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Neurological and mental health in 
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Climate change has become a global health emergency in recent decades, with far-
reaching effects on neurological and psychiatric health; however, their relationship 
remains poorly understood. Climate-related phenomena impact neurological 
and mental health through both direct and indirect mechanisms, including 
progressive temperature changes and more frequent extreme weather events. 
This has influenced the prevalence and geographic distribution of neurological 
disorders, affecting the public health landscape of these diseases. The primary 
mechanisms include thermal stress, neuroinflammation due to air pollution, 
ecological shifts that increase exposure to neurotropic infections, psychological 
stress, and disruptions to healthcare systems. These factors interact and amplify 
the risk of neurological diseases, including neurodegenerative, neuroinflammatory, 
cerebrovascular, neuroinfectious, and psychiatric conditions. The aim of this study 
was to synthesize evidence from peer-reviewed studies in major databases on the 
impact of climate change–related factors in the incidence, severity, and distribution 
of neurological and psychiatric disorders. Addressing the effect of climate change 
on these diseases requires improved healthcare strategies, scientific research, 
and climate change mitigation to protect brain health and reduce neurological 
disease burden.
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1 Introduction

Climate change is an accelerating global crisis with profound implications for human 
health. The Earth’s mean surface temperature has risen by approximately 1.5°C since 
pre-industrial times, accompanied by more frequent extreme weather events (heatwaves, 
droughts, storms, wildfires, floods) (1). These environmental shifts are already impacting 
public health broadly, and emerging evidence indicates that neurological and psychiatric 
conditions are among those affected (2). Neurological disorders are a leading cause of disability 
and a major contributor to mortality worldwide, and severe mental illnesses, including 
schizophrenia, bipolar disorder, and severe major depression, carry a significantly reduced life 
expectancy (3). Understanding how climate change influences the incidence and severity of 
neurological and mental health conditions is therefore a critical scientific and public health 
challenge. Neurological and mental health conditions, while often distinct in etiology and 
clinical presentation, may also exist along a continuum in which biological, psychological, and 
social factors overlap. Certain disorders can present with both neurological and psychiatric 
manifestations, making them clinically indistinguishable at times. Recognizing this continuum 
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provides the conceptual basis for addressing both domains together 
in this review. Recent studies have linked various climate-related 
factors, from extreme temperatures to altered ecosystems, with 
adverse neurological outcomes. However, the data are complex and 
sometimes sparse, complicated by heterogeneity in disease subtypes 
and regional differences (2). This review provides a comprehensive 
synthesis of peer-reviewed literature on the influence of climate 
change in the rise of neurological disease, encompassing 
neurodegenerative, neuroinflammatory, cerebrovascular, 
neuroinfectious, and psychiatric conditions. Key findings from 
epidemiologic studies and mechanistic research are discussed, 
highlighting both established patterns and areas of uncertainty. All 
information is drawn from credible medical and neuroscientific 
journals, with scientific sources cited throughout. For clarity, this 
review is organized into two main sections. The first examines climate 
change–related exposures and their general effects on neurological 
and mental health, including thermal extremes, extreme weather 
events, air pollution, vector-borne and infectious agents, and 
psychosocial stressors. The second presents disease-specific evidence, 
outlining how these exposures influence the incidence, progression, 
and outcomes of conditions such as dementia, stroke, multiple 
sclerosis, epilepsy, neuroinfectious diseases, headache disorders, and 
psychiatric disorders.

2 Methods

The literature search was conducted in March 2025 across 
PubMed, Embase, Scopus, Web of Science, and PsycINFO, combining 
climate-related terms (“climate change,” “global warming,” “extreme 
weather,” “heatwave,” “cold spell,” “wildfire smoke,” “air pollution,” 
“PM2.5,” “ozone,” “NO₂”) with neurological and psychiatric terms 
(“neurology,” “neurological disorders,” “neurodegenerative,” “stroke,” 
“multiple sclerosis,” “epilepsy,” “headache,” “psychiatric disorders,” 
“mental health,” “depression,” “anxiety,” “schizophrenia”) using 
Boolean operators and controlled vocabulary (MeSH/Entree). 
Inclusion criteria comprised peer-reviewed human studies 
(observational, interventional, time-series, or modeling analyses) and 
systematic reviews/meta-analyses reporting associations between 
climate-related exposures and neurological or mental health 
outcomes. Exclusion criteria included non–peer-reviewed materials, 
animal-only or in vitro studies (except when cited for mechanistic 
context), studies without neurological or mental health endpoints, 
conference abstracts without full text, and duplicates. Relevant 
references were also identified through citation tracking, and findings 
were narratively synthesized by exposure domain and disease-
specific categories.

3 Environmental drivers and 
mechanistic pathways linking climate 
change to neurological and mental 
health

Climate change affects neurological health through multiple 
pathways, both direct and indirect. The major climate-related drivers 
impacting the nervous system include temperature extremes and 
heatwaves; extreme weather events; air pollution and poor air quality; 

vector-borne and infectious agents; and psychosocial stressors and 
lifestyle impacts. For orientation, Section 3 summarizes the exposure-
specific epidemiologic and clinical signals, and Section 4 details the 
corresponding biological mechanisms.

3.1 Temperature extremes and extreme 
weather events

Unusually high ambient temperatures and heatwaves can 
precipitate acute neurological events and exacerbate chronic 
neurologic conditions. A meta-analysis revealed that heat wave days 
were associated with an increased risk of hospital admissions or visits 
(RR = 1.269; 95% CI: 1.030–1.564) and mortality due to mental 
disorders (RR = 1.266; 95% CI: 0.956–1.678), compared to non-heat 
wave days (4). Conversely, extreme cold spells have also been 
associated with cerebrovascular and psychiatric stress. In 2019, 
extreme low temperatures caused 474,000 stroke deaths globally, with 
higher rates in older males and affected individuals from central, and 
East Asia (5).

In addition, climate change is increasing the frequency of 
hurricanes, floods, wildfires, and droughts. Such events cause not only 
physical injury but also psychological trauma, and they interrupt 
medical care. Older adult patients with cardiovascular disease (CVD), 
who rely on pharmacies, are particularly vulnerable (6). Hong et al. 
found a 1.5% increase in stroke mortality (95% CI, 1.3–1.8%) for each 
interquartile range increase in particulate matter <10 μm in 
aerodynamic diameter (PM₁₀), and a 2.9% increase (95% CI, 0.3–5.5%) 
for ozone concentrations on the same day; these air pollutants are 
significant risk factors for acute stroke death (6, 7).

3.2 Air pollution and poor air quality

Warmer temperatures and environmental policies (e.g., increased 
fossil fuel combustion for cooling) can worsen air pollution (8). 
Outdoor air pollutants include particulate matter (PM), which is 
classified by size; with fine particles (PM₂.₅) being the most harmful. 
Other pollutants such as ozone (O₃), nitrogen dioxide (NO₂), volatile 
organic compounds (VOCs) and noxious gases have been strongly 
associated with stroke incidence, dementia, Parkinson’s disease, and 
headache frequency (9–11). Air pollution is considered a key mediator 
by which climate change impacts brain health, as inhaled pollutants 
trigger systemic inflammation and oxidative stress that can damage 
the nervous system (9, 10, 12). For instance, Peter et al. (11) found an 
association between PM₂.₅ and decline in cognitive performance and 
dementia. Mechanistic pathways underlying these associations are 
summarized in Section 4.2.

