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Objective: To investigate the neural and molecular correlates of occupational 
burnout in nurses by integrating resting-state fMRI (rs-fMRI), clinical assessments, 
brain-wide gene expression, and neurotransmitter atlases.
Methods: Fifty-one female nurses meeting burnout criteria and 51 matched 
healthy controls underwent 3 T rs-fMRI. We analyzed fractional amplitude of 
low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC), 
correlating findings with burnout (emotional exhaustion [EE], depersonalization 
[DP], and personal accomplishment [PA]). The fALFF t-map was spatially 
correlated with Allen Human Brain Atlas gene expression (followed by gene 
ontology enrichment) and neurotransmitter system maps.
Results: Nurses with burnout exhibited significantly decreased precuneus 
fALFF and reduced precuneus-right dorsolateral prefrontal cortex (DLPFC) 
FC compared to controls. The fALFF in the precuneus negatively correlated 
with EE and DP, and positively correlated with PA, while reduced precuneus-
DLPFC FC negatively correlated with EE. Genes spatially associated with fALFF 
alterations were enriched in pathways involving neuronal excitability, synaptic 
organization, stress response, and immune modulation. The fALFF alteration 
pattern also spatially correlated with serotonin, norepinephrine, γ-aminobutyric 
acid, glutamate, and endocannabinoid system distributions.
Conclusion: Nurse burnout features precuneus hypoactivity and precuneus-
DLPFC hypoconnectivity, linked to EE and DP severity. Associated molecular 
signatures implicate altered neuronal excitability, stress/immune pathways, and 
multiple neurotransmitter systems. The precuneus-DLPFC circuit and identified 
molecular pathways represent potential targets for interventions against 
burnout.
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Introduction

Burnout syndrome is recognized as an occupational phenomenon 
resulting from chronic, unmanaged workplace stress, and is typically 
characterized by three core dimensions: emotional exhaustion (EE), 
depersonalization (DP) or cynicism, and reduced personal 
accomplishment (PA) (1–3). This syndrome represents a significant 
occupational hazard, particularly within high-stress professions such 
as nursing (4), where prevalence rates are notably high. A recent meta-
analysis estimated the global prevalence of burnout among nurses 
over the last decade at 30%, with evidence suggesting an increasing 
trend (5). The consequences of nursing burnout extend beyond the 
individual’s well-being, manifesting as symptoms such as fatigue, 
cognitive weariness, depression, and poor sleep (1, 4, 5), to negatively 
impact patient safety, the quality of care, and overall healthcare system 
stability through increased nurse turnover and medical errors (4, 5). 
Given its profound impact, understanding the biological 
underpinnings of burnout in this critical workforce is crucial for 
informing effective prevention and intervention strategies (6).

Despite the significant clinical and societal burden imposed by 
burnout, particularly among nurses, its underlying neurobiological 
mechanisms remain incompletely understood (6, 7). Previous 
neuroimaging studies have begun to associate burnout with alterations 
in brain structure, observing changes in gray matter volume or cortical 
thickness in regions such as the prefrontal cortex and insula (8, 9). 
Functionally, studies have reported abnormal brain activity during 
tasks (10), disruptions in resting-state functional connectivity (FC), 
functional network topology, and functional connectome hierarchy 
(11–14). These findings suggest that burnout may involve structural/
functional dysregulation across multiple levels of brain organization. 
Beyond examining how regions communicate (connectivity), 
understanding the baseline level of spontaneous activity within 
individual regions is also crucial. The amplitude of low-frequency 
fluctuations (ALFF) measures the intensity of local resting-state 
BOLD signals, reflecting spontaneous neuronal activity. Fractional 
ALFF (fALFF), a normalized version, improves upon ALFF by 
enhancing both sensitivity and specificity for detecting this regional 
spontaneous brain activity in resting-state fMRI (rs-fMRI) (15, 16). 
Although recent studies have begun to explore the relationship 
between fALFF and stress or shift work in nurses (17, 18), a key gap 
in current research lies in understanding the potential molecular 
mechanisms underlying these alterations in  local spontaneous 
brain activity.

