DW: Formal analysis, Methodology, Writing — original draft,
Writing - review & editing. KM: Conceptualization, Data curation,
Methodology,
Writing - review & editing. JQ: Conceptualization, Data

Funding acquisition, Project administration,

curation, Formal analysis, Methodology, Project administration,
Supervision, Writing - original draft, Writing - review & editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This work

Frontiersin Public Health

10.3389/fpubh.2025.1628965

was funded by the German Social Accident Insurance (DGUV)
of the Raw Materials and Chemical Industry (BG RCI) and of
the Administrative Sector (VBG); the European Association
of Industrial Silica Producers (EUROSIL); the American
Chemistry Council (ACC); and the National Stone, Sand &
Gravel Association (NSSGA). No funders played any role in the
conceptualization, design or performance of this study, and no
role in the preparation, review or approval of the manuscript or
its contents.

Acknowledgments

We would like to thank Dr. Thomas Birk and Lori Crawford
for generously providing the silicosis datasets and additional
information regarding the study. Their support was invaluable in
enabling this research, and we greatly appreciate their contribution
to advancing this work. We also thank William Thompson for his
constructive feedback and discussion.

Conflict of interest

KM is an independent consultant providing scientific support
to various clients including governments, corporations, and law
firms, and has provided expert witness testimony on behalf of
defendants in litigation matters in which occupational exposures
have been alleged to cause disease (but not silicosis). The full
content of this work is exclusively that of the authors.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.
1628965/full#supplementary-material

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1628965
mailto:kmundt@umass.edu
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1628965/full#supplementary-material
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Wu et al.

References

1. Birk T, Mundt KA, Crawford L, Driesel P. Results of 15 years of extended follow-
up of the German porcelain workers cohort study: lung cancer and silicosis. Front
Public Health. (2025) 13:1552687. doi: 10.3389/fpubh.2025.1552687

2. Cox DR. Regression models and life-tables. J R Stat Soc Series B Stat Methodol.
(1972) 34:187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x

3. Cox DR. Partial likelihood.
doi: 10.1093/biomet/62.2.269

Biometrika. (1975) 62:269-76.

4. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. (1993)
80:27-38. doi: 10.1093/biomet/80.1.27

5. Heinze G, Schemper M. A solution to the problem of monotone likelihood in cox
regression. Biometrics. (2001) 57:114-9. doi: 10.1111/j.0006-341X.2001.00114.x

6. Kenne Pagui EC, Colosimo EA. Adjusted score functions for monotone likelihood
in the cox regression model. Stat Med. (2020) 39:1558-72. doi: 10.1002/sim.8496

7. Adhikary AC, Shafiqur Rahman M. Firth’s penalized method in cox
proportional hazard framework for developing predictive models for sparse
or heavily censored survival data. J Stat Comput Simul. (2021) 91:445-63.
doi: 10.1080/00949655.2020.1817924

8. Alam TE Rahman MS, Bari W. On estimation for accelerated failure time
models with small or rare event survival data. BMC Med Res Methodol. (2022) 22:169.
doi: 10.1186/s12874-022-01638-1

Frontiersin Public Health

11

10.3389/fpubh.2025.1628965

9. R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria (2024). Available online at: https://www.R-project.org/ (Accessed March 14,
2024).

10. Baio G, van der Vaart M. maxLik: Functions for Maximum Likelihood Estimation
(2023). R package version 1.5-2.1. Available online at: https://CRAN.R-project.org/
package=maxLik (Accessed March 14, 2024).

11. Muggeo VM. segmented: an R Package to Fit Regression Models with Broken-
Line Relationships. R News. (2008) 8:20-25. Available online at: https://cran.r-project.
org/doc/Rnews/. (Accessed February 10, 2025).

12. Birk T, Mundt KA, Guldner K, Parsons W, Luippold RS. Mortality in the
German porcelain industry 1985-2005: first results of an epidemiological cohort
study. J Occup Environ Med. (2009) 51:373-85. doi: 10.1097/JOM.0b013e31819
73el9

13. Mundt KA, Birk T, Parsons W, Borsch-Galetke E, Siegmund K, Heavner K, et al.
Respirable crystalline silica exposure-response evaluation of silicosis morbidity and
lung cancer mortality in the German porcelain industry cohort. J Occup Environ Med.
(2011) 53:282-9. doi: 10.1097/JOM.0b013e31820c2bff

14. Morfeld P, Mundt KA, Taeger D, Guldner K, Steinig O, Miller BG. Threshold
value estimation for respirable quartz dust exposure and silicosis incidence among
workers in the German porcelain industry. J Occup Environ Med. (2013) 55:1027-34.
doi: 10.1097/JOM.0b013e318297327a

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1628965
https://doi.org/10.3389/fpubh.2025.1552687
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/80.1.27
https://doi.org/10.1111/j.0006-341X.2001.00114.x
https://doi.org/10.1002/sim.8496
https://doi.org/10.1080/00949655.2020.1817924
https://doi.org/10.1186/s12874-022-01638-1
https://www.R-project.org/
https://CRAN.R-project.org/package=maxLik
https://CRAN.R-project.org/package=maxLik
https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/
https://doi.org/10.1097/JOM.0b013e3181973e19
https://doi.org/10.1097/JOM.0b013e31820c2bff
https://doi.org/10.1097/JOM.0b013e318297327a
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Using threshold Cox models to estimate change points in exposure-response relationships in an occupational epidemiological study of respirable crystalline silica and silicosis risk
	1 Introduction
	2 Methodology
	2.1 Threshold Cox model with change point
	2.1.1 Notations of the threshold Cox model
	2.1.2 Partial likelihood function of the threshold Cox model

	2.2 Estimation procedure
	2.2.1 Two-step grid search procedure
	2.2.2 One-step MLE via maxLik()

	2.3 Firth's penalized MLE for monotone likelihood under extreme censoring
	2.4 Software

	3 Simulation study
	3.1 Simulation set up
	3.2 Study 1: model validation under various censoring rates
	3.3 Study 2: comparing model performance with varying sample sizes

	4 Application to an occupational epidemiological study dataset
	4.1 Silicosis dataset
	4.2 Exposure threshold modeling

	5 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 