3.3 Vector-borne and infectious agents

Climate-driven shifts in ecosystems are expanding the range of 
vectors (mosquitos, ticks, etc.) and pathogens, leading to increased 
occurrence of neuroinfectious diseases. Warming temperatures and 
changing rainfall patterns have fuelled outbreaks of mosquito-borne 
viruses (e.g., West Nile, dengue, Zika) and the spread of tick-borne 
encephalitis (TBE) into new regions (11, 13). A time-series analysis 
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shows increasing malaria prevalence at higher altitudes in Colombia 
and Ethiopia in recent years (14). These findings suggest that climate 
change is driving this upward shift, potentially raising malaria risk in 
previously unaffected highland regions of Africa and South America 
(14). A cohort study demonstrated that the incidence of TBE is linked 
to warm temperatures, which intensify virus replication (15). This 
highlights the importance of integrating weather-based forecasts to 
predict and manage vector-borne diseases.

3.4 Psychosocial stressors and lifestyle 
impacts

The chronic stress of living in a changing climate, including 
economic insecurity, displacement, and eco-anxiety about the future, 
is also an emerging risk to mental health (16, 17). High ambient 
temperatures have been linked not only to physiological stress but also 
to increased aggression and suicide rates. For every 1°C increase in 
monthly average temperature, suicide rates rise by 0.7% in 
U.S. countries and 2.1% in Mexican cities (16, 17). Moreover, climate 
change can indirectly affect neurological well-being by disrupting 
sleep patterns (e.g., hotter nights causing insomnia) and altering 
lifestyle behaviors (reduced outdoor activity, changes in diet), which 
in turn influence neurologic disease risk factors (18). For each 10 °C 
rising of ambient temperature, the odds of sleep insufficiency 
increased by 20.1%, while total sleep duration decreased by 9.67 min, 
with deep sleep declining the most, by 2.82% (19). These findings 
highlight climate change’s adverse impact on sleep health.

Furthermore, people with pre-existing neurological diseases are 
often especially vulnerable to these climate-related harms. For 
example, individuals with cognitive impairment or mobility 
limitations may be  less able to adapt to extreme temperatures or 
evacuate during disasters; patients with dementia are exceptionally 
prone to heat-related illness or hypothermia during extreme weather, 
as their impaired judgment and awareness prevent appropriate 
behavioral adjustments, such as seeking cooler environments or 
adequate hydration (2, 4). Comorbid frailty and polypharmacy further 
compound this vulnerability. Likewise, neurologic medications and 
assistive devices can undermine normal thermoregulation, reducing 
tolerance to heat or cold (20, 21). In summary, climate change is 
creating new challenges for neurological health on a population level 
and is becoming an important public health matter. The following 
sections detail proposed mechanisms of action for this rise as well as 
disease-specific evidence of these impacts across a spectrum of 
neurological and psychiatric conditions.

4 Mechanisms of action for the rise of 
neurological disease

The associations described above between climate change and 
neurological/psychiatric outcomes are underpinned by a variety of 
biological and environmental mechanisms. Such mechanisms explain 
how climate-related factors translate into physiological stressors that 
can initiate or aggravate neurological/psychiatric pathology. Table 1 
provides a summary of all these mechanisms.

TABLE 1  Mechanisms of action linking climate change to neurological/psychiatric disease.

Mechanism Climate change factor Neurological impact Biological implication

Thermal stress and thermoregulatory 

failure

Climate extremes: hot and cold Heat-induced neuroinflammation, 

cognitive dysfunction, exacerbation of 

neurodegenerative conditions (e.g., 

multiple sclerosis, Parkinson’s disease)

Altered ion channel function, changes in 

membrane excitability, increased seizure 

susceptibility, activation of microglia, 

impaired thermoregulation, and 

accelerated protein aggregation.

Air pollution and neuroinflammation Increased particulate matter, 

ground-level ozone, and other 

climate-induced pollutants.

Cognitive decline, dementia, increased 

stroke risk, exacerbation of 

neurodegenerative diseases

Fine particulate matter (PM₂.₅) and other 

pollutants enter the bloodstream, cross 

the blood–brain barrier, and promote 

systemic oxidative stress and 

neuroinflammation.

Infectious disease ecology Warmer temperatures, changes in 

precipitation patterns, and 

environmental shifts.

Neuroinfections (e.g., encephalitis, 

meningitis), autoimmune disorders (e.g., 

multiple sclerosis, Guillain-Barré 

syndrome)

Climate-driven changes in vector ecology 

(e.g., mosquitoes, ticks) enhance pathogen 

transmission, leading to increased 

exposure to neurotropic infections.

Psychological stress and neuroendocrine 

effects

Trauma, anxiety, chronic stress, and 

climate anxiety

Agitation, cognitive impairment, mood 

disorders, exacerbation of psychiatric 

illnesses (e.g., post-traumatic stress 

disorder, depression)

Activation of the hypothalamic–pituitary–

adrenal (HPA) axis and prolonged cortisol 

elevation leading to hippocampal atrophy, 

disrupted neurochemistry, and altered 

emotional regulation.

Healthcare disruption and medication Extreme weather events (e.g., 

heatwaves, storms)

Delayed or disrupted treatment, 

exacerbation of chronic neurological 

conditions (e.g., stroke, epilepsy, 

neuromuscular disorders)

Damage to healthcare infrastructure, 

medication degradation due to 

temperature fluctuations, and power 

outages preventing timely treatment 

delivery.
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4.1 Thermal stress and thermoregulatory 
failure

The human brain and body function within a narrow temperature 
range, and both extreme heat and extreme cold challenge this 
homeostasis. High ambient temperatures can directly disrupt neural 
activity, heat has been shown to affect ion channel function in neurons, 
altering membrane excitability and synaptic transmission (22). For 
example, small increases in temperature can block conduction in 
demyelinated axons (explaining MS heat sensitivity) and can lower the 
seizure threshold by modifying neuronal firing patterns (23, 24). Heat 
also induces systemic responses; dehydration from sweating leads to 
hemoconcentration (increased blood viscosity and osmolarity) which 
raises the risk of thrombosis, contributing to ischemic strokes (25). 
Failure to maintain thermal homeostasis can impair neuronal function 
and disrupt cerebral blood flow and blood–brain barrier integrity, 
culminating, in severe cases, in cerebral oedema (22, 26). Heat strain 
triggers the release of inflammatory cytokines and heat-shock proteins 
that can breach the blood–brain barrier and activate microglia, 
potentially exacerbating neuroinflammation (9). In the context of 
neurodegeneration, chronic heat stress may accelerate protein 
misfolding or aggregation in the brain, although this is an area of 
active study. Cold exposure, on the other hand, activates sympathetic 
nervous system and hormonal responses (catecholamines, renin–
angiotensin) that acutely raise blood pressure and heart rate (27, 28). 
This can precipitate hemorrhagic strokes or silent cerebrovascular 
damage. Cold can also slow nerve conduction and exacerbate 
spasticity or rigidity in conditions like Parkinson’s disease (PD) or 
spinal cord injury (29, 30). Notably, patients with neurological diseases 
often have impaired thermoregulatory defenses; for instance, spinal 
cord injury can impair shivering/sweating, and dementia or stroke can 
blunt the behavioral drive to seek shelter (29, 30). Thus, neurological 
patients are more likely to suffer the consequences of thermal 
extremes, creating a vicious cycle where climate events worsen their 
condition which in turn reduces their resilience to temperature stress. 
It should be noted, however, that not all heat exposure is uniformly 
harmful. Controlled thermal practices, such as sauna use, have been 
associated in some studies with possible cardiovascular and cognitive 
benefits, although the evidence is mixed and context dependent. These 
effects should not be conflated with the harmful and uncontrolled heat 
stress associated with climate change (31).