To address these knowledge gaps, this study employed a multimodal 
integrative analysis strategy. We utilized fALFF based on rs-fMRI to 
non-invasively probe spontaneous neural activity (15). Based on brain 
regions showing significant fALFF alterations, we further employed 
seed-based FC analysis to investigate whether the functional integration 
patterns between these core regions and other brain areas were also 
altered. To explore the clinical relevance of these neuroimaging findings, 
we examined the relationships between fALFF and FC alterations and 
the severity of core burnout symptoms in nurses. Crucially, to uncover 
the potential molecular underpinnings of burnout-related fALFF 
changes, we adopted an imaging transcriptomics approach, correlating 
the spatial maps of our observed fALFF alterations with genome-wide 
transcriptional expression data provided by the Allen Human Brain 
Atlas (AHBA) (19, 20). Furthermore, we  extended our analysis by 
correlating the spatial maps of fALFF alterations with published brain 

maps of various neurotransmitter receptors and transporters (e.g., for 
serotonin [5-HT], norepinephrine, dopamine, γ-aminobutyric acid 
[GABA], glutamate, and endocannabinoid systems), to explore whether 
specific neurotransmitter systems are spatially associated with the 
observed local activity changes (21, 22). This integrative approach, 
combining neuroimaging, clinical assessments, and multi-level 
molecular atlases (gene transcriptome and neurotransmitter systems), 
holds the potential to provide a more comprehensive perspective on the 
neurobiological mechanisms of burnout in nurses.

Methods

Participants

Female nurses were recruited from the Affiliated Hospital 6 of 
Nantong University as participants in this study. Data collection took 
place from September 2024 to January 2025. The inclusion criteria for 
the burnout group were as follows: (1) females, aged 20–40 years; (2) 
right-handed; (3) meeting the criterion on at least one of the three 
dimensions of the Maslach Burnout Inventory-Human Services 
Survey (MBI-HSS) scale (EE ≥ 27 points, DP ≥ 8 points, and PA ≤ 24 
points) (23), whereas the inclusion criteria for the healthy controls 
(HCs) were as follows: (1) females, aged 20–40 years; (2) right-handed; 
(3) scores below the critical values on all three dimensions (EE < 27 
points, DP < 8 points, PA > 24 points). Individuals were excluded if 
they met any of the following criteria: (1) endocrine, neurological, or 
psychiatric disorders or other primary diseases; (2) current pregnant 
or lactating women; (3) history of drug dependence, smoking, or 
alcohol consumption; (4) adverse reactions during scanning leading 
to termination of the experiment or contraindications to MRI 
scanning; (5) data collection failure during scanning or poor image 
quality; (6) MRI images showing organic brain lesions; (7) other 
serious physical illnesses. Based on these criteria, a total of 102 right-
handed participants were ultimately enrolled and assigned to two 
groups: a burnout group (n = 51) and an HC group (n = 51).

In this study, the Beck Anxiety Inventory (BAI) and Beck Depression 
Inventory (BDI) were used to measure the levels of anxiety and 
depression among all participants, respectively. The study was approved 
by the ethics committee of the Affiliated Hospital 6 of Nantong University 
(2024–82), and all participants provided written informed consent.

Data acquisition and preprocessing

Resting-state fMRI data were acquired using a 3.0 T MRI scanner 
equipped with a 24-channel head coil (Discovery 750w, GE, 
United  States) at the Affiliated Hospital 6 of Nantong University. 
During the fMRI scanning, participants were instructed to remain 
awake with their eyes closed, and to hold still as much as possible. 
Detailed fMRI parameters and preprocessing procedures are presented 
in the Supplementary material.

fALFF and FC analysis

fALFF was calculated using the Data Processing Assistant for 
Resting-State fMRI (DPARSF) (24). The time series of each voxel was 

https://doi.org/10.3389/fpubh.2025.1630294
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Song et al.� 10.3389/fpubh.2025.1630294

Frontiers in Public Health 03 frontiersin.org

converted to the frequency domain using a fast Fourier transform 
(FFT). The square root of the power spectrum at each frequency was 
computed, and the average square root within the 0.01–0.1 Hz 
frequency band represents ALFF (16). fALFF was determined as the 
ratio of ALFF (0.01–0.1 Hz) to the power across the entire analyzed 
frequency range (0.01–0.25 Hz) (15). The fALFF values were 
standardized through Fisher’s z-transformation to enhance normality.

Seed-based FC was computed using DPARSF (24) by utilizing 
clusters that showed significant between-group differences in fALFF 
as seeds or regions of interest (ROIs). The mean time series of the ROI 
was extracted, and Pearson correlation coefficients were calculated 
between the ROI time series and the time series of all other brain 
voxels. Fisher’s z-transformation was applied to the resulting 
correlation maps for statistical analysis.

Between-group differences in fALFF and FC were assessed using 
a voxel-wise two-sample t-test, controlling for age, educational level, 
Total intracranial volume (TIV), BAI, and BDI scores as covariates. 
Statistical significance for both fALFF and FC analyses was determined 
at a voxel-level threshold of p < 0.001, with a cluster-level Family Wise 
Error (FWE) correction (p < 0.05) for multiple comparisons.

