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Climate change has become a global health emergency in recent decades, with far-
reaching effects on neurological and psychiatric health; however, their relationship
remains poorly understood. Climate-related phenomena impact neurological
and mental health through both direct and indirect mechanisms, including
progressive temperature changes and more frequent extreme weather events.
This has influenced the prevalence and geographic distribution of neurological
disorders, affecting the public health landscape of these diseases. The primary
mechanisms include thermal stress, neuroinflammation due to air pollution,
ecological shifts that increase exposure to neurotropic infections, psychological
stress, and disruptions to healthcare systems. These factors interact and amplify
the risk of neurological diseases, including neurodegenerative, neuroinflammatory,
cerebrovascular, neuroinfectious, and psychiatric conditions. The aim of this study
was to synthesize evidence from peer-reviewed studies in major databases on the
impact of climate change-related factors in the incidence, severity, and distribution
of neurological and psychiatric disorders. Addressing the effect of climate change
on these diseases requires improved healthcare strategies, scientific research,
and climate change mitigation to protect brain health and reduce neurological
disease burden.
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1 Introduction

Climate change is an accelerating global crisis with profound implications for human
health. The Earth’s mean surface temperature has risen by approximately 1.5°C since
pre-industrial times, accompanied by more frequent extreme weather events (heatwaves,
droughts, storms, wildfires, floods) (1). These environmental shifts are already impacting
public health broadly, and emerging evidence indicates that neurological and psychiatric
conditions are among those affected (2). Neurological disorders are a leading cause of disability
and a major contributor to mortality worldwide, and severe mental illnesses, including
schizophrenia, bipolar disorder, and severe major depression, carry a significantly reduced life
expectancy (3). Understanding how climate change influences the incidence and severity of
neurological and mental health conditions is therefore a critical scientific and public health
challenge. Neurological and mental health conditions, while often distinct in etiology and
clinical presentation, may also exist along a continuum in which biological, psychological, and
social factors overlap. Certain disorders can present with both neurological and psychiatric
manifestations, making them clinically indistinguishable at times. Recognizing this continuum
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provides the conceptual basis for addressing both domains together
in this review. Recent studies have linked various climate-related
factors, from extreme temperatures to altered ecosystems, with
adverse neurological outcomes. However, the data are complex and
sometimes sparse, complicated by heterogeneity in disease subtypes
and regional differences (2). This review provides a comprehensive
synthesis of peer-reviewed literature on the influence of climate
change in the rise of neurological disease, encompassing
neurodegenerative, neuroinflammatory, cerebrovascular,
neuroinfectious, and psychiatric conditions. Key findings from
epidemiologic studies and mechanistic research are discussed,
highlighting both established patterns and areas of uncertainty. All
information is drawn from credible medical and neuroscientific
journals, with scientific sources cited throughout. For clarity, this
review is organized into two main sections. The first examines climate
change-related exposures and their general effects on neurological
and mental health, including thermal extremes, extreme weather
events, air pollution, vector-borne and infectious agents, and
psychosocial stressors. The second presents disease-specific evidence,
outlining how these exposures influence the incidence, progression,
and outcomes of conditions such as dementia, stroke, multiple
sclerosis, epilepsy, neuroinfectious diseases, headache disorders, and
psychiatric disorders.

2 Methods

The literature search was conducted in March 2025 across
PubMed, Embase, Scopus, Web of Science, and PsycINFO, combining
climate-related terms (“climate change,” “global warming,” “extreme
weather,” “heatwave;” “cold spell,” “wildfire smoke;” “air pollution,”
“PM2.5 “ozone;,” “NO,”) with neurological and psychiatric terms
(“neurology,” “neurological disorders,” “neurodegenerative,” “stroke;”

» «

“multiple sclerosis,” “epilepsy;” “headache;” “psychiatric disorders,”
“mental health,” “depression,” “anxiety;’ “schizophrenia”) using
Boolean operators and controlled vocabulary (MeSH/Entree).
Inclusion criteria comprised peer-reviewed human studies
(observational, interventional, time-series, or modeling analyses) and
systematic reviews/meta-analyses reporting associations between
climate-related exposures and neurological or mental health
outcomes. Exclusion criteria included non-peer-reviewed materials,
animal-only or in vitro studies (except when cited for mechanistic
context), studies without neurological or mental health endpoints,
conference abstracts without full text, and duplicates. Relevant
references were also identified through citation tracking, and findings
were narratively synthesized by exposure domain and disease-

specific categories.

3 Environmental drivers and

mechanistic pathways linking climate

ﬁhapﬂe to neurological and mental
ealt

Climate change affects neurological health through multiple
pathways, both direct and indirect. The major climate-related drivers
impacting the nervous system include temperature extremes and
heatwaves; extreme weather events; air pollution and poor air quality;
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vector-borne and infectious agents; and psychosocial stressors and
lifestyle impacts. For orientation, Section 3 summarizes the exposure-
specific epidemiologic and clinical signals, and Section 4 details the
corresponding biological mechanisms.

3.1 Temperature extremes and extreme
weather events

Unusually high ambient temperatures and heatwaves can
precipitate acute neurological events and exacerbate chronic
neurologic conditions. A meta-analysis revealed that heat wave days
were associated with an increased risk of hospital admissions or visits
(RR =1.269; 95% CI: 1.030-1.564) and mortality due to mental
disorders (RR = 1.266; 95% CI: 0.956-1.678), compared to non-heat
wave days (4). Conversely, extreme cold spells have also been
associated with cerebrovascular and psychiatric stress. In 2019,
extreme low temperatures caused 474,000 stroke deaths globally, with
higher rates in older males and affected individuals from central, and
East Asia (5).

In addition, climate change is increasing the frequency of
hurricanes, floods, wildfires, and droughts. Such events cause not only
physical injury but also psychological trauma, and they interrupt
medical care. Older adult patients with cardiovascular disease (CVD),
who rely on pharmacies, are particularly vulnerable (6). Hong et al.
found a 1.5% increase in stroke mortality (95% CI, 1.3-1.8%) for each
interquartile range increase in particulate matter <10 pum in
aerodynamic diameter (PM,), and a 2.9% increase (95% CI, 0.3-5.5%)
for ozone concentrations on the same day; these air pollutants are
significant risk factors for acute stroke death (6, 7).

3.2 Air pollution and poor air quality

Warmer temperatures and environmental policies (e.g., increased
fossil fuel combustion for cooling) can worsen air pollution (8).
Outdoor air pollutants include particulate matter (PM), which is
classified by size; with fine particles (PM, ) being the most harmful.
Other pollutants such as ozone (O),), nitrogen dioxide (NO,), volatile
organic compounds (VOCs) and noxious gases have been strongly
associated with stroke incidence, dementia, Parkinson’s disease, and
headache frequency (9-11). Air pollution is considered a key mediator
by which climate change impacts brain health, as inhaled pollutants
trigger systemic inflammation and oxidative stress that can damage
the nervous system (9, 10, 12). For instance, Peter et al. (11) found an
association between PM,  and decline in cognitive performance and
dementia. Mechanistic pathways underlying these associations are
summarized in Section 4.2.