4.2 Air pollution and neuroinflammation

Air pollution constitutes a principal pathway through which 
climate change affects the nervous system; fossil fuel combustion 
generates particulate matter, nitrogen oxides, ozone, and other 
pollutants (32, 33). Warmer temperatures can intensify photochemical 
reactions that increase ground-level ozone, and climate change is 
linked to more wildfires that release fine particulates. These pollutants, 
when inhaled, have systemic effects; ultrafine particles (PM₂.₅ or 
smaller) can enter the bloodstream and even cross into the brain, 
directly depositing in neural tissue (32). Particulate pollution and 
ozone trigger systemic oxidative stress and inflammation (32). In the 
vasculature, this means endothelial dysfunction, a pro-coagulant state, 
and a propensity for atherosclerosis, all of which increase stroke risk 
(34). In the brain, particulate matter has been found in association 

with the presence of amyloid plaques and alpha-synuclein in autopsy 
studies, suggesting a role in neurodegenerative changes (32). Chronic 
exposure to polluted air is associated with cognitive decline and a 
higher incidence of dementia, likely via chronic neuroinflammation 
through activated microglial cells and cytokines that damage synapses 
and neurons over time (32, 33). Air pollutants can also irritate the 
respiratory tract and trigger reflexive autonomic responses (like surges 
in blood pressure or arrhythmias) that indirectly affect cerebral blood 
flow (35, 36). In headaches and migraines, inhaled pollutants may 
activate trigeminal nerve pathways or cause meningeal irritation, 
leading to headache pain (35, 36). Climate change driven increases in 
air pollution create a pro-inflammatory milieu that harms the central 
and peripheral nervous systems. Mitigating air pollution a co-benefit 
of climate action is therefore essential for protecting neurological 
health (12).

4.3 Alteration of infectious disease ecology

Mechanistically, higher temperatures can increase replication 
rates of viruses and shorten incubation periods in vectors (like 
mosquitoes and ticks), leading to higher viral loads transmitted to 
humans (13). Changes in rainfall and humidity create new breeding 
grounds (e.g., increased standing water after floods for mosquito 
breeding, or extended tick questing season due to milder winters) 
(13). Once pathogens infect humans, those that are neurotropic (such 
as arboviruses and certain bacteria/fungi) can directly invade the 
central nervous system; the immune response to these infections can 
cause acute neurological damage and sometimes initiate chronic 
autoimmune processes (e.g., some evidence links viral infections to 
triggering multiple sclerosis relapses or Guillain–Barré syndrome) (11, 
37, 38). Climate-related migration and overcrowding can also facilitate 
the spread of infections like meningococcal meningitis in refugee 
camps or viral encephalitides in urban slums with poor sanitation (11, 
37, 38). In essence, climate change serves as a catalyst for exposing 
human nervous systems to infectious insults that they might not have 
encountered previously, by removing geographical and seasonal 
barriers that once contained these pathogens.

4.4 Psychological stress and 
neuroendocrine effects

The stress imposed by climate change, whether acute trauma from 
disasters or chronic anxiety about the changing environment, 
translates into activation of stress pathways that affect the brain. Acute 
stress triggers the hypothalamic–pituitary–adrenal (HPA) axis to 
release glucocorticoids (cortisol) and catecholamines (39). While 
these are adaptive in the short term, chronic elevation (as seen in 
PTSD or prolonged anxiety) can be  neurotoxic, leading to 
hippocampal atrophy and impairment in memory and mood 
regulation (39). Heat itself can act as a physiological stressor; 
experiments have shown that heat exposure elevates cortisol levels, 
which might contribute to agitation and confusion in vulnerable 
individuals (40). Moreover, high heat can cause sleep disturbance and 
poor sleep amplifies stress, creating a feedback loop. In psychiatric 
patients, stress from climate-related events can precipitate episodes of 
illness (for example, triggering a depressive episode or a psychotic 
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break in schizophrenia) (41). On the other hand, climate anxiety 
represents a more nebulous but widespread mechanism; the awareness 
of climate threats can lead to chronic fear, especially in young people, 
which might manifest as generalized anxiety or depression (42). 
Neurobiologically, anxiety is linked to dysregulated amygdala activity 
and neurotransmitter imbalances resulting, in this case, in a constant 
worry about existential threats like climate change, keeping the brain 
in a hyper-vigilant, maladaptive state (43). This highlights that not all 
mechanisms are as tangible as heat or viruses, some are societal and 
psychological, yet they tangibly alter neurochemistry and behavior.

4.5 Disruption of healthcare and 
medication

Another mechanism, often overlooked, is the impact of climate 
change on healthcare delivery for neurological/psychiatric patients. 
Extreme weather can damage infrastructure (hospitals and roads), 
preventing patients from getting timely care (e.g., stroke thrombolysis 
or refilling epilepsy prescriptions) (44, 45). Heat can degrade certain 
medications or reduce their efficacy, as many drugs must be stored 
below 25°C; power outages from storms can shut down life-sustaining 
equipment for patients with advanced neuromuscular diseases (44, 
45). These disruptions can turn stable chronic neurological conditions 
into acute life-threatening situations. Thus, climate resilience in 
healthcare systems is directly tied to patient neurologic outcomes; 
while this is not a biological mechanism within the body, it is a causal 
pathway from climate events to worsened neurological health at the 
population level (46).

It is important to note that these mechanisms often act in concert. 
For instance, a heatwave might simultaneously cause dehydration 
(raising stroke risk), worsen air pollution (adding inflammatory 
stress), disturb sleep (triggering seizures or cognitive issues), and 
induce anxiety, collectively amplifying health impacts. There are also 
feedback loops, for example, a person who suffers a stroke during a 
heatwave may then have reduced mobility and be  even more 
vulnerable to the next heatwave. The interplay of multiple factors 
means the overall impact of climate change on the brain is not simply 
the sum of individual mechanisms, but a network of interacting 
stresses. This complexity underscores why research findings can 
sometimes appear inconsistent (e.g., different regions or 
subpopulations showing different dominant effects) (46, 47). Robust 
mechanistic studies, including experimental models and longitudinal 
human studies, are needed to further elucidate these pathways. 
Understanding mechanisms is vital for developing targeted 
interventions and policies to reduce these harmful factors to improve 
neurological health in a world where climate change will continue to 
be the norm (2).

5 Disease-specific evidence of the 
effects of climate change

5.1 Neurodegenerative diseases (dementia 
and Parkinson’s disease)

A growing body of evidence links climate change, particularly 
rising ambient temperatures, to worse outcomes in dementia. 