Correlation analysis

Correlation analyses were conducted within the burnout group to 
examine the relationships between neuroimaging measures and 
burnout-related scores. Specifically, Pearson correlations were assessed 
between alterations in fALFF and FC and scores on the EE, DP, and 
PA subscales of the MBI.

Brain gene expression data processing

Brain gene expression data were acquired from the AHBA dataset, 
which originated from six human postmortem donors (25, 26). The 
dataset includes the expression levels of over 20,000 genes across 3,702 
spatially unique brain tissue samples, analyzed using custom 64 K 
Agilent microarrays. A previously established pipeline was employed 
to process gene expression data (27). Probe-to-gene annotations were 
revised using the Re-Annotator package, incorporating the latest data 
from the National Center for Biotechnology Information (28). 
Through intensity-based filtering, probes were excluded if they did not 
surpass the background noise in a minimum of 50% of samples across 
all donors. RNA-seq data were used to select probes for genes, 
excluding genes that were not common to both the RNA-seq and 
microarray datasets. Correlations between microarray and RNA-seq 
expression measures were calculated for the remaining genes, and 
probes with low correlations (r < 0.2) were eliminated. A representative 
probe for each gene was selected based on the highest correlation with 
RNA-seq data. Only left cerebral cortex tissue samples were included 
in the analysis due to all six donors having left hemisphere data, while 
right hemisphere samples were available for only two donors. 
Moreover, including subcortical samples could introduce biases 
because of significant gene expression differences between cortical and 
subcortical regions (26). To address inter-sample variations and 
donor-specific influences in gene expression, we  applied within-
sample cross-gene and within-gene cross-sample normalizations 
using the scaled robust sigmoid normalization method. Differential 

stability (DS) quantifies the consistency of regional expression 
variation across donor brains. Previous studies have indicated that 
genes exhibiting high DS exhibit more uniform spatial expression 
profiles among donors and are enriched in brain-related biological 
processes (25). To establish reliable transcriptome-neuroimaging 
spatial correlations, we  selected genes with highly conserved 
expression patterns. Genes were ranked based on their DS values, and 
the top 50% were chosen for analysis. This resulted in normalized 
expression data for 5,013 genes across 1,290 tissue samples. 
We  focused our analysis on tissue samples located within the 
Automated Anatomic Labeling (AAL) 90 atlas regions, resulting in a 
final sample × gene matrix of 838 × 5,013.

Transcriptome-neuroimaging spatial 
correlation and gene category enrichment 
analysis

To assess the spatial correspondence between group differences in 
imaging metrics and gene expression, spherical ROIs with a radius of 
3 mm were placed at the MNI coordinates of each of the 838 tissue 
samples. The average t-value of voxels within each spherical ROI was 
extracted from the group comparison statistical t-map for 
fALFF. Subsequently, Pearson correlations between the expression 
profile of each gene and the pattern of t-values across these 838 tissue 
sample locations were computed gene-wise, resulting in 5013 spatial 
correlation coefficients, denoted as gene scores. Following the 
approach by Fulcher et al. (29), neuroimaging-spatial ensemble-based 
gene category enrichment analysis (GCEA) was conducted for the 
gene scores as follows: First, updated gene ontology (GO) term 
hierarchy and annotation files were acquired from the Gene Ontology1 
on March 16, 2025. Second, direct gene-to-category annotations were 
carried out for the 5,013 AHBA genes, focusing on GO categories with 
10–200 annotations. Third, gene scores were aggregated at the GO 
category level as the mean score of genes annotated to each category. 
Fourth, 10,000 surrogate maps with spatial autocorrelation matching 
the original t-map were generated using the BrainSMASH package2 
based on the spatial-lag model (30). Null distributions, known as the 
neuroimaging-spatial ensemble-based null model, were created for 
mean gene scores of each GO category by assessing spatial correlations 
between gene expression and the 10,000 spatial autocorrelation-
preserving surrogate maps. Finally, the statistical significance of a GO 
category was determined by comparing its score from the actual data 
with the neuroimaging-spatial ensemble-based null. A two-sided 
p-value threshold of < 0.05 was set for significance assessment (i.e., 
above or below the null).