3.3 Vector-borne and infectious agents

Climate-driven shifts in ecosystems are expanding the range of
vectors (mosquitos, ticks, etc.) and pathogens, leading to increased
occurrence of neuroinfectious diseases. Warming temperatures and
changing rainfall patterns have fuelled outbreaks of mosquito-borne
viruses (e.g., West Nile, dengue, Zika) and the spread of tick-borne
encephalitis (TBE) into new regions (11, 13). A time-series analysis
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shows increasing malaria prevalence at higher altitudes in Colombia
and Ethiopia in recent years (14). These findings suggest that climate
change is driving this upward shift, potentially raising malaria risk in
previously unaffected highland regions of Africa and South America
(14). A cohort study demonstrated that the incidence of TBE is linked
to warm temperatures, which intensify virus replication (15). This
highlights the importance of integrating weather-based forecasts to
predict and manage vector-borne diseases.

3.4 Psychosocial stressors and lifestyle
impacts

The chronic stress of living in a changing climate, including
economic insecurity, displacement, and eco-anxiety about the future,
is also an emerging risk to mental health (16, 17). High ambient
temperatures have been linked not only to physiological stress but also
to increased aggression and suicide rates. For every 1°C increase in
monthly average temperature, suicide rates rise by 0.7% in
U.S. countries and 2.1% in Mexican cities (16, 17). Moreover, climate
change can indirectly affect neurological well-being by disrupting
sleep patterns (e.g., hotter nights causing insomnia) and altering
lifestyle behaviors (reduced outdoor activity, changes in diet), which
in turn influence neurologic disease risk factors (18). For each 10 °C
rising of ambient temperature, the odds of sleep insufficiency
increased by 20.1%, while total sleep duration decreased by 9.67 min,
with deep sleep declining the most, by 2.82% (19). These findings
highlight climate change’s adverse impact on sleep health.

10.3389/fpubh.2025.1630975

Furthermore, people with pre-existing neurological diseases are
often especially vulnerable to these climate-related harms. For
example, individuals with cognitive impairment or mobility
limitations may be less able to adapt to extreme temperatures or
evacuate during disasters; patients with dementia are exceptionally
prone to heat-related illness or hypothermia during extreme weather,
as their impaired judgment and awareness prevent appropriate
behavioral adjustments, such as seeking cooler environments or
adequate hydration (2, 4). Comorbid frailty and polypharmacy further
compound this vulnerability. Likewise, neurologic medications and
assistive devices can undermine normal thermoregulation, reducing
tolerance to heat or cold (20, 21). In summary, climate change is
creating new challenges for neurological health on a population level
and is becoming an important public health matter. The following
sections detail proposed mechanisms of action for this rise as well as
disease-specific evidence of these impacts across a spectrum of
neurological and psychiatric conditions.

4 Mechanisms of action for the rise of
neurological disease

The associations described above between climate change and
neurological/psychiatric outcomes are underpinned by a variety of
biological and environmental mechanisms. Such mechanisms explain
how climate-related factors translate into physiological stressors that
can initiate or aggravate neurological/psychiatric pathology. Table 1
provides a summary of all these mechanisms.

TABLE 1 Mechanisms of action linking climate change to neurological/psychiatric disease.

Mechanism

Climate change factor

Neurological impact

Biological implication

Thermal stress and thermoregulatory

failure

Climate extremes: hot and cold

Heat-induced neuroinflammation,
cognitive dysfunction, exacerbation of
neurodegenerative conditions (e.g.,

multiple sclerosis, Parkinson’s disease)

Altered ion channel function, changes in
membrane excitability, increased seizure
susceptibility, activation of microglia,
impaired thermoregulation, and

accelerated protein aggregation.

Air pollution and neuroinflammation

Increased particulate matter,
ground-level ozone, and other

climate-induced pollutants.

Cognitive decline, dementia, increased
stroke risk, exacerbation of

neurodegenerative diseases

Fine particulate matter (PM.,.s) and other
pollutants enter the bloodstream, cross
the blood-brain barrier, and promote
systemic oxidative stress and

neuroinflammation.

Infectious disease ecology

Warmer temperatures, changes in
precipitation patterns, and

environmental shifts.

Neuroinfections (e.g., encephalitis,
meningitis), autoimmune disorders (e.g.,
multiple sclerosis, Guillain-Barré

syndrome)

Climate-driven changes in vector ecology
(e.g., mosquitoes, ticks) enhance pathogen
transmission, leading to increased

exposure to neurotropic infections.

Psychological stress and neuroendocrine

effects

Trauma, anxiety, chronic stress, and

climate anxiety

Agitation, cognitive impairment, mood
disorders, exacerbation of psychiatric
illnesses (e.g., post-traumatic stress

disorder, depression)

Activation of the hypothalamic—pituitary—
adrenal (HPA) axis and prolonged cortisol
elevation leading to hippocampal atrophy,
disrupted neurochemistry, and altered

emotional regulation.

Healthcare disruption and medication

Extreme weather events (e.g.,

heatwaves, storms)

Delayed or disrupted treatment,
exacerbation of chronic neurological
conditions (e.g., stroke, epilepsy,

neuromuscular disorders)

Damage to healthcare infrastructure,
medication degradation due to

temperature fluctuations, and power
outages preventing timely treatment

delivery.
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4.1 Thermal stress and thermoregulatory
failure

The human brain and body function within a narrow temperature
range, and both extreme heat and extreme cold challenge this
homeostasis. High ambient temperatures can directly disrupt neural
activity, heat has been shown to affect ion channel function in neurons,
altering membrane excitability and synaptic transmission (22). For
example, small increases in temperature can block conduction in
demyelinated axons (explaining MS heat sensitivity) and can lower the
seizure threshold by modifying neuronal firing patterns (23, 24). Heat
also induces systemic responses; dehydration from sweating leads to
hemoconcentration (increased blood viscosity and osmolarity) which
raises the risk of thrombosis, contributing to ischemic strokes (25).
Failure to maintain thermal homeostasis can impair neuronal function
and disrupt cerebral blood flow and blood-brain barrier integrity,
culminating, in severe cases, in cerebral oedema (22, 26). Heat strain
triggers the release of inflammatory cytokines and heat-shock proteins
that can breach the blood-brain barrier and activate microglia,
potentially exacerbating neuroinflammation (9). In the context of
neurodegeneration, chronic heat stress may accelerate protein
misfolding or aggregation in the brain, although this is an area of
active study. Cold exposure, on the other hand, activates sympathetic
nervous system and hormonal responses (catecholamines, renin—
angiotensin) that acutely raise blood pressure and heart rate (27, 28).
This can precipitate hemorrhagic strokes or silent cerebrovascular
damage. Cold can also slow nerve conduction and exacerbate
spasticity or rigidity in conditions like Parkinson’s disease (PD) or
spinal cord injury (29, 30). Notably, patients with neurological diseases
often have impaired thermoregulatory defenses; for instance, spinal
cord injury can impair shivering/sweating, and dementia or stroke can
blunt the behavioral drive to seek shelter (29, 30). Thus, neurological
patients are more likely to suffer the consequences of thermal
extremes, creating a vicious cycle where climate events worsen their
condition which in turn reduces their resilience to temperature stress.
It should be noted, however, that not all heat exposure is uniformly
harmful. Controlled thermal practices, such as sauna use, have been
associated in some studies with possible cardiovascular and cognitive
benefits, although the evidence is mixed and context dependent. These
effects should not be conflated with the harmful and uncontrolled heat
stress associated with climate change (31).