Epidemiological studies across various regions have shown that 
heatwaves and higher average temperatures correspond to increased 
hospitalizations and mortality among people with Alzheimer’s disease 
and other dementias (48, 49). In one study from New England, a 1.5°C 
increase in mean summer temperature was associated with a 12% rise 
in dementia-related hospital admissions (50). Similarly, during an 
extreme heat event in Madrid, admissions for Alzheimer’s disease 
surged by 23% when daily maximum temperature exceeded the local 
heatwave threshold by >1 °C (51). A study in the UK found that for 
each 1 °C increase above 17 °C, dementia admission rates rose by 
~4.5% (52). These findings underscore the heightened vulnerability of 
dementia patients to heat stress. Cognitive impairment and memory 
loss in dementia can prevent patients from adequately protecting 
themselves (e.g., forgetting to drink water or adjust clothing), leading 
to dehydration or heat stroke (53). Moreover, some analyses suggest a 
U-shaped relationship, where both extreme heat and extreme cold 
increase dementia hospitalizations or deaths. Overall, unaccustomed 
temperature extremes appear to exacerbate dementia severity and 
precipitate acute crises in this population (49, 51). Aside from acute 
events, chronic climate-related exposures (such as long-term air 
pollution) have been linked to accelerated cognitive decline and 
higher dementia risk. Fine particulate pollution (PM₂.₅) exposure is 
associated with increased amyloid-β deposition and 
neuroinflammation in the brain, potentially contributing to 
neurodegeneration (53). An in vitro study found that PM₂.₅ exposure 
exacerbates amyloid-β-induced neuronal injury by elevating reactive 
oxygen species (ROS) levels and activating the NOD-like receptor 
pyrin domain-containing 3 (NLRP3) inflammasome in microglia, 
resulting in increased IL-1β production (54). Thus, climate change 
factors may act as both triggers of acute decompensation and drivers 
of long-term neurodegenerative processes in dementia.

Parkinson’s disease (PD) and related neurodegenerative disorders 
may also be  influenced by changing environmental conditions, 
although data are more limited. An epidemiological study noted that 
the prevalence, mortality, or DALY (disability-adjusted life years) 
burden of PD tend to be higher in regions with warmer climates and 
higher recent warming indices, compared to cooler regions (54). PD 
shows greater sensitivity to climate warming than amyotrophic lateral 
sclerosis (ALS) /motor neuron diseases (MND) or Alzheimer’s, likely 
due to early hypothalamic degeneration, thermoregulatory 
dysfunction, and mitochondrial vulnerability in dopaminergic 
neurons unique to PD pathology (55). One major pathway by which 
climate change may affect PD is via air quality. Chronic exposure to 
air pollutants has emerged as a risk factor for PD; for example, long-
term inhalation of traffic-related pollutants and fine particles is 
associated with a greater incidence of PD, higher PM₁₀ exposure 
significantly increases the risk of developing Parkinson’s disease 
(OR = 1.35) (33). Additionally, extreme heat can pose challenges for 
patients living with PD. Heat stress and dehydration may worsen 
blood pressure instability and fatigue in PD patients, who often have 
autonomic dysfunction (56). Climate change can worsen air pollution 
through increased wildfires and atmospheric stagnation, potentially 
increasing the neurotoxic burden on populations (57). There is also 
concern that climate-related disruptions (e.g., disasters) could 
interrupt access to PD medications or care, leading to symptom 
exacerbation. While direct causal links between climate variables and 
Parkinson’s disease progression remain to be clearly established, these 
indirect effects suggest that global warming and environmental 
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change could aggravate the burden of PD. Further research is needed 
to disentangle how chronic neurodegenerative processes might 
be  accelerated or triggered by the complex environmental 
changes underway.

5.2 Cerebrovascular diseases

Stroke is highly sensitive to environmental conditions, and 
numerous studies indicate that climate change is influencing stroke 
epidemiology. Both extreme heat and extreme cold have been 
associated with increased risk of stroke, though results have varied by 
region (57–64). Figure  1 provides an infographic showcasing the 

relationship between stroke (ischemic and hemorrhagic) and 
temperature. A comprehensive meta-analysis encompassing over 2 
million stroke events found that short-term increases in ambient 
temperature were significantly associated with a rise in ischemic 
stroke incidence. A 1 °C temperature change was associated with a 1.1 
and 1.2% significant increase in major adverse cerebrovascular events, 
for heat and cold, respectively (57). In many studies, hotter days and 
heatwaves correlate with higher rates of ischemic stroke and stroke-
related hospital admissions (58). For example, Shin et al. found that 
acute stroke events were significantly more frequent when maximum 
daily temperatures exceeded 32 °C or dropped to ≤3 °C (p = 0.048), 
and when minimum temperatures fell below −11.0 °C (p = 0.020) 
(59). In a U.S.-based case-crossover study, the risk of ischemic stroke 

FIGURE 1

The figure illustrates the association between climate extremes and stroke risk, emphasizing how both elevated and reduced temperatures contribute 
to increased cerebrovascular events and related healthcare burdens.
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increased during periods of higher relative humidity, highlighting that 
humidity may intensify stroke risk (60). One analysis reported that 
days of extreme heat contributed an attributable fraction of ~1–2% of 
stroke admissions in a temperate region (Ontario, Canada) over a 
17-year period (61). Large diurnal temperature swings, sudden 
weather changes where daytime and night-time temperatures differ 
widely, have also been linked to stroke occurrence; in one study from 
Shenzhen, China, an increased 24-h temperature range (exceeding 
~5–8 °C) was estimated to contribute to 2–4% of first-time strokes 
(62). Additionally, high heat has implications for stroke outcomes: 
elevated ambient temperature during and after a stroke has been 
associated with worsened post-stroke morbidity and mortality. A 
pooled analysis found that high ambient temperatures were linked to 
a 10% increase in stroke morbidity (RR = 1.10, 95% CI: 1.02–1.18) and 
a 9% increase in stroke mortality (RR = 1.09, 95% CI: 1.02–1.17) (47).

Cold weather can be equally hazardous. Some investigations have 
found that stroke admissions rise following cold spells or during 
lower-than-average temperature periods (60, 63). Cold exposure may 
preferentially trigger hemorrhagic strokes by causing acute blood 
pressure elevations via sympathetic activation and vasoconstriction 
(26, 63, 64). A case-crossover study revealed that extreme low 
temperature was associated with 42% high risk of hemorrhagic stroke 
(OR = 1.42; 95% CI: 1.28–1.58), but not ischemic stroke (25, 64). The 
net impact of climate change on stroke is thus complex, potentially 
creating a bimodal risk pattern: unaccustomed heat and unaccustomed 
cold each pose dangers (25). Importantly, as global temperatures 
increase, many regions experience more frequent and intense heat 
extremes while still facing episodic cold snaps, thereby widening the 
range of temperature volatility. From a global health perspective, 
strokes are projected to rise in part due to climate trends. Modeling 
studies project that by mid-21st century, if climate change continues 
unabated, there will be an increase in years of life lost from stroke 
when factoring in rising temperatures along with demographic 
changes (64). However, under high emission scenarios, heat-related 
years of life lost (YLL) increase sharply, especially during summer over 
150% in the 2050s and up to 300% in August by the 2070s (65).