Correlation with neurotransmitters

To investigate the potential relationship between burnout-related 
fALFF alterations and the spatial distribution of neurotransmitter 
systems, we utilized JuSpace,3 a tool for analyzing spatial correlations 

1  http://geneontology.org/

2  https://github.com/murraylab/brainsmash

3  https://github.com/juryxy/JuSpace
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between multimodal neuroimaging data. We examined the spatial 
correlations between the group comparison fALFF t-map and 
published PET/SPECT-derived maps encompassing various 
neurotransmitter systems, including dopamine, serotonin, glutamate, 
GABA, acetylcholine, opioid, cannabinoid, noradrenaline, and 
fluorodopa. Pearson correlation coefficients were computed between 
the t-map and neurotransmitter maps across 90 AAL regions. This 
analysis adjusted for spatial autocorrelation and partial volume using 
the gray matter probability map. Significance was determined at 
p < 0.05, with exact p values calculated through spatial permutation-
based null maps with 5,000 permutations.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the burnout and 
HCs are presented in Table 1. There were no significant differences 
between the two groups in terms of age (Burnout group: median 
34 years, Interquartile Range [IQR] 27–37; HC group: median 
34 years, IQR 28–36), years of education, TIV, blood pressure, and 
body mass index (BMI) (all p > 0.05; see Table 1 for details). However, 
compared to the HCs, the burnout group exhibited significantly 
higher scores on the EE, DP, BAI, and BDI, and significantly lower 
scores on the PA (all p < 0.05; see Table 1 for details).

fALFF differences between groups

Compared to the HC group, the burnout group exhibited a 
significant reduction in fALFF values within a cluster in the 
precuneus (MNI coordinate: x = −15, y = −42, z = 45; cluster 
size = 38 voxels, t = −4.07, PFWE-corrected < 0.05), as illustrated in 
Figure 1 and Table 2.

FC differences between groups

Seed-based FC analysis, utilizing the precuneus cluster identified 
above as the seed region, demonstrated a significant reduction in FC 
between the precuneus seed and a cluster in the right dorsolateral 
prefrontal cortex (DLPFC) in the burnout group compared to the HCs 
(MNI coordinate: x = 33, y = 21, z = 24; cluster size = 46 voxels, 
t = −4.02, PFWE-corrected < 0.05, Figure 2, and Table 3).

Correlation analysis

Within the burnout group, correlation analysis revealed significant 
negative correlations between mean fALFF values extracted from the 
precuneus cluster and EE (r = −0.290, p = 0.039) and DP (r = −0.312, 
p = 0.026). A significant positive correlation was observed between 
precuneus fALFF values and PA (r = 0.287, p = 0.041). Furthermore, 
a significant negative correlation was found between mean FC values 
representing the precuneus-right DLPFC connection and EE 
(r = −0.308, p = 0.028) within the burnout group. Detailed results of 
these correlation analyses were available in the Supplementary Table S1.

Gene categories spatially correlated with 
burnout fALFF alterations

The spatial correlation between transcriptome-neuroimaging and 
the ensemble-based GCEA indicated that the fALFF alterations of 
burnout were linked to gene expression of GO categories mainly 
involving membrane depolarization, cytokine-mediated signaling 
pathway, c-Jun N-terminal kinase (JNK), postsynapse organization, 
potassium ion, and voltage-gated channel (spatially-constrained 
permutation-based p < 0.05). Specifically, the fALFF alterations in 
burnout were positively correlated with the alpha-beta T cell 
differentiation, chondrocyte differentiation, inorganic cation import 

TABLE 1  Demographic information and clinical data.

Characteristics Nurses with burnout HCs P

N 51 51 -

Age (years) 34 (27, 37) 34 (28, 36) 0.77a

Education (years) 16 (16, 16) 16 (16, 16) 0.98a

TIV (mm3) 1424.50 ± 134.52 1414.17 (1360.24, 1539.99) 0.20a

SBP (mmHg) 114.78 ± 8.25 116.20 ± 10.36 0.51b

DBP (mmHg) 70.43 ± 7.75 70 (65, 80) 0.37a

BMI 21.48 (19.63, 23.63) 20.94 (19.81, 24.01) 0.97a

EE 23.14 ± 11.94 13 (8, 17) < 0.001a

DP 12.25 ± 5.98 3 (0, 5) < 0.001a

PA 24.53 ± 9.66 39 (31, 43) < 0.001a

BAI 28 (25, 34) 24 (22, 26) < 0.001a

BDI-II 8 (4, 14) 3 (0, 7) < 0.001a

Data are represented as mean ± SD or median (quartiles). Italic represents a significant difference between two groups of people. HCs, healthy controls; TIV, intracranial total volume; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; EE, emotional exhaustion; DP, depersonalization; PA, reduced personal accomplishment; BAI, beck anxiety 
inventory; BDI-II, beck depression inventory-II.
aThe Mann–Whitney U test was used to obtain the p values.
bThe Student’s t-test was used to obtain the p values.
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across plasma membrane, inorganic ion import across plasma 
membrane, membrane depolarization, multi-multicellular organism 
process, muscle cell development, negative regulation of Wingless/
Integrated (Wnt) signaling pathway, postsynapse organization, 
potassium ion transport, cation channel complex, potassium channel 
complex, voltage-gated potassium channel complex, extracellular 
matrix structural constituent, metal ion transmembrane transporter 
activity, monoatomic cation channel activity, potassium channel 
activity, voltage-gated channel activity, voltage-gated monoatomic 
cation channel activity, voltage-gated monoatomic ion channel 
activity, and voltage-gated potassium channel activity. Conversely, 
they were negatively correlated with positive regulation of JNK 
cascade, dicarboxylic acid transport, acidic amino acid transport, 
negative regulation of cytokine-mediated signaling pathway, 
regulation of JNK cascade, and specific granule membrane (See 
Figure 3 for full details).