4.2 Air pollution and neuroinflammation

Air pollution constitutes a principal pathway through which
climate change affects the nervous system; fossil fuel combustion
generates particulate matter, nitrogen oxides, ozone, and other
pollutants (32, 33). Warmer temperatures can intensify photochemical
reactions that increase ground-level ozone, and climate change is
linked to more wildfires that release fine particulates. These pollutants,
when inhaled, have systemic effects; ultrafine particles (PM, or
smaller) can enter the bloodstream and even cross into the brain,
directly depositing in neural tissue (32). Particulate pollution and
ozone trigger systemic oxidative stress and inflammation (32). In the
vasculature, this means endothelial dysfunction, a pro-coagulant state,
and a propensity for atherosclerosis, all of which increase stroke risk
(34). In the brain, particulate matter has been found in association
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with the presence of amyloid plaques and alpha-synuclein in autopsy
studies, suggesting a role in neurodegenerative changes (32). Chronic
exposure to polluted air is associated with cognitive decline and a
higher incidence of dementia, likely via chronic neuroinflammation
through activated microglial cells and cytokines that damage synapses
and neurons over time (32, 33). Air pollutants can also irritate the
respiratory tract and trigger reflexive autonomic responses (like surges
in blood pressure or arrhythmias) that indirectly affect cerebral blood
flow (35, 36). In headaches and migraines, inhaled pollutants may
activate trigeminal nerve pathways or cause meningeal irritation,
leading to headache pain (35, 36). Climate change driven increases in
air pollution create a pro-inflammatory milieu that harms the central
and peripheral nervous systems. Mitigating air pollution a co-benefit
of climate action is therefore essential for protecting neurological
health (12).

4.3 Alteration of infectious disease ecology

Mechanistically, higher temperatures can increase replication
rates of viruses and shorten incubation periods in vectors (like
mosquitoes and ticks), leading to higher viral loads transmitted to
humans (13). Changes in rainfall and humidity create new breeding
grounds (e.g., increased standing water after floods for mosquito
breeding, or extended tick questing season due to milder winters)
(13). Once pathogens infect humans, those that are neurotropic (such
as arboviruses and certain bacteria/fungi) can directly invade the
central nervous system; the immune response to these infections can
cause acute neurological damage and sometimes initiate chronic
autoimmune processes (e.g., some evidence links viral infections to
triggering multiple sclerosis relapses or Guillain-Barré syndrome) (11,
37, 38). Climate-related migration and overcrowding can also facilitate
the spread of infections like meningococcal meningitis in refugee
camps or viral encephalitides in urban slums with poor sanitation (11,
37, 38). In essence, climate change serves as a catalyst for exposing
human nervous systems to infectious insults that they might not have
encountered previously, by removing geographical and seasonal
barriers that once contained these pathogens.

4.4 Psychological stress and
neuroendocrine effects

The stress imposed by climate change, whether acute trauma from
disasters or chronic anxiety about the changing environment,
translates into activation of stress pathways that affect the brain. Acute
stress triggers the hypothalamic-pituitary-adrenal (HPA) axis to
release glucocorticoids (cortisol) and catecholamines (39). While
these are adaptive in the short term, chronic elevation (as seen in
PTSD or prolonged anxiety) can be neurotoxic, leading to
hippocampal atrophy and impairment in memory and mood
regulation (39). Heat itself can act as a physiological stressor;
experiments have shown that heat exposure elevates cortisol levels,
which might contribute to agitation and confusion in vulnerable
individuals (40). Moreover, high heat can cause sleep disturbance and
poor sleep amplifies stress, creating a feedback loop. In psychiatric
patients, stress from climate-related events can precipitate episodes of
illness (for example, triggering a depressive episode or a psychotic
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break in schizophrenia) (41). On the other hand, climate anxiety
represents a more nebulous but widespread mechanism; the awareness
of climate threats can lead to chronic fear, especially in young people,
which might manifest as generalized anxiety or depression (42).
Neurobiologically, anxiety is linked to dysregulated amygdala activity
and neurotransmitter imbalances resulting, in this case, in a constant
worry about existential threats like climate change, keeping the brain
in a hyper-vigilant, maladaptive state (43). This highlights that not all
mechanisms are as tangible as heat or viruses, some are societal and
psychological, yet they tangibly alter neurochemistry and behavior.

4.5 Disruption of healthcare and
medication

Another mechanism, often overlooked, is the impact of climate
change on healthcare delivery for neurological/psychiatric patients.
Extreme weather can damage infrastructure (hospitals and roads),
preventing patients from getting timely care (e.g., stroke thrombolysis
or refilling epilepsy prescriptions) (44, 45). Heat can degrade certain
medications or reduce their efficacy, as many drugs must be stored
below 25°C; power outages from storms can shut down life-sustaining
equipment for patients with advanced neuromuscular diseases (44,
45). These disruptions can turn stable chronic neurological conditions
into acute life-threatening situations. Thus, climate resilience in
healthcare systems is directly tied to patient neurologic outcomes;
while this is not a biological mechanism within the body;, it is a causal
pathway from climate events to worsened neurological health at the
population level (46).

It is important to note that these mechanisms often act in concert.
For instance, a heatwave might simultaneously cause dehydration
(raising stroke risk), worsen air pollution (adding inflammatory
stress), disturb sleep (triggering seizures or cognitive issues), and
induce anxiety, collectively amplifying health impacts. There are also
feedback loops, for example, a person who suffers a stroke during a
heatwave may then have reduced mobility and be even more
vulnerable to the next heatwave. The interplay of multiple factors
means the overall impact of climate change on the brain is not simply
the sum of individual mechanisms, but a network of interacting
stresses. This complexity underscores why research findings can
(e.g., different
subpopulations showing different dominant effects) (46, 47). Robust

sometimes appear inconsistent regions or
mechanistic studies, including experimental models and longitudinal
human studies, are needed to further elucidate these pathways.
Understanding mechanisms is vital for developing targeted
interventions and policies to reduce these harmful factors to improve
neurological health in a world where climate change will continue to