Mechanistically, heat stress contributes to stroke through 
dehydration and hemoconcentration: profuse sweating and fluid loss 
thicken the blood and raise its viscosity, promoting thrombosis in 
cerebral arteries (6, 26). Heat also triggers systemic inflammatory 
responses and endothelial dysfunction, which can destabilize 
atherosclerotic plaques; in contrast, cold stress acutely raises blood 
pressure and may precipitate hemorrhagic stroke by inducing vascular 
rupture (25, 26). Aside from temperature, climate change–related air 
pollution plays a major role in stroke risk. Exposure to high levels of 
PM₂.₅ has been linked to both acute stroke events and chronic 
cerebrovascular disease. Indeed, an analysis from the Global Burden 
of Disease study attributed about 9% of stroke DALYs and 8–9% of 
stroke deaths worldwide to PM₂.₅ pollution (66, 67). Periods of extreme 
heat often coincide with spikes in air pollution (e.g., wildfire smoke or 
urban smog), compounding the risk. One study noted that during 
heatwaves accompanied by severe pollution and wildfires, the relative 
risk of death due to stroke was roughly threefold higher than normal 
(68). In summary, climate change is expected to aggravate stroke risk 
through a convergence of thermal stress and environmental pollution, 
posing a particular threat to the older adults and those with 
cardiovascular comorbidities who are less able to physiologically 
compensate for these stressors (69).

5.3 Neuroimmunological diseases

Multiple sclerosis (MS) is a chronic immune-mediated 
demyelinating disease that may be  modulated by climate-related 
factors. While MS is classically more prevalent in higher latitudes 
(colder climates) due partly to lower ultraviolet exposure and vitamin 
D levels (70). Paradoxically, patients with MS often experience short-
term worsening of symptoms in hot weather. Heat sensitivity in MS is 
well documented: up to 60% of individuals with MS report that 
elevated temperatures transiently exacerbate symptoms such as 
fatigue, weakness, and cognitive dysfunction; this phenomenon 
(Uhthoff ’s phenomenon) occurs because increased core body 
temperature can further impair conduction in demyelinated nerve 
fibers (23). Consequently, heatwaves and unseasonal warm spells can 
reduce functional abilities in MS patients and potentially precipitate 
clinical relapses (70, 71). A study in Neurology found that warmer 
outdoor temperatures were associated with worse cognitive status in 
MS patients, corroborating patient-reported heat sensitivity (71, 72). 
Another analysis noted that high diurnal temperature variability was 
linked to increased emergency department visits for MS exacerbations, 
independent of absolute ambient temperature or air pollution. For 
instance, large swings in daily temperature were associated with a 
measurable uptick in MS-related hospital visits in one time-stratified 
case-crossover study (73).

Beyond temperature, other climate-linked factors can influence 
MS disease activity. Dehydration and heat stress may interfere with 
the effectiveness of MS therapies or increase circulating cytokines that 
drive inflammation. Conversely, some studies have hinted that 
extremely cold temperatures might also affect MS, for example, by 
increasing spasticity or triggering viral infections that lead to relapses; 
though heat effects are more consistently reported. Air pollution is 
another concern as exposure to high levels of particulate matter and 
nitrogen dioxide has been associated with increased MS relapse rates 
in some research (74, 75). Additionally, climate change might impact 
vitamin D synthesis (if people avoid sun exposure during heat 
extremes or if atmospheric changes alter UV levels), potentially 
affecting an important MS risk factor (76). While there is no evidence 
that climate change will alter the fundamental global distribution of 
MS in the short term, it is likely to add stressors that aggravate 
symptoms and possibly progression of disease. Maintaining adequate 
hydration, body cooling strategies, and air quality improvements are 
adaptation measures that could mitigate climate-related MS 
exacerbations. Given that MS typically affects young adults and can 
lead to long-term disability, understanding and managing these 
environmental triggers is crucial in a warming world.

5.4 Neuroinfectious diseases

Climate change has a significant influence on the emergence and 
spread of infectious diseases that affect the nervous system. As 
temperatures rise and weather patterns shift, many pathogens and 
their vectors are expanding into new geographic areas, leading to 
increased incidence of neurotropic infections (76–88). Figure  2 
provides and infographic summarizing the main factors related to 
neuroinfection and climate change. Vector-borne viral encephalitides 
are a prime example; mosquito-borne viruses such as West Nile virus, 
Japanese encephalitis virus, dengue, chikungunya, and Zika are all 
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sensitive to climate conditions, including temperature, rainfall, and 
humidity (11, 77). Warmer climates shorten mosquito breeding cycles 
and viral incubation periods, which can amplify transmission (14, 76). 
West Nile virus, historically endemic to Africa and the Middle East, 
has now become established in North America and parts of Europe; 
its spread and the frequency of human neuroinvasive West Nile 
disease have been linked to milder winters, hotter summers, and 
drought conditions that favor the Culex mosquito vectors (78, 79). 
Similarly, dengue fever, the fastest-spreading tropical disease, has 
shown increased geographic range. Aedes mosquitoes that transmit 
dengue, Zika, yellow fever, and chikungunya are now found in parts 
of the United States and Europe, far beyond their former tropical 
range, due in part to climate warming and globalization (38, 80). 
These viruses can cause severe neurological complications; for 

instance, dengue can lead to encephalopathy, Zika virus causes 
congenital microcephaly and Guillain–Barré syndrome, and West Nile 
virus commonly causes encephalitis and meningitis in outbreaks (79, 
81, 82). Certainly, climate models predict that as temperatures and 
humidity continue to change, the seasonal windows and geographic 
zones suitable for transmission of these arboviral encephalitis will 
expand further (83).

Tick-borne infections are also on the rise. Tick-borne encephalitis 
(TBE), a viral disease of the central nervous system (CNS), has 
extended its reach northward and to higher elevations in Europe and 
Asia as winters become milder and spring arrives earlier, prolonging 
the tick active season (83). Regions of higher latitude that previously 
saw little to no TBE are reporting new cases, consistent with climate-
driven shifts (84). Lyme disease, caused by Borrelia spirochetes from 

FIGURE 2

Climate change drives both vector-related (mosquito- and tick-borne) and non-vector related (water-, dust-, and soil-borne) infections, increasing 
neuroinfectious disease risks with climate change.
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ticks, is another infection whose incidence is influenced by warming 
trends and changes in ecosystems; while Lyme typically causes 
neurological issues in a subset of cases (neuroborreliosis), its overall 
burden provides trend setting information for vector-borne risk in 
temperate zones (85). Beyond arboviruses, bacterial and fungal 
infections show climate linkages too. In the African meningitis belt, 
outbreaks of meningococcal meningitis occur during the dry season 
when dust and low humidity damage nasal mucosa; changes in rainfall 
patterns and desertification could alter the timing and intensity of 
these epidemics (85). Some studies indicate that high dust conditions 
correlate with meningitis outbreaks in the Sahel, suggesting that 
climate change could influence meningitis incidence via increased 
dust storms or prolonged droughts (86). Waterborne pathogens that 
cause neurological disease are also a concern. The amoeba Naegleria 
fowleri, which causes rare but deadly primary amoebic 
meningoencephalitis, thrives in warm freshwater; as surface water 
temperatures rise, cases of this infection have appeared in previously 
cooler regions (87). Finally, Vibrio bacteria (some species can cause 
neuropathies via wound infections) and Coccidioides fungi (cause of 
Valley Fever meningitis) are likewise extending their range under 
warming and changing precipitation patterns (88, 89).

In summary, climate change impacts neuroinfectious diseases by 
altering pathogen lifecycles and expanding vector habitats. It also 
indirectly contributes via human behavioral and societal changes such 
as climate-related displacement, urbanization, and resource insecurity 
can lead to overcrowding and poor sanitation, which facilitate the 
spread of infections (including those causing CNS infections) (11, 90). 
Certainly, the World Health Organization has highlighted climate-
sensitive infectious diseases (from viral hemorrhagic fevers to novel 
zoonoses) as priorities for monitoring, given their pandemic potential 
(91). For neurologists and healthcare systems, this means being 
prepared to diagnose and manage infections of the nervous system in 
regions and seasons where they were previously uncommon. 
Enhanced surveillance and vaccination (where available, e.g., TBE 
vaccine) will be key in mitigating these emerging threats.