Neurotransmitters associated with burnout 
fALFF alterations

Cross-regional spatial correlation analysis using JuSpace revealed 
significant correlations between the fALFF t-map and the spatial 
distribution maps of several neurotransmitter receptors and 
transporters (p < 0.05, permutation-corrected; Figure  4 and 
Supplementary Table S2). Significant positive correlations were found 
between t-values in the fALFF map and the density maps of 
5-Hydroxytryptamine receptor 1b (5HT1b), 5-Hydroxytryptamine 
receptor 2a (5HT2a), Cannabinoid Receptor Type 1 (CB1), 
γ-aminobutyric acid sub-type A receptors (GABAa), and metabotropic 
glutamate receptor 5 (mGluR5). Significant negative correlations were 
observed between t-values and the density maps of 5HT1a, 
Norepinephrine Transporter (NAT), and Serotonin 
Transporter (SERT).

FIGURE 1

Decreased fALFF in the precuneus of nurses with burnout compared to healthy controls. Compared with healthy controls, fALFF in the precuneus was 
significantly decreased in the burnout group (voxel-wise p < 0.001, cluster-level family-wise error corrected p < 0.05). The color bar indicates t-values. 
fALFF, fractional amplitude of low-frequency fluctuations; L, left; R, right.

TABLE 2  Group differences in fALFF between nurses with burnout and HCs.

Regions (AAL) Cluster size MNI coordinate (mm) t

x y z

PCUN 38 −15 −42 45 −4.07

Compared to HCs, nurses with burnout showed a significant decrease in fALFF in the precuneus. fALFF, fractional amplitude of low-frequency fluctuations; HCs, healthy controls; AAL, 
anatomical automatic labeling; PCUN, precuneus.
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Discussion

This study employed a multi-level approach integrating resting-
state fMRI, clinical assessments, and spatial molecular atlas data to 
elucidate the neurobiological correlates of occupational burnout in 
female nurses. We identified significant alterations in spontaneous 
brain activity and FC in nurses experiencing burnout compared to 
HCs. Specifically, the burnout group exhibited decreased local 
spontaneous activity (fALFF) within the precuneus. Furthermore, FC 
analysis revealed decreased functional integration between the 
precuneus and the right DLPFC. Importantly, the magnitude of these 
neuroimaging alterations demonstrated clinical relevance, as 
precuneus fALFF negatively correlated with EE and DP scores, while 
positively correlating with PA scores. Additionally, the reduced 
precuneus-DLPFC connectivity was negatively associated with EE 
scores. Extending beyond functional alterations, our imaging 
transcriptomics analysis provided initial insights into the potential 
molecular underpinnings. Genes whose spatial expression patterns 

spatially covaried with the observed fALFF alterations were 
significantly enriched in pathways crucial for neuronal excitability 
(e.g., membrane depolarization, voltage-gated and potassium ion 
channels), synaptic organization, stress response (JNK pathway), and 
immune modulation. Complementing this, spatial correlation 
analyses indicated associations between the altered fALFF pattern and 
the distribution of key neurotransmitter systems, including specific 
serotonin (5HT1a, 1b, 2a, SERT), norepinephrine (NAT), GABA 
(GABAa), glutamate (mGluR5), and endocannabinoid (CB1) 
receptors/transporters. Taken together, these converging findings 
provide novel evidence for specific disruptions in local brain activity 
and FC communication in nurse burnout, link these disruptions to 
core clinical symptoms, and suggest potential underlying molecular 
mechanisms involving altered neuronal function, stress responses, 
neuroinflammation, and multiple neurotransmitter systems.

A central finding of this study is the significantly reduced 
spontaneous neural activity, indexed by fALFF, within the precuneus 
among nurses experiencing burnout. Specifically, lower fALFF activity 

FIGURE 2

Reduced FC between the precuneus and right dorsolateral prefrontal cortex in nurses with burnout. Compared to healthy controls, the FC between 
the precuneus and the right dorsolateral prefrontal cortex was significantly decreased in the burnout group (voxel-wise p < 0.001, cluster-level family-
wise error corrected p < 0.05). The color bar indicates t-values. FC, functional connectivity; L, left; R, right.