be the norm (2).
5 Disease-specific evidence of the
effects of climate change

5.1 Neurodegenerative diseases (dementia
and Parkinson'’s disease)

A growing body of evidence links climate change, particularly
rising ambient temperatures, to worse outcomes in dementia.
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Epidemiological studies across various regions have shown that
heatwaves and higher average temperatures correspond to increased
hospitalizations and mortality among people with Alzheimer’s disease
and other dementias (48, 49). In one study from New England, a 1.5°C
increase in mean summer temperature was associated with a 12% rise
in dementia-related hospital admissions (50). Similarly, during an
extreme heat event in Madrid, admissions for Alzheimer’s disease
surged by 23% when daily maximum temperature exceeded the local
heatwave threshold by >1 °C (51). A study in the UK found that for
each 1 °C increase above 17 °C, dementia admission rates rose by
~4.5% (52). These findings underscore the heightened vulnerability of
dementia patients to heat stress. Cognitive impairment and memory
loss in dementia can prevent patients from adequately protecting
themselves (e.g., forgetting to drink water or adjust clothing), leading
to dehydration or heat stroke (53). Moreover, some analyses suggest a
U-shaped relationship, where both extreme heat and extreme cold
increase dementia hospitalizations or deaths. Overall, unaccustomed
temperature extremes appear to exacerbate dementia severity and
precipitate acute crises in this population (49, 51). Aside from acute
events, chronic climate-related exposures (such as long-term air
pollution) have been linked to accelerated cognitive decline and
higher dementia risk. Fine particulate pollution (PM, ) exposure is
with
neuroinflammation in the brain, potentially contributing to

associated increased  amyloid-f  deposition  and
neurodegeneration (53). An in vitro study found that PM,  exposure
exacerbates amyloid-p-induced neuronal injury by elevating reactive
oxygen species (ROS) levels and activating the NOD-like receptor
pyrin domain-containing 3 (NLRP3) inflammasome in microglia,
resulting in increased IL-1f production (54). Thus, climate change
factors may act as both triggers of acute decompensation and drivers
of long-term neurodegenerative processes in dementia.

Parkinson’s disease (PD) and related neurodegenerative disorders
may also be influenced by changing environmental conditions,
although data are more limited. An epidemiological study noted that
the prevalence, mortality, or DALY (disability-adjusted life years)
burden of PD tend to be higher in regions with warmer climates and
higher recent warming indices, compared to cooler regions (54). PD
shows greater sensitivity to climate warming than amyotrophic lateral
sclerosis (ALS) /motor neuron diseases (MND) or Alzheimer’s, likely
due to early hypothalamic degeneration, thermoregulatory
dysfunction, and mitochondrial vulnerability in dopaminergic
neurons unique to PD pathology (55). One major pathway by which
climate change may affect PD is via air quality. Chronic exposure to
air pollutants has emerged as a risk factor for PD; for example, long-
term inhalation of traffic-related pollutants and fine particles is
associated with a greater incidence of PD, higher PM, exposure
significantly increases the risk of developing Parkinson’s disease
(OR = 1.35) (33). Additionally, extreme heat can pose challenges for
patients living with PD. Heat stress and dehydration may worsen
blood pressure instability and fatigue in PD patients, who often have
autonomic dysfunction (56). Climate change can worsen air pollution
through increased wildfires and atmospheric stagnation, potentially
increasing the neurotoxic burden on populations (57). There is also
concern that climate-related disruptions (e.g., disasters) could
interrupt access to PD medications or care, leading to symptom
exacerbation. While direct causal links between climate variables and
Parkinson’s disease progression remain to be clearly established, these
indirect effects suggest that global warming and environmental
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change could aggravate the burden of PD. Further research is needed
to disentangle how chronic neurodegenerative processes might
be accelerated or triggered by the complex environmental
changes underway.

5.2 Cerebrovascular diseases

Stroke is highly sensitive to environmental conditions, and
numerous studies indicate that climate change is influencing stroke
epidemiology. Both extreme heat and extreme cold have been
associated with increased risk of stroke, though results have varied by
region (57-64). Figure 1 provides an infographic showcasing the

10.3389/fpubh.2025.1630975

relationship between stroke (ischemic and hemorrhagic) and
temperature. A comprehensive meta-analysis encompassing over 2
million stroke events found that short-term increases in ambient
temperature were significantly associated with a rise in ischemic
stroke incidence. A 1 °C temperature change was associated with a 1.1
and 1.2% significant increase in major adverse cerebrovascular events,
for heat and cold, respectively (57). In many studies, hotter days and
heatwaves correlate with higher rates of ischemic stroke and stroke-
related hospital admissions (58). For example, Shin et al. found that
acute stroke events were significantly more frequent when maximum
daily temperatures exceeded 32 °C or dropped to <3 °C (p = 0.048),
and when minimum temperatures fell below —11.0 °C (p = 0.020)
(59). In a U.S.-based case-crossover study, the risk of ischemic stroke
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The figure illustrates the association between climate extremes and stroke risk, emphasizing how both elevated and reduced temperatures contribute
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increased during periods of higher relative humidity, highlighting that
humidity may intensify stroke risk (60). One analysis reported that
days of extreme heat contributed an attributable fraction of ~1-2% of
stroke admissions in a temperate region (Ontario, Canada) over a
17-year period (61). Large diurnal temperature swings, sudden
weather changes where daytime and night-time temperatures differ
widely, have also been linked to stroke occurrence; in one study from
Shenzhen, China, an increased 24-h temperature range (exceeding
~5-8 °C) was estimated to contribute to 2-4% of first-time strokes
(62). Additionally, high heat has implications for stroke outcomes:
elevated ambient temperature during and after a stroke has been
associated with worsened post-stroke morbidity and mortality. A
pooled analysis found that high ambient temperatures were linked to
a 10% increase in stroke morbidity (RR = 1.10, 95% CI: 1.02-1.18) and
a 9% increase in stroke mortality (RR = 1.09, 95% CI: 1.02-1.17) (47).

Cold weather can be equally hazardous. Some investigations have
found that stroke admissions rise following cold spells or during
lower-than-average temperature periods (60, 63). Cold exposure may
preferentially trigger hemorrhagic strokes by causing acute blood
pressure elevations via sympathetic activation and vasoconstriction
(26, 63, 64). A case-crossover study revealed that extreme low
temperature was associated with 42% high risk of hemorrhagic stroke
(OR = 1.42; 95% CI: 1.28-1.58), but not ischemic stroke (25, 64). The
net impact of climate change on stroke is thus complex, potentially
creating a bimodal risk pattern: unaccustomed heat and unaccustomed
cold each pose dangers (25). Importantly, as global temperatures
increase, many regions experience more frequent and intense heat
extremes while still facing episodic cold snaps, thereby widening the
range of temperature volatility. From a global health perspective,
strokes are projected to rise in part due to climate trends. Modeling
studies project that by mid-21st century, if climate change continues
unabated, there will be an increase in years of life lost from stroke
when factoring in rising temperatures along with demographic
changes (64). However, under high emission scenarios, heat-related
years of life lost (YLL) increase sharply, especially during summer over
150% in the 2050s and up to 300% in August by the 2070s (65).