5.5 Headache disorders

Migraine and other headache disorders appear to be susceptible 
to weather and climate influences, which may contribute to an uptick 
in headache burden as the climate changes. Many migraines sufferers 
report that environmental factors trigger or worsen their headaches; 
heat and temperature fluctuations are among the most reported 
triggers (91, 92). For example, an emergency department study found 
that a 5 °C increase in ambient temperature was associated with 
approximately a 7.5% higher risk of migraine-related hospital visits in 
the subsequent days (92). Similarly, days with large swings in 
temperature or abrupt barometric pressure changes have been linked 
to a higher likelihood of headache presentations. One study noted that 
decreases of 6–10 hPa from the standard atmospheric pressure 
(1,013 hPa) were most frequently associated with increased migraine 
and headache frequency, particularly in certain seasons (93). These 
findings suggest that the greater weather volatility expected with 
climate change (e.g., sudden hot-to-cold transitions or storms) could 
lead to more frequent headache exacerbations.

Air quality factors also play a role. Epidemiological research has 
identified associations between acute air pollution exposure and 

headache occurrences. A California-based study of nearly 90,000 cases 
found that higher average annual PM₂.₅ and NO₂ levels correlated with 
increased frequency of migraine emergency visits (94). Short-term 
spikes in pollutants like particulate matter (PM₁₀, PM₂.₅), ozone, and 
carbon monoxide have been linked with days of elevated headache 
clinic visits; ozone was found to be higher on days when patients 
presented with tension-type headaches (95). The biological 
mechanism is thought to involve pollution-induced inflammation and 
activation of trigeminal pain pathways. Climate change can worsen 
these exposures by prolonging smog events and increasing ground-
level ozone formation during heatwaves; moreover, bright sunlight 
and high humidity, conditions influenced by climate, have been cited 
as migraine triggers in some individuals, possibly via perturbations in 
serotonin or other neurochemical systems (36, 96). While headaches 
are not typically life-threatening, they impose a substantial health 
burden and reduce quality of life. Migraine is among the leading 
causes of disability globally (97). Thus, even moderate climate-related 
increases in headache frequency can have large public health 
implications. Adaptation strategies might include public heat-health 
advisories that warn vulnerable individuals (like migraine patients) to 
stay hydrated and avoid excessive heat exposure. On an individual 
level, identifying weather triggers (using headache diaries) can help 
patients anticipate and possibly prevent some attacks. Further study is 
needed to refine our understanding of how chronic climate trends (as 
opposed to short-term weather) will affect headache disorders. 
Nevertheless, current evidence clearly indicates that a warming, more 
extreme climate is likely to aggravate migraines and other headaches, 
through both direct thermal effects and indirect air quality effects 
(92, 98).

5.6 Epilepsy and seizure disorders

Epilepsy, a condition characterized by recurrent seizures, may also 
be influenced by climate-related factors. Seizures can be triggered by 
systemic stressors and changes in the environment; researchers are 
beginning to uncover links between weather patterns and seizure 
frequency. Several studies have examined how meteorological 
variables affect epilepsy patients (24). Atmospheric pressure and 
humidity have emerged as potential factors; a case-crossover study of 
604 adults with epilepsy in Germany found that a decrease of 10.7 hPa 
in atmospheric pressure was associated with a 14% increased risk of 
seizures (OR 1.14, 95% CI 1.01–1.28) and high relative air humidity 
(>80%) increased seizure risk by up to 48% with a 3-day lag (OR 1.48, 
95% CI 1.11–1.96), whereas higher ambient temperatures were 
paradoxically associated with reduced seizure risk in that cohort (98). 
This suggests that certain individuals experience more seizures during 
stormy or humid weather, possibly due to hypoxia or changes in ion 
balance provoked by pressure shifts (99). Another study reported that 
“unstable weather” (sudden pressure changes) was associated with 
increased seizure frequency in about 40% of patients during spring, 
autumn, and winter, though interestingly only 7% noted this effect in 
the summer (100). These findings highlight that rapid weather 
fluctuations might precipitate seizures in a subset of susceptible people.

Heatwaves and temperature extremes have a more complex 
relationship with epilepsy. Some data indicate that extreme heat can 
provoke seizures or status epilepticus, potentially by causing 
dehydration, electrolyte disturbances, or sleep deprivation (101, 102). 
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Heatstroke is known to cause acute brain insults that lower seizure 
threshold. Population studies show mixed results; heatwaves have 
been associated with a higher rate of hospital admissions for seizures/
epilepsy in some reports (101), yet others have found that colder 
temperatures were linked to more emergency visits for seizures while 
hot days had little effect (102). A bimodal pattern has been suggested, 
where both very hot and very cold days can increase seizure risk for 
different patients (103). One explanation is that extreme heat often 
disrupts sleep, for example, nights that remain uncomfortably warm 
can cause insomnia. Sleep deprivation is a well-known seizure trigger, 
and thus prolonged heat could exacerbate epilepsy by fragmenting 
patients’ sleep cycles. Indeed, rising night-time temperatures under 
climate change are thought to be particularly detrimental, as they rob 
the body of the nocturnal cooling needed for restorative sleep 
(104, 105).

Other indirect pathways include the effect of climate on anti-
epileptic drug levels and medical infrastructure. High ambient 
temperatures or disasters might compromise medication storage 
(many drugs, including anti-seizure medications, have reduced 
efficacy if stored above certain temperatures) (105). Interruptions in 
healthcare delivery during climate disasters (floods, hurricanes) could 
lead to medication lapses, triggering breakthrough seizures. 
Additionally, prolonged droughts or heat may increase incidence of 
renal stones or infections, which in turn can provoke seizures in 
susceptible patients (24). While these aspects are less studied, they 
highlight how climate events can intersect with epilepsy management.

In summary, climate change is expected to present new challenges 
for epilepsy control. More volatile weather with frequent swings may 
lead to more triggers for those whose seizures are barometric-
sensitive. Increasing heat, especially if accompanied by poor sleep or 
dehydration, could aggravate seizure disorders for some patients 
(102). However, individual responses vary, and further research 
(preferably prospective studies) is needed to better predict which 
patients are at risk and how to protect them. Physicians may consider 
advising patients about maintaining hydration, avoiding sleep 
deprivation during heatwaves, and having contingency plans for 
medication supply during extreme weather events (101). Importantly, 
what is evident is that epilepsy does not exist in isolation from the 
environment; climate stressors can and do influence neurological 
excitability and seizure thresholds.

5.7 Psychiatric and neurodevelopmental 
disorders

Psychiatric conditions, including mood disorders, anxiety 
disorders, schizophrenia, and others, are profoundly affected by the 
environment, and climate change is increasingly recognized as a 
mental health threat. Unlike many of the neurological diseases 
discussed above, the impact of climate on psychiatric disorders often 
manifests through acute stress and slowly accumulating psychosocial 
pressures (16, 106). Nevertheless, physiologic effects of heat and 
climate extremes play a role as well. In this review, we use the term 
severe mental illness (SMI) to refer specifically to schizophrenia, 
bipolar disorder, and severe major depression. These conditions are 
associated with high disability, premature mortality, and increased 
healthcare utilization, and patients with SMI are disproportionately 
vulnerable to climate-related stressors, particularly extreme heat, due 

to both medication-related thermoregulatory impairment and adverse 
social determinants (106, 107).