TABLE 3  Group differences in FC between nurses with burnout and HCs.

Seed region Regions (AAL) Cluster size MNI coordinate (mm) t

x y z

PCUN DLPFC.R 46 33 21 24 −4.02

Compared to HCs, FC between the PCUN and DLPFC.R is significantly reduced in nurses with burnout. FC, functional connectivity; HCs, healthy controls; PCUN, precuneus; AAL, 
anatomical automatic labeling; DLPFC, dorsolateral prefrontal cortex; R, right.
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in the precuneus corresponded to higher EE and DP scores, while 
higher fALFF activity in this region was linked to higher PA scores. 
The precuneus, a core hub of the default mode network (DMN), is 
critically involved in integrating self-referential processing, episodic 
memory retrieval, visuospatial imagery, consciousness, and the sense 

of the physical or bodily self (31). Notably, causal evidence highlights 
the precuneus’s role in maintaining body schema and self-association, 
with perturbations leading to dissociative experiences like 
depersonalization (32–34). Previous research consistently links 
structural and functional alterations in the precuneus and associated 

FIGURE 3

Gene categories associated with fALFF alterations of burnout. The spatial correlation between transcriptome and neuroimaging, along with ensemble-
based GCEA, revealed that the fALFF correlates of burnout were linked to gene expression in GO categories related to membrane depolarization, 
cytokine-mediated signaling pathway, JNK, postsynapse organization, potassium ion, and voltage-gated channel. The y-axis indicates the GO 
category, while the x-axis represents the GO category score. The color signifies the spatially constrained permutation-based statistical significance of 
the spatial correlations, presented as -log10(P). Positive associations are denoted by triangles, and negative associations are denoted by circles. GCEA, 
gene category enrichment analysis; fALFF, fractional amplitude of low-frequency fluctuations; GO, gene ontology; JNK, c-Jun N-terminal kinase; Wnt, 
Wingless/Integrated; BP, biological process; CC, cellular component; MF, molecular function.
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DMN regions to chronic stress, exhaustion disorder, burnout, and 
dissociative states (14, 32, 35–37). Specifically, chronic occupational 
stress has been associated with reduced FC within the posterior DMN, 
including the precuneus (14, 37). The observed hypoactivity (lower 
fALFF) in the precuneus in our burnout group may therefore reflect 
disruptions in introspection, self-awareness, the integration of 
personal experiences, or even a disturbed sense of bodily self. These 
processes are often reported as impaired in burnout and explicitly 
linked to depersonalization/dissociation (32–34, 36, 38–40). 
Intriguingly, a meta-analysis by Messina et al. found that the emotion 
regulation strategy of acceptance (a non-judgmental stance towards 
emotions) was specifically associated with decreased activity in the 
PCC/precuneus compared to control conditions (41). This raises the 
possibility that the reduced precuneus activity in burnout might 
reflect a maladaptive form of detachment or a dysfunctional attempt 
at emotional acceptance that contributes to the syndrome’s 
characteristic numbing and exhaustion.

Complementing this local finding, we  identified decreased 
resting-state FC between the precuneus and the right DLPFC. The 
DLPFC serves as a canonical node within the executive control 
network (ECN), essential for higher-order cognitive functions 
including working memory, planning, goal-directed behavior, and 
importantly, the top-down regulation of attention and emotion (17, 
41–45). Our finding of reduced FC between the precuneus and the 
DLPFC points specifically to impaired interplay between the DMN 
and ECN. This DMN-ECN decoupling or antagonism is increasingly 

recognized as a feature of various stress-related and psychiatric 
conditions, reflecting difficulties in balancing internally focused 
thought with external task demands (37, 43). This breakdown in 
communication between self-referential processing (precuneus) 
and executive control (DLPFC) likely has significant functional 
consequences. It may reflect the neurotoxic effects of chronic stress 
on prefrontal circuits, impairing their ability to modulate DMN 
activity (9, 42). Functionally, this could manifest as difficulty 
disengaging from negative internal states (e.g., rumination 
contributing to exhaustion) or flexibly allocating attentional 
resources, potentially underlying the subjective cognitive 
complaints and objective executive function deficits reported in 
burnout and exhaustion disorder (1, 46–48). Underscoring the 
clinical relevance of this FC disruption, we found that weaker FC of 
the precuneus-DLPFC was significantly associated with higher 
levels of EE. This provides direct evidence linking the impaired 
functional dialogue between these key networks to the severity of 
this cardinal burnout symptom, suggesting that compromised 
executive modulation of internal states is a key factor in the 
experience of feeling emotionally depleted. This specific finding, 
linking weakened FC of the precuneus-DLPFC to EE, carries 
important implications for potential therapeutic interventions. The 
DLPFC is an accessible and well-established target for non-invasive 
brain stimulation techniques. Modulating DLPFC activity and its 
network connectivity using methods such as transcranial magnetic 
stimulation (TMS), or transcranial direct current stimulation 