Mechanistically, heat stress contributes to stroke through
dehydration and hemoconcentration: profuse sweating and fluid loss
thicken the blood and raise its viscosity, promoting thrombosis in
cerebral arteries (6, 26). Heat also triggers systemic inflammatory
responses and endothelial dysfunction, which can destabilize
atherosclerotic plaques; in contrast, cold stress acutely raises blood
pressure and may precipitate hemorrhagic stroke by inducing vascular
rupture (25, 26). Aside from temperature, climate change-related air
pollution plays a major role in stroke risk. Exposure to high levels of
PM,, has been linked to both acute stroke events and chronic
cerebrovascular disease. Indeed, an analysis from the Global Burden
of Disease study attributed about 9% of stroke DALY and 8-9% of
stroke deaths worldwide to PM,  pollution (66, 67). Periods of extreme
heat often coincide with spikes in air pollution (e.g., wildfire smoke or
urban smog), compounding the risk. One study noted that during
heatwaves accompanied by severe pollution and wildfires, the relative
risk of death due to stroke was roughly threefold higher than normal
(68). In summary, climate change is expected to aggravate stroke risk
through a convergence of thermal stress and environmental pollution,
posing a particular threat to the older adults and those with
cardiovascular comorbidities who are less able to physiologically
compensate for these stressors (69).
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5.3 Neuroimmunological diseases

Multiple sclerosis (MS) is a chronic immune-mediated
demyelinating disease that may be modulated by climate-related
factors. While MS is classically more prevalent in higher latitudes
(colder climates) due partly to lower ultraviolet exposure and vitamin
D levels (70). Paradoxically, patients with MS often experience short-
term worsening of symptoms in hot weather. Heat sensitivity in MS is
well documented: up to 60% of individuals with MS report that
elevated temperatures transiently exacerbate symptoms such as
fatigue, weakness, and cognitive dysfunction; this phenomenon
(Uhthoff’s phenomenon) occurs because increased core body
temperature can further impair conduction in demyelinated nerve
fibers (23). Consequently, heatwaves and unseasonal warm spells can
reduce functional abilities in MS patients and potentially precipitate
clinical relapses (70, 71). A study in Neurology found that warmer
outdoor temperatures were associated with worse cognitive status in
MS patients, corroborating patient-reported heat sensitivity (71, 72).
Another analysis noted that high diurnal temperature variability was
linked to increased emergency department visits for MS exacerbations,
independent of absolute ambient temperature or air pollution. For
instance, large swings in daily temperature were associated with a
measurable uptick in MS-related hospital visits in one time-stratified
case-crossover study (73).

Beyond temperature, other climate-linked factors can influence
MS disease activity. Dehydration and heat stress may interfere with
the effectiveness of MS therapies or increase circulating cytokines that
drive inflammation. Conversely, some studies have hinted that
extremely cold temperatures might also affect MS, for example, by
increasing spasticity or triggering viral infections that lead to relapses;
though heat effects are more consistently reported. Air pollution is
another concern as exposure to high levels of particulate matter and
nitrogen dioxide has been associated with increased MS relapse rates
in some research (74, 75). Additionally, climate change might impact
vitamin D synthesis (if people avoid sun exposure during heat
extremes or if atmospheric changes alter UV levels), potentially
affecting an important MS risk factor (76). While there is no evidence
that climate change will alter the fundamental global distribution of
MS in the short term, it is likely to add stressors that aggravate
symptoms and possibly progression of disease. Maintaining adequate
hydration, body cooling strategies, and air quality improvements are
adaptation measures that could mitigate climate-related MS
exacerbations. Given that MS typically affects young adults and can
lead to long-term disability, understanding and managing these
environmental triggers is crucial in a warming world.

5.4 Neuroinfectious diseases

Climate change has a significant influence on the emergence and
spread of infectious diseases that affect the nervous system. As
temperatures rise and weather patterns shift, many pathogens and
their vectors are expanding into new geographic areas, leading to
increased incidence of neurotropic infections (76-88). Figure 2
provides and infographic summarizing the main factors related to
neuroinfection and climate change. Vector-borne viral encephalitides
are a prime example; mosquito-borne viruses such as West Nile virus,
Japanese encephalitis virus, dengue, chikungunya, and Zika are all
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sensitive to climate conditions, including temperature, rainfall, and
humidity (11, 77). Warmer climates shorten mosquito breeding cycles
and viral incubation periods, which can amplify transmission (14, 76).
West Nile virus, historically endemic to Africa and the Middle East,
has now become established in North America and parts of Europe;
its spread and the frequency of human neuroinvasive West Nile
disease have been linked to milder winters, hotter summers, and
drought conditions that favor the Culex mosquito vectors (78, 79).
Similarly, dengue fever, the fastest-spreading tropical disease, has
shown increased geographic range. Aedes mosquitoes that transmit
dengue, Zika, yellow fever, and chikungunya are now found in parts
of the United States and Europe, far beyond their former tropical
range, due in part to climate warming and globalization (38, 80).
These viruses can cause severe neurological complications; for
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instance, dengue can lead to encephalopathy, Zika virus causes
congenital microcephaly and Guillain-Barré syndrome, and West Nile
virus commonly causes encephalitis and meningitis in outbreaks (79,
81, 82). Certainly, climate models predict that as temperatures and
humidity continue to change, the seasonal windows and geographic
zones suitable for transmission of these arboviral encephalitis will
expand further (83).

Tick-borne infections are also on the rise. Tick-borne encephalitis
(TBE), a viral disease of the central nervous system (CNS), has
extended its reach northward and to higher elevations in Europe and
Asia as winters become milder and spring arrives earlier, prolonging
the tick active season (83). Regions of higher latitude that previously
saw little to no TBE are reporting new cases, consistent with climate-
driven shifts (84). Lyme disease, caused by Borrelia spirochetes from
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ticks, is another infection whose incidence is influenced by warming
trends and changes in ecosystems; while Lyme typically causes
neurological issues in a subset of cases (neuroborreliosis), its overall
burden provides trend setting information for vector-borne risk in
temperate zones (85). Beyond arboviruses, bacterial and fungal
infections show climate linkages too. In the African meningitis belt,
outbreaks of meningococcal meningitis occur during the dry season
when dust and low humidity damage nasal mucosa; changes in rainfall
patterns and desertification could alter the timing and intensity of
these epidemics (85). Some studies indicate that high dust conditions
correlate with meningitis outbreaks in the Sahel, suggesting that
climate change could influence meningitis incidence via increased
dust storms or prolonged droughts (86). Waterborne pathogens that
cause neurological disease are also a concern. The amoeba Naegleria
fowleri, which causes rare but deadly primary amoebic
meningoencephalitis, thrives in warm freshwater; as surface water
temperatures rise, cases of this infection have appeared in previously
cooler regions (87). Finally, Vibrio bacteria (some species can cause
neuropathies via wound infections) and Coccidioides fungi (cause of
Valley Fever meningitis) are likewise extending their range under
warming and changing precipitation patterns (88, 89).

In summary, climate change impacts neuroinfectious diseases by
altering pathogen lifecycles and expanding vector habitats. It also
indirectly contributes via human behavioral and societal changes such
as climate-related displacement, urbanization, and resource insecurity
can lead to overcrowding and poor sanitation, which facilitate the
spread of infections (including those causing CNS infections) (11, 90).
Certainly, the World Health Organization has highlighted climate-
sensitive infectious diseases (from viral hemorrhagic fevers to novel
zoonoses) as priorities for monitoring, given their pandemic potential
(91). For neurologists and healthcare systems, this means being
prepared to diagnose and manage infections of the nervous system in
regions and seasons where they were previously uncommon.
Enhanced surveillance and vaccination (where available, e.g., TBE
vaccine) will be key in mitigating these emerging threats.