A consistent finding across global studies is that higher 
temperatures are associated with an increase in acute mental health 
crises. Time-series data from Bern, Switzerland (1973–2017) 
encompassing nearly 90,000 psychiatric hospitalizations showed that 
for every 10°C rise in daily mean temperature, psychiatric hospital 
admission rates increased by about 4%—and this effect was even more 
pronounced in patients with schizophrenia and neurodevelopmental 
disorders (108). In the United  States, an analysis of ~3.5 million 
emergency department visits (2010–2019) found 8% higher odds of a 
mental health emergency on days of extreme heat (defined relative to 
local temperature distributions) (41). These findings align with 
historical observations that psychiatric disturbances can have seasonal 
patterns. Heat may exacerbate underlying psychiatric symptoms (for 
example, causing agitation or delirium in vulnerable individuals) 
(106). Moreover, certain psychiatric medications (like antipsychotics 
and some antidepressants) impair thermoregulation or cause 
dehydration, making patients with serious mental illness less heat-
tolerant; tragically, during heatwaves, patients with schizophrenia or 
bipolar disorder are known to have higher rates of heat-related death 
than the general population (20, 107). On the other end of the 
spectrum, very cold temperatures and shorter daylight can worsen 
mood disorders (as seen in seasonal affective disorder), though the 
balance of evidence suggests heat is the more immediate concern with 
climate change (109). Importantly, extreme heat has been linked to 
increased suicide rates. A study across multiple countries found that 
a 1°C increase in average monthly temperature was associated with 
roughly a 0.7% rise in suicide (19). Projections indicate that unabated 
climate change could increase suicide rates by 1–2% in some regions 
by mid-century, compounding the existing suicide public health 
burden (17). The proposed mechanisms include heat-induced 
neurochemical changes that affect mood and impulse control, as well 
as the general stress caused by discomfort.

Climate change-driven disasters (hurricanes, floods, wildfires, and 
droughts) can acutely and chronically impact mental health (109–
114). Immediately following disasters, rates of acute stress disorder, 
post-traumatic stress disorder (PTSD), anxiety, and depression tend 
to spike in affected communities (110). For instance, communities hit 
by catastrophic floods or fires report high levels of anxiety and PTSD 
that may persist for years (110). Chronic disaster exposure can also 
erode social supports and economic stability, leading to long-term 
psychological distress. There is evidence that even prenatal exposure 
to extreme stress (for example, a fetus in utero during a disaster 
experienced by the mother) can influence neurodevelopment and 
increase the risk of developmental or psychiatric issues later in life 
(111). Wildfires pose a double threat, as they cause trauma and 
displacement while also polluting the air with fine particles that have 
been linked to cognitive and mood changes (112). Droughts and 
heatwaves can lead to economic hardship (especially in agrarian 
communities) and have been associated with rises in depression and 
suicide among affected farmers (113). In sum, climate change acts as 
a threat multiplier for mental health, often hitting disadvantaged 
populations the hardest.

Beyond direct disaster trauma, the psychological burden of 
climate change includes the phenomenon of climate anxiety, defined 
as a chronic fear and worry about environmental damage and future 
risks; this is particularly observed in children and young adults who 
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are increasingly aware of climate change (42). Large-scale surveys have 
found that most of the youth worldwide report being at least 
moderately worried about climate change and feel sad, anxious, or 
helpless about its impacts (114). While climate anxiety is not a clinical 
disorder per se, intense levels of worry can exacerbate or precipitate 
conditions like generalized anxiety disorder or depression. Therapists 
are reporting more patients struggling with eco-grief or despair related 
to environmental loss; this mental health toll, though harder to 
quantify, represents an indirect but pervasive impact of climate change 
on well-being (115). Overall, psychiatric disorders are clearly sensitive 
to the changing climate with high temperatures correlating with more 
psychiatric emergencies (41). There are also complex interactions; for 
example, heat might worsen aggression or psychosis, leading to 
increased violence or hospitalizations as one Swiss study noted that 
the effect was especially significant in neurodevelopmental conditions 
and schizophrenia (108). Furthermore, social factors (housing quality, 
community resilience, and healthcare access) can buffer or worsen 
these outcomes. Notably, a UK study of patients with severe mental 
illness, dementia, or substance misuse found a 4.9% increase in the 
risk of death for each 1 °C rise above the 93rd percentile of local 
temperature, underscoring that the most vulnerable patients face 
lethal risks on the hottest days (107).

In psychiatry as well as in neurology, climate change’s impacts are 
multifaceted. It is not only the dramatic events (like environmental 
disasters) but also the subtler shifts (warmer nights, longer allergy 
seasons, etc.) that can cumulatively strain mental health. This calls for 
integrating mental health support into climate adaptation and disaster 
response planning (115, 116). It also highlights the need for 
interdisciplinary research bridging climatology, neuroscience, and 
psychology to fully unravel how environmental changes translate into 
brain and behavior changes.

6 Discussion

The evidence gathered in our review shows that climate change is 
not a distant or abstract threat to neurological health, its effects are 
already measurable across a broad spectrum of diseases. From the 
acute impacts of heatwaves on stroke and mental health crises, and 
psychiatric morbidity to the insidious spread of neurotropic infections, 
climate-related factors are influencing when, where, and how 
neurological diseases manifest. The data show that certain trends are 
relatively clear; extreme heat is broadly deleterious, linked with 
increased incidence of stroke, higher hospitalization rates for dementia 
and mental illness, more headaches, and disrupted sleep leading to 
seizure exacerbations (46). At the same time, other climate stressors 
add layers of risk; for example, wildfires and pollution spikes often 
accompany heat, jointly worsening cerebrovascular and 
neurodegenerative conditions (32). Changes in vector ecology are 
introducing infections to immunologically naive populations, as seen 
with West Nile virus in temperate zones and the northward march of 
tick-borne encephalitis (15, 79). These multi-faceted impacts 
underscore that climate change is creating a new landscape of 
neurological risk factors.

Despite these advances in understanding, there are significant 
challenges and gaps that need to be tackled. One major challenge is 
the heterogeneity of findings across different studies and regions. 
Some studies report heat-related increases in stroke, while a few report 

cold-related effects; some data suggest minimal impact on certain 
conditions while others show large effects (117). This heterogeneity 
can be attributed to differences in study design, population adaptation, 
and local infrastructure. Populations vary in their baseline climate (a 
“hot” day in Finland is very different from a “hot” day in India), and 
thus the relative impact of a given temperature anomaly will differ 
(118, 119). Moreover, many studies are retrospective and not originally 
designed to probe climate effects, leading to confounding factors and 
inconsistencies. There is also a geographical research bias, meaning 
much of the climate-neurology data comes from high-income 
countries, whereas low- and middle-income regions (which often 
experience more severe climate impacts and have the largest 
neurological disease burdens) are underrepresented (120). This limits 
our ability to generalize findings globally. Another consideration is 
that neurological diseases are diverse and multifactorial. Each disorder 
(be it Alzheimer’s, stroke, MS, or schizophrenia) has its own set of 
primary drivers (genetics, lifestyle, infections, etc.), and climate is an 
added layer of influence. Distinguishing a climate signal from 
background variability requires large datasets and careful analysis. For 
instance, stroke rates are influenced by hypertension prevalence and 
healthcare access; demonstrating a climate effect means adjusting for 
these factors, something not all studies manage uniformly (25, 121). 
Additionally, many neurological conditions have lagging outcomes, 
exposures in early life might influence disease risk decades later (e.g., 
developmental impacts or cumulative exposure effects); few studies 
have the longitudinal design to capture such long-term influences of 
climate change.