FIGURE 4

Spatial correlations between the fALFF alteration map and neurotransmitter system maps. Spatial correlation analyses showed that differences in fALFF 
between burnout and HCs were significantly negatively correlated with 5HT1a, NAT, and SERT, and significantly positively correlated with 5HT1b, 
5HT2a, CB1, GABAa, and mGluR5. fALFF, fractional amplitude of low-frequency fluctuations; HCs, healthy controls; 5HT1a, 5-Hydroxytryptamine 
receptor 1a; NAT, Norepinephrine Transporter; SERT, Serotonin Transporter; 5HT1b, 5-Hydroxytryptamine receptor 1b; 5HT2a, 5-Hydroxytryptamine 
receptor 2a; CB1, Cannabinoid Receptor Type 1; GABAa, γ-Aminobutyric acid sub-type A receptors; mGluR5, metabotropic glutamate receptor 5.
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(tDCS) has shown promise for treating conditions involving 
emotional dysregulation and cognitive deficits, such as depression 
(49). Our results suggest that interventions aimed at enhancing 
DLPFC function or specifically strengthening its coupling with the 
DMN (precuneus) might offer a novel avenue for alleviating 
emotional exhaustion in burnout.

Extending beyond functional alterations, our imaging 
transcriptomics analysis provided initial insights into the potential 
molecular underpinnings of burnout by linking the observed fALFF 
changes to the spatial expression patterns of genes significantly 
enriched in key biological domains. Specifically, these enrichments 
highlight pathways crucial for neuronal function, including neuronal 
excitability [e.g., membrane depolarization, voltage-gated and 
potassium ion channels (50)] and synaptic organization, suggesting 
that altered fALFF may reflect underlying molecular profiles affecting 
neuronal firing efficiency and synaptic integrity, potentially 
contributing to burnout symptoms. Furthermore, the significant 
enrichment of the JNK stress response pathway (51) provides a 
molecular link between chronic stress exposure and cellular 
adaptation within affected brain regions, where sustained activation 
is known to promote maladaptive processes such as 
neuroinflammation and synaptic dysfunction (52), potentially 
driving the observed fALFF alterations. Intriguingly, the enrichment 
in pathways for immune modulation, specifically the negative 
regulation of cytokine signaling, suggests complex neuroimmune 
dynamics (53, 54). While peripheral inflammation is often noted in 
burnout and chronic stress states (6, 55–57), this central finding 
could represent a compensatory attempt by affected brain regions to 
dampen local neuroinflammation (52) or reflect altered central 
immune responsiveness distinct from systemic patterns, perhaps 
related to chronic Hypothalamic–Pituitary–Adrenal (HPA) axis or 
immune cell exhaustion (53, 54). These pathways are likely 
interconnected, with stress signaling, neuronal activity, and immune 
responses influencing one another. It is crucial to acknowledge the 
correlational nature of imaging transcriptomics, which associates 
functional changes with normative gene expression atlases rather 
than direct measurements in participants. Consequently, further 
validation is needed. Nevertheless, these findings collectively suggest 
that burnout-related functional brain alterations are spatially 
associated with gene expression patterns reflecting potentially 
compromised neuronal function, heightened cellular stress responses, 
and complex neuroimmune adjustments. This integrated perspective 
offers novel insights into the potential molecular pathophysiology of 
burnout, highlighting specific pathways for future mechanistic 
investigation and potential therapeutic targeting.

Complementing the transcriptomic findings, the spatial 
correlation between the altered fALFF patterns and the distribution 
of multiple neurotransmitter systems provides further mechanistic 
insights. Specifically, we  observed correlations with receptors/
transporters integral to the serotonin (5HT1a, 1b, 2a, SERT), 
norepinephrine (NAT), GABA (GABAa), glutamate (mGluR5), and 
endocannabinoid (CB1) systems. The convergence on these specific 
systems is highly relevant to burnout pathophysiology. The 
correlation with serotonin targets (5-HT receptors, SERT) resonates 
with the known role of serotonin in regulating mood, anxiety, stress 
coping, sleep, and cognitive functions-domains profoundly affected 
in burnout (58, 59). Similarly, the association with the 
norepinephrine transporter (NAT) points towards alterations in 