5.5 Headache disorders

Migraine and other headache disorders appear to be susceptible
to weather and climate influences, which may contribute to an uptick
in headache burden as the climate changes. Many migraines sufferers
report that environmental factors trigger or worsen their headaches;
heat and temperature fluctuations are among the most reported
triggers (91, 92). For example, an emergency department study found
that a 5 °C increase in ambient temperature was associated with
approximately a 7.5% higher risk of migraine-related hospital visits in
the subsequent days (92). Similarly, days with large swings in
temperature or abrupt barometric pressure changes have been linked
to a higher likelihood of headache presentations. One study noted that
decreases of 6-10hPa from the standard atmospheric pressure
(1,013 hPa) were most frequently associated with increased migraine
and headache frequency, particularly in certain seasons (93). These
findings suggest that the greater weather volatility expected with
climate change (e.g., sudden hot-to-cold transitions or storms) could
lead to more frequent headache exacerbations.

Air quality factors also play a role. Epidemiological research has
identified associations between acute air pollution exposure and
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headache occurrences. A California-based study of nearly 90,000 cases
found that higher average annual PM,, and NO, levels correlated with
increased frequency of migraine emergency visits (94). Short-term

spikes in pollutants like particulate matter (PM,, PM, ), ozone, and

carbon monoxide have been linked with days of elevated headache
clinic visits; ozone was found to be higher on days when patients
presented with tension-type headaches (95). The biological
mechanism is thought to involve pollution-induced inflammation and
activation of trigeminal pain pathways. Climate change can worsen
these exposures by prolonging smog events and increasing ground-
level ozone formation during heatwaves; moreover, bright sunlight
and high humidity, conditions influenced by climate, have been cited
as migraine triggers in some individuals, possibly via perturbations in
serotonin or other neurochemical systems (36, 96). While headaches
are not typically life-threatening, they impose a substantial health
burden and reduce quality of life. Migraine is among the leading
causes of disability globally (97). Thus, even moderate climate-related
increases in headache frequency can have large public health
implications. Adaptation strategies might include public heat-health
advisories that warn vulnerable individuals (like migraine patients) to
stay hydrated and avoid excessive heat exposure. On an individual
level, identifying weather triggers (using headache diaries) can help
patients anticipate and possibly prevent some attacks. Further study is
needed to refine our understanding of how chronic climate trends (as
opposed to short-term weather) will affect headache disorders.
Nevertheless, current evidence clearly indicates that a warming, more
extreme climate is likely to aggravate migraines and other headaches,
through both direct thermal effects and indirect air quality effects
(92, 98).

5.6 Epilepsy and seizure disorders

Epilepsy, a condition characterized by recurrent seizures, may also
be influenced by climate-related factors. Seizures can be triggered by
systemic stressors and changes in the environment; researchers are
beginning to uncover links between weather patterns and seizure
frequency. Several studies have examined how meteorological
variables affect epilepsy patients (24). Atmospheric pressure and
humidity have emerged as potential factors; a case-crossover study of
604 adults with epilepsy in Germany found that a decrease of 10.7 hPa
in atmospheric pressure was associated with a 14% increased risk of
seizures (OR 1.14, 95% CI 1.01-1.28) and high relative air humidity
(>80%) increased seizure risk by up to 48% with a 3-day lag (OR 1.48,
95% CI 1.11-1.96), whereas higher ambient temperatures were
paradoxically associated with reduced seizure risk in that cohort (98).
This suggests that certain individuals experience more seizures during
stormy or humid weather, possibly due to hypoxia or changes in ion
balance provoked by pressure shifts (99). Another study reported that
“unstable weather” (sudden pressure changes) was associated with
increased seizure frequency in about 40% of patients during spring,
autumn, and winter, though interestingly only 7% noted this effect in
the summer (100). These findings highlight that rapid weather
fluctuations might precipitate seizures in a subset of susceptible people.

Heatwaves and temperature extremes have a more complex
relationship with epilepsy. Some data indicate that extreme heat can
provoke seizures or status epilepticus, potentially by causing
dehydration, electrolyte disturbances, or sleep deprivation (101, 102).
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Heatstroke is known to cause acute brain insults that lower seizure
threshold. Population studies show mixed results; heatwaves have
been associated with a higher rate of hospital admissions for seizures/
epilepsy in some reports (101), yet others have found that colder
temperatures were linked to more emergency visits for seizures while
hot days had little effect (102). A bimodal pattern has been suggested,
where both very hot and very cold days can increase seizure risk for
different patients (103). One explanation is that extreme heat often
disrupts sleep, for example, nights that remain uncomfortably warm
can cause insomnia. Sleep deprivation is a well-known seizure trigger,
and thus prolonged heat could exacerbate epilepsy by fragmenting
patients’ sleep cycles. Indeed, rising night-time temperatures under
climate change are thought to be particularly detrimental, as they rob
the body of the nocturnal cooling needed for restorative sleep
(104, 105).

Other indirect pathways include the effect of climate on anti-
epileptic drug levels and medical infrastructure. High ambient
temperatures or disasters might compromise medication storage
(many drugs, including anti-seizure medications, have reduced
efficacy if stored above certain temperatures) (105). Interruptions in
healthcare delivery during climate disasters (floods, hurricanes) could
lead to medication lapses, triggering breakthrough seizures.
Additionally, prolonged droughts or heat may increase incidence of
renal stones or infections, which in turn can provoke seizures in
susceptible patients (24). While these aspects are less studied, they
highlight how climate events can intersect with epilepsy management.

In summary, climate change is expected to present new challenges
for epilepsy control. More volatile weather with frequent swings may
lead to more triggers for those whose seizures are barometric-
sensitive. Increasing heat, especially if accompanied by poor sleep or
dehydration, could aggravate seizure disorders for some patients
(102). However, individual responses vary, and further research
(preferably prospective studies) is needed to better predict which
patients are at risk and how to protect them. Physicians may consider
advising patients about maintaining hydration, avoiding sleep
deprivation during heatwaves, and having contingency plans for
medication supply during extreme weather events (101). Importantly,
what is evident is that epilepsy does not exist in isolation from the
environment; climate stressors can and do influence neurological
excitability and seizure thresholds.

5.7 Psychiatric and neurodevelopmental
disorders

Psychiatric conditions, including mood disorders, anxiety
disorders, schizophrenia, and others, are profoundly affected by the
environment, and climate change is increasingly recognized as a
mental health threat. Unlike many of the neurological diseases
discussed above, the impact of climate on psychiatric disorders often
manifests through acute stress and slowly accumulating psychosocial
pressures (16, 106). Nevertheless, physiologic effects of heat and
climate extremes play a role as well. In this review, we use the term
severe mental illness (SMI) to refer specifically to schizophrenia,
bipolar disorder, and severe major depression. These conditions are
associated with high disability, premature mortality, and increased
healthcare utilization, and patients with SMI are disproportionately
vulnerable to climate-related stressors, particularly extreme heat, due
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to both medication-related thermoregulatory impairment and adverse
social determinants (106, 107).