Nevertheless, a converging theme is that climate extremes, events 
outside the range of usual, tend to precipitate neurological crises (64). 
Populations have some capacity to adapt to their normal climate (e.g., 
people in tropical regions are physiologically acclimatized to heat to 
an extent), but climate change is pushing beyond historical norms. 
Unprecedented heatwaves, hundred-year floods happening frequently, 
and unfamiliar disease exposures mean communities are often 
unprepared. Neurologic patients, especially those who are older adults 
or disabled, are disproportionately affected by these unanticipated 
extremes (122, 123). The concept of resilience becomes important, just 
as we talk about making infrastructure resilient to climate change, 
we must bolster the resilience of patients and healthcare systems. This 
can include early warning systems (for heat-related illness, poor air 
quality, etc.), community cooling centers during heatwaves, ensuring 
backup power for medical equipment, and integrating mental health 
support in disaster response (124). There are also co-benefits to 
be harnessed. Actions taken to combat climate change can directly 
benefit neurological health. For example, reducing fossil fuel 
combustion will lower air pollution, which could translate to fewer 
strokes, improved cognitive function, and lower risk of Parkinson’s 
and dementia down the line (46). Urban planning that encourages 
green spaces may mitigate heat island effects and promote physical 
activity and social engagement, which are protective against cognitive 
decline and depression. Conversely, poorly planned climate mitigation 
strategies could have unintended consequences, so a thoughtful 
approach is required (for instance, some regions might rely more on 
biomass burning for energy if coal is reduced, but that could worsen 
local air quality unless clean energy is provided) (125, 126).

Another vital aspect is awareness and education. Neurologists 
and psychiatrists are beginning to recognize climate change as a 
factor in patient health. Initiatives like the “Hot Brain” conference 
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(the first dedicated meeting on climate change and neuroscience 
in 2024) highlights a growing interdisciplinary effort to address 
these issues (127). Training healthcare providers to consider 
environmental factors in their clinical assessment (e.g., asking 
about heat exposure in a patient with new neurologic symptoms, 
or recognizing PTSD after climate disasters) will improve 
diagnosis and management. At the policy level, health agencies 
should include neurological outcomes in climate impact 
assessments and adaptation plans (128). Traditionally, discussions 
of climate and health focus only on infectious diseases and heat 
stroke; this review underscores that brain health deserves a seat at 
the table in climate policy deliberations and that more conditions 
should be  considered. Beyond individual-level risk factors, 
structural and social determinants play a critical role in shaping 
neurological and psychiatric vulnerability to climate change. 
Displacement, resource scarcity, and limited healthcare access 
disproportionately burden marginalized communities, amplifying 
inequities in outcomes. Furthermore, phenomena such as climate 
anxiety and ecological grief, particularly evident among youth and 
populations directly exposed to environmental loss underscore 
that climate change acts not only as a biological stressor but also 
as a social multiplier of risk (114, 115). Integrating these 
determinants is essential for advancing planetary health and 
health equity.

In summation, it is evident that climate change represents a new 
determinant of neurological disease. It acts synergistically with 
traditional risk factors to increase disease burdens and health 
disparities (since poorer communities often lack the resources to 
adapt, they suffer more). The rise of neurological diseases in a 
warming world is not an inevitable outcome; timely mitigation of 
climate change and proactive adaptation can substantially reduce the 
impact. This includes reducing greenhouse gas emissions in line with 
global targets to limit warming, and concurrently investing in public 
health measures to protect vulnerable populations from the climate 
impacts already locked in. The neurological community has a role to 
play in advocating for these changes, conducting relevant research, 
and preparing healthcare systems for what lies ahead. As the data 
show, the stakes are high, the health of our brains and minds may well 
depend on the actions we take to address climate change now.

6.1 Future directions

Given the evidence, it is imperative for clinicians, researchers, and 
policymakers to act on several fronts. First, neurological health should 
be  incorporated into climate adaptation strategies; this means 
safeguarding patients (e.g., ensuring continuity of care during 
disasters, establishing heat action plans for those with cognitive 
impairment, and improving air quality) and educating communities 
about the neurological risks of climate extremes. Second, more 
research is needed to fill knowledge gaps, particularly in understanding 
long-term impacts and in regions that are under-studied, so that 
we can better predict and prevent climate-related neurological harm. 
Third, aggressive climate change mitigation is essential. Reducing 
greenhouse gas emissions will not only slow global warming but also 
confer direct benefits like cleaner air and fewer extreme events, 
thereby protecting against some of the neurological risks outlined in 
our review (129).

6.2 Limitations

The limitations of our review, and the studies included therein, are 
that current research include a paucity of prospective studies, limited 
mechanistic experiments in human models, and uncertainty in 
projecting future disease burdens. Mental health evidence is 
additionally constrained by heterogeneous outcome definitions, 
under-ascertainment after extreme events, and short follow-up. Very 
few studies project how, for example, Alzheimer’s disease incidence 
might change by 2050 under climate scenarios, yet such projections 
would be  valuable for planning healthcare resources (130). 
Interdisciplinary research bridging climate science and neurology, and 
psychiatry is urgently needed to fill these gaps. Encouragingly, climate 
scientists and neurologists have started collaborating on models (for 
instance, using climate data to predict future stroke mortality) (65); 
extending these approaches to mental health outcomes should 
improve attribution and preparedness. As more data accumulate, 
confidence in attributing changes in neurological and mental-health 
patterns to climate change will grow.

7 Conclusion

Climate change exerts a growing and multifaceted influence on 
neurological health. Our review underscores that the nervous system, 
far from being exempt, is increasingly vulnerable to a cascade of 
climate-related stressors; from acute cerebrovascular events and 
neurodegeneration to psychiatric and broader mental health 
morbidity, diverse conditions show susceptibility to environmental 
perturbations, including extreme temperatures, air pollution, shifting 
infectious patterns, and psychosocial trauma. We have synthesized 
evidence indicating that climate change alters not only disease 
incidence and distribution but also clinical course and severity. 
Climate change affects brain health across the neuropsychiatric 
spectrum. Evidence synthesized here indicates substantial mental 
health impacts—acute stress responses around extreme events and 
exacerbations of mood, anxiety, and psychotic disorders under adverse 
environmental conditions. Accordingly, mental health should 
be explicitly integrated into surveillance, health-system preparedness, 
and adaptation strategies to address the full burden on brain and 
behavioral health. Mechanistically, pathways involving 
thermoregulatory stress, neuroinflammation, endocrine disruption, 
and pollutant-mediated toxicity intersect with existing vulnerabilities 
in at-risk populations. The cumulative effect is likely synergistic rather 
than merely additive. In short, brain health is inseparable from 
environmental health; as neurological disease burden rises together 
with ecological instability, strategic adaptation becomes highly 
important. Recognizing this interplay is relevant for the design of 
resilient healthcare systems, effective public health strategies, and 
informed climate policy. Addressing climate-linked neurological/
psychiatric risk should not be  speculative but rather an active, 
evidence-supported issue requiring interdisciplinary action.
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