noradrenergic pathways, which are central to arousal, vigilance, and 
the physiological stress response (60–62). The implication of the 
GABAergic system (GABAa) suggests potential disruption in 
inhibitory control, relevant to anxiety and stress coping (63–65), 
while the link to the metabotropic glutamate receptor mGluR5 
highlights the involvement of excitatory glutamate signaling, a 
system profoundly sensitive to stress and crucial for synaptic 
plasticity (66–68). The spatial correlation with the CB1 receptor 
distribution in the endocannabinoid system is particularly 
compelling. CB1 receptors are highly abundant in brain regions 
critical for emotional processing, stress adaptation, and cognitive 
function, including the prefrontal cortex, hippocampus, and 
amygdala (69–71). Furthermore, the endocannabinoid system 
interacts extensively with the other neurotransmitter systems 
identified in our analysis (serotonin, norepinephrine, GABA, 
glutamate), suggesting it may function as a central node integrating 
the molecular impact of chronic stress (69). The spatial covariance 
between burnout-related fALFF changes and normative CB1 
expression therefore suggests that impaired endocannabinoid 
modulation, potentially stemming from chronic stress exposure in 
the pathophysiology of burnout, contributing to altered neuronal 
activity patterns and associated symptoms.

Several limitations of this study warrant consideration when 
interpreting our findings. First, the cross-sectional design precludes 
definitive conclusions regarding causality. While we  observed 
significant associations between burnout, altered brain activity/FC, 
and molecular markers, we  cannot ascertain whether these 
neurobiological changes are a cause or consequence of chronic 
occupational stress and burnout. Longitudinal studies are needed to 
track the temporal dynamics of these alterations and establish causal 
relationships. Second, a significant limitation of our study is that our 
sample consisted exclusively of female nurses. While this homogeneity 
allowed for a focused investigation within a highly relevant and at-risk 
population, it precludes any analysis of potential sex differences and 
limits the generalizability of our findings. This is a particularly 
important consideration, as emerging evidence suggests that the 
prevalence, clinical presentation, and societal risk factors for burnout 
can differ between men and women (72, 73). Therefore, it remains 
unclear whether the neural correlates of burnout identified in our 
study are specific to female nurses or represent a more universal 
mechanism. We strongly advocate for future large-scale studies with 
balanced sex representation to explicitly test for sex differences and 
determine the extent to which these neurobiological findings are 
consistent across genders and occupational groups. Third, while the 
AHBA provides invaluable spatial transcriptomic data, it is a post-
mortem atlas derived from a limited number of individuals. Therefore, 
our molecular findings are correlational and provide indirect evidence 
for the in vivo molecular changes occurring in nurses with burnout. 
Future studies employing in vivo molecular imaging techniques or 
peripheral biomarkers would be beneficial to validate and extend these 
transcriptomic insights. Finally, although we controlled for several 
potential confounding factors (age, education, TIV, anxiety, 
depression), residual confounding cannot be  entirely ruled out. 
Factors such as specific workplace stressors, individual coping 
mechanisms, lifestyle factors (e.g., sleep quality, diet, exercise) and 
co-occurring subclinical mental or physical health conditions could 
potentially influence the observed neuroimaging and 
molecular alterations.
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Conclusion

In conclusion, this multi-level study provides compelling evidence 
for specific neurobiological correlates of occupational burnout in female 
nurses. We demonstrated that burnout is associated with decreased 
local spontaneous activity in the precuneus, and weakened FC between 
the precuneus and right DLPFC, and that these neuroimaging 
alterations are clinically relevant, correlating with core burnout 
symptoms, particularly EE. Furthermore, our imaging transcriptomics 
analysis and neurotransmitter correlation findings offer initial insights 
into potential molecular mechanisms underlying these functional 
disruptions, suggesting alterations in neuronal excitability, synaptic 
organization, stress response pathways, neuroinflammation, and 
multiple neurotransmitter systems, particularly the serotonergic system. 
These converging findings advance our understanding of burnout as a 
biologically grounded condition characterized by specific disruptions 
in brain function and underlying molecular alterations. Importantly, the 
identified precuneus-DLPFC connectivity deficit suggests potential 
therapeutic targets for interventions aimed at alleviating burnout 
symptoms. Non-invasive brain stimulation techniques targeting the 
DLPFC, as well as cognitive and behavioral therapies that engage 
executive functions, may hold promise for restoring healthier brain 
network dynamics and mitigating the debilitating effects of chronic 
occupational stress. Future research should build upon these findings 
by employing longitudinal designs, expanding to more diverse 
populations, utilizing in  vivo molecular techniques, and exploring 
broader brain and molecular landscapes to further elucidate the 
complex neurobiological underpinnings of burnout and develop more 
targeted and effective interventions.
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