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Background: In the post-pandemic era, influenza and COVID-19 jointly 
exacerbate global public health burdens, yet persistent biases in risk perception 
drive declining vaccination rates and health disparities. Conventional linear 
models fail to capture the complex interactions between risk cognition, family 
protection motivation, and socioeconomic vulnerability—particularly within 
collectivist contexts like China. This gap impedes effective interventions 
targeting critical behavioral nodes in influenza mitigation.

Objective: This study employs network analysis to uncover the core structural 
features of influenza risk perception among the Chinese public, examining the 
association between science literacy and risk perception to inform targeted 
mitigation and intervention strategies.

Design: A multicenter, cross-sectional network analysis study using convenience 
sampling.

Setting: Fifteen provinces across mainland China, covering eastern, western, 
southern, northern, and central regions.

Participants: 1,416 individuals aged 18–70, representing diverse occupations, 
education levels, and income groups.

Results: The public’s influenza risk perception network exhibited a “family-
knowledge-economy” triadic structure. “Risk of family infection” (M_2) emerged 
as the central node (strength = 2.165), while “transmissibility knowledge” 
(F_3) and “socioeconomic loss” (S_2) served as the key knowledge nodes 
(strength = 1.520) and bridge node (bridge strength = 2.037). Additionally, 
science literacy moderated risk perception by enhancing perceived control, 
with the strongest association observed between knowledge level and 
“temporal controllability” (C_3, edge weight = 0.25). Family-based knowledge-
sharing effects were significant (K_1-K_2 edge weight = 0.42). Network stability 
tests confirmed robustness (centrality stability coefficient CS > 0.5, core node 
differences p < 0.01).
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Conclusion: Network analysis reveals a “family-knowledge-economy” triad 
governing influenza risk perception, with family infection risk (M_2) as the 
central driver (strength = 2.165) and socioeconomic loss (S_2) as the pivotal 
bridge node (bridge strength = 2.037). Science literacy amplifies perceived 
controllability (C_3–K_1 edge = 0.25) but fails to alleviate economic anxiety, 
underscoring the need for integrated structural policies. Family-centered 
interventions—leveraging tiered communication, economic security narratives, 
and real-time surveillance of network dynamics—are essential to optimize 
public health strategies in collectivist societies.
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Introduction

Influenza continues to pose a formidable global public health 
challenge in the post-pandemic era, exhibiting pronounced seasonal 
epidemic patterns and persistent pandemic potential. According to 
WHO estimates, the disease causes approximately 1 billion annual 
cases worldwide, resulting in 3–5 million severe illnesses and 290,000–
650,000 deaths (1, 2), with associated economic losses exceeding tens 
of billions of US dollars. Notably, socioeconomic determinants 
significantly influence disease burden, as demonstrated by global 
analyses revealing how financial development and emediates. The 
post-COVID-19 era has introduced new complexities, including 
increased risks of influenza virus recombination and subtype 
co-circulation (creating potential “twindemic” scenarios) (3, 4), 
further exacerbated by environmental co-factors such as seasonal air 
pollution that amplify respiratory mortality.

Despite extensive research, critical gaps remain in 
understanding the intricate mechanisms governing influenza risk 
perception. Current literature fails to adequately address this 
issue due to three interrelated methodological and 
theoretical limitations:

 1. Overreliance on Linear Modeling Approaches: Conventional 
methods, particularly linear regression, inadequately capture 
the dynamic, non-linear interactions between cognitive 
dimensions (e.g., perceived severity and susceptibility) and 
contextual factors such as urbanization-driven health 
disparities or evolving socioeconomic stressors, ignores the 
systemic complexity (5–7). This static perspective ignores 
systemic complexity.

 2. Inadequate Consideration of Post-Pandemic Contexts: Many 
studies neglect the profound psychosocial shifts following 
COVID-19, including widespread vaccine fatigue and 
heightened socioeconomic pressures that disproportionately 
affect vulnerable