A consistent finding across global studies is that higher
temperatures are associated with an increase in acute mental health
crises. Time-series data from Bern, Switzerland (1973-2017)
encompassing nearly 90,000 psychiatric hospitalizations showed that
for every 10°C rise in daily mean temperature, psychiatric hospital
admission rates increased by about 4%—and this effect was even more
pronounced in patients with schizophrenia and neurodevelopmental
disorders (108). In the United States, an analysis of ~3.5 million
emergency department visits (2010-2019) found 8% higher odds of a
mental health emergency on days of extreme heat (defined relative to
local temperature distributions) (41). These findings align with
historical observations that psychiatric disturbances can have seasonal
patterns. Heat may exacerbate underlying psychiatric symptoms (for
example, causing agitation or delirium in vulnerable individuals)
(106). Moreover, certain psychiatric medications (like antipsychotics
and some antidepressants) impair thermoregulation or cause
dehydration, making patients with serious mental illness less heat-
tolerant; tragically, during heatwaves, patients with schizophrenia or
bipolar disorder are known to have higher rates of heat-related death
than the general population (20, 107). On the other end of the
spectrum, very cold temperatures and shorter daylight can worsen
mood disorders (as seen in seasonal affective disorder), though the
balance of evidence suggests heat is the more immediate concern with
climate change (109). Importantly, extreme heat has been linked to
increased suicide rates. A study across multiple countries found that
a 1°C increase in average monthly temperature was associated with
roughly a 0.7% rise in suicide (19). Projections indicate that unabated
climate change could increase suicide rates by 1-2% in some regions
by mid-century, compounding the existing suicide public health
burden (17). The proposed mechanisms include heat-induced
neurochemical changes that affect mood and impulse control, as well
as the general stress caused by discomfort.

Climate change-driven disasters (hurricanes, floods, wildfires, and
droughts) can acutely and chronically impact mental health (109-
114). Immediately following disasters, rates of acute stress disorder,
post-traumatic stress disorder (PTSD), anxiety, and depression tend
to spike in affected communities (110). For instance, communities hit
by catastrophic floods or fires report high levels of anxiety and PTSD
that may persist for years (110). Chronic disaster exposure can also
erode social supports and economic stability, leading to long-term
psychological distress. There is evidence that even prenatal exposure
to extreme stress (for example, a fetus in utero during a disaster
experienced by the mother) can influence neurodevelopment and
increase the risk of developmental or psychiatric issues later in life
(111). Wildfires pose a double threat, as they cause trauma and
displacement while also polluting the air with fine particles that have
been linked to cognitive and mood changes (112). Droughts and
heatwaves can lead to economic hardship (especially in agrarian
communities) and have been associated with rises in depression and
suicide among affected farmers (113). In sum, climate change acts as
a threat multiplier for mental health, often hitting disadvantaged
populations the hardest.

Beyond direct disaster trauma, the psychological burden of
climate change includes the phenomenon of climate anxiety, defined
as a chronic fear and worry about environmental damage and future
risks; this is particularly observed in children and young adults who
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are increasingly aware of climate change (42). Large-scale surveys have
found that most of the youth worldwide report being at least
moderately worried about climate change and feel sad, anxious, or
helpless about its impacts (114). While climate anxiety is not a clinical
disorder per se, intense levels of worry can exacerbate or precipitate
conditions like generalized anxiety disorder or depression. Therapists
are reporting more patients struggling with eco-grief or despair related
to environmental loss; this mental health toll, though harder to
quantify, represents an indirect but pervasive impact of climate change
on well-being (115). Overall, psychiatric disorders are clearly sensitive
to the changing climate with high temperatures correlating with more
psychiatric emergencies (41). There are also complex interactions; for
example, heat might worsen aggression or psychosis, leading to
increased violence or hospitalizations as one Swiss study noted that
the effect was especially significant in neurodevelopmental conditions
and schizophrenia (108). Furthermore, social factors (housing quality,
community resilience, and healthcare access) can buffer or worsen
these outcomes. Notably, a UK study of patients with severe mental
illness, dementia, or substance misuse found a 4.9% increase in the
risk of death for each 1 °C rise above the 93rd percentile of local
temperature, underscoring that the most vulnerable patients face
lethal risks on the hottest days (107).

In psychiatry as well as in neurology, climate change’s impacts are
multifaceted. It is not only the dramatic events (like environmental
disasters) but also the subtler shifts (warmer nights, longer allergy
seasons, etc.) that can cumulatively strain mental health. This calls for
integrating mental health support into climate adaptation and disaster
response planning (115, 116). It also highlights the need for
interdisciplinary research bridging climatology, neuroscience, and
psychology to fully unravel how environmental changes translate into
brain and behavior changes.

6 Discussion

The evidence gathered in our review shows that climate change is
not a distant or abstract threat to neurological health, its effects are
already measurable across a broad spectrum of diseases. From the
acute impacts of heatwaves on stroke and mental health crises, and
psychiatric morbidity to the insidious spread of neurotropic infections,
climate-related factors are influencing when, where, and how
neurological diseases manifest. The data show that certain trends are
relatively clear; extreme heat is broadly deleterious, linked with
increased incidence of stroke, higher hospitalization rates for dementia
and mental illness, more headaches, and disrupted sleep leading to
seizure exacerbations (46). At the same time, other climate stressors
add layers of risk; for example, wildfires and pollution spikes often
accompany heat, jointly worsening cerebrovascular and
neurodegenerative conditions (32). Changes in vector ecology are
introducing infections to immunologically naive populations, as seen
with West Nile virus in temperate zones and the northward march of
tick-borne encephalitis (15, 79). These multi-faceted impacts
underscore that climate change is creating a new landscape of
neurological risk factors.

Despite these advances in understanding, there are significant
challenges and gaps that need to be tackled. One major challenge is
the heterogeneity of findings across different studies and regions.

Some studies report heat-related increases in stroke, while a few report

Frontiers in Public Health

11

10.3389/fpubh.2025.1630975

cold-related effects; some data suggest minimal impact on certain
conditions while others show large effects (117). This heterogeneity
can be attributed to differences in study design, population adaptation,
and local infrastructure. Populations vary in their baseline climate (a
“hot” day in Finland is very different from a “hot” day in India), and
thus the relative impact of a given temperature anomaly will differ
(118, 119). Moreover, many studies are retrospective and not originally
designed to probe climate effects, leading to confounding factors and
inconsistencies. There is also a geographical research bias, meaning
much of the climate-neurology data comes from high-income
countries, whereas low- and middle-income regions (which often
experience more severe climate impacts and have the largest
neurological disease burdens) are underrepresented (120). This limits
our ability to generalize findings globally. Another consideration is
that neurological diseases are diverse and multifactorial. Each disorder
(be it Alzheimer’s, stroke, MS, or schizophrenia) has its own set of
primary drivers (genetics, lifestyle, infections, etc.), and climate is an
added layer of influence. Distinguishing a climate signal from
background variability requires large datasets and careful analysis. For
instance, stroke rates are influenced by hypertension prevalence and
healthcare access; demonstrating a climate effect means adjusting for
these factors, something not all studies manage uniformly (25, 121).
Additionally, many neurological conditions have lagging outcomes,
exposures in early life might influence disease risk decades later (e.g.,
developmental impacts or cumulative exposure effects); few studies
have the longitudinal design to capture such long-term influences of
climate change.

Nevertheless, a converging theme is that climate extremes, events
outside the range of usual, tend to precipitate neurological crises (64).
Populations have some capacity to adapt to their normal climate (e.g.,
people in tropical regions are physiologically acclimatized to heat to
an extent), but climate change is pushing beyond historical norms.
Unprecedented heatwaves, hundred-year floods happening frequently,
and unfamiliar disease exposures mean communities are often
unprepared. Neurologic patients, especially those who are older adults
or disabled, are disproportionately affected by these unanticipated
extremes (122, 123). The concept of resilience becomes important, just
as we talk about making infrastructure resilient to climate change,
we must bolster the resilience of patients and healthcare systems. This
can include early warning systems (for heat-related illness, poor air
quality, etc.), community cooling centers during heatwaves, ensuring
backup power for medical equipment, and integrating mental health
support in disaster response (124). There are also co-benefits to
be harnessed. Actions taken to combat climate change can directly
benefit neurological health. For example, reducing fossil fuel
combustion will lower air pollution, which could translate to fewer
strokes, improved cognitive function, and lower risk of Parkinson’s
and dementia down the line (46). Urban planning that encourages
green spaces may mitigate heat island effects and promote physical
activity and social engagement, which are protective against cognitive
decline and depression. Conversely, poorly planned climate mitigation
strategies could have unintended consequences, so a thoughtful
approach is required (for instance, some regions might rely more on
biomass burning for energy if coal is reduced, but that could worsen
local air quality unless clean energy is provided) (125, 126).

Another vital aspect is awareness and education. Neurologists
and psychiatrists are beginning to recognize climate change as a
factor in patient health. Initiatives like the “Hot Brain” conference
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(the first dedicated meeting on climate change and neuroscience
in 2024) highlights a growing interdisciplinary effort to address
these issues (127). Training healthcare providers to consider
environmental factors in their clinical assessment (e.g., asking
about heat exposure in a patient with new neurologic symptoms,
or recognizing PTSD after climate disasters) will improve
diagnosis and management. At the policy level, health agencies
should include neurological outcomes in climate impact
assessments and adaptation plans (128). Traditionally, discussions
of climate and health focus only on infectious diseases and heat
stroke; this review underscores that brain health deserves a seat at
the table in climate policy deliberations and that more conditions
should be considered. Beyond individual-level risk factors,
structural and social determinants play a critical role in shaping
neurological and psychiatric vulnerability to climate change.
Displacement, resource scarcity, and limited healthcare access
disproportionately burden marginalized communities, amplifying
inequities in outcomes. Furthermore, phenomena such as climate
anxiety and ecological grief, particularly evident among youth and
populations directly exposed to environmental loss underscore
that climate change acts not only as a biological stressor but also
as a social multiplier of risk (114, 115). Integrating these
determinants is essential for advancing planetary health and
health equity.

In summation, it is evident that climate change represents a new
determinant of neurological disease. It acts synergistically with
traditional risk factors to increase disease burdens and health
disparities (since poorer communities often lack the resources to
adapt, they suffer more). The rise of neurological diseases in a
warming world is not an inevitable outcome; timely mitigation of
climate change and proactive adaptation can substantially reduce the
impact. This includes reducing greenhouse gas emissions in line with
global targets to limit warming, and concurrently investing in public
health measures to protect vulnerable populations from the climate
impacts already locked in. The neurological community has a role to
play in advocating for these changes, conducting relevant research,
and preparing healthcare systems for what lies ahead. As the data
show, the stakes are high, the health of our brains and minds may well
depend on the actions we take to address climate change now.

6.1 Future directions

Given the evidence, it is imperative for clinicians, researchers, and
policymakers to act on several fronts. First, neurological health should
be incorporated into climate adaptation strategies; this means
safeguarding patients (e.g., ensuring continuity of care during
disasters, establishing heat action plans for those with cognitive
impairment, and improving air quality) and educating communities
about the neurological risks of climate extremes. Second, more
research is needed to fill knowledge gaps, particularly in understanding
long-term impacts and in regions that are under-studied, so that
we can better predict and prevent climate-related neurological harm.
Third, aggressive climate change mitigation is essential. Reducing
greenhouse gas emissions will not only slow global warming but also
confer direct benefits like cleaner air and fewer extreme events,
thereby protecting against some of the neurological risks outlined in
our review (129).
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6.2 Limitations

The limitations of our review, and the studies included therein, are
that current research include a paucity of prospective studies, limited
mechanistic experiments in human models, and uncertainty in
projecting future disease burdens. Mental health evidence is
additionally constrained by heterogeneous outcome definitions,
under-ascertainment after extreme events, and short follow-up. Very
few studies project how, for example, Alzheimer’s disease incidence
might change by 2050 under climate scenarios, yet such projections
would be valuable for planning healthcare resources (130).
Interdisciplinary research bridging climate science and neurology, and
psychiatry is urgently needed to fill these gaps. Encouragingly, climate
scientists and neurologists have started collaborating on models (for
instance, using climate data to predict future stroke mortality) (65);
extending these approaches to mental health outcomes should
improve attribution and preparedness. As more data accumulate,
confidence in attributing changes in neurological and mental-health
patterns to climate change will grow.

7 Conclusion

Climate change exerts a growing and multifaceted influence on
neurological health. Our review underscores that the nervous system,
far from being exempt, is increasingly vulnerable to a cascade of
climate-related stressors; from acute cerebrovascular events and
neurodegeneration to psychiatric and broader mental health
morbidity, diverse conditions show susceptibility to environmental
perturbations, including extreme temperatures, air pollution, shifting
infectious patterns, and psychosocial trauma. We have synthesized
evidence indicating that climate change alters not only disease
incidence and distribution but also clinical course and severity.
Climate change affects brain health across the neuropsychiatric
spectrum. Evidence synthesized here indicates substantial mental
health impacts—acute stress responses around extreme events and
exacerbations of mood, anxiety, and psychotic disorders under adverse
environmental conditions. Accordingly, mental health should
be explicitly integrated into surveillance, health-system preparedness,
and adaptation strategies to address the full burden on brain and
health.
thermoregulatory stress, neuroinflammation, endocrine disruption,

behavioral Mechanistically,  pathways  involving
and pollutant-mediated toxicity intersect with existing vulnerabilities
in at-risk populations. The cumulative effect is likely synergistic rather
than merely additive. In short, brain health is inseparable from
environmental health; as neurological disease burden rises together
with ecological instability, strategic adaptation becomes highly
important. Recognizing this interplay is relevant for the design of
resilient healthcare systems, effective public health strategies, and
informed climate policy. Addressing climate-linked neurological/
psychiatric risk should not be speculative but rather an active,

evidence-supported issue requiring interdisciplinary action.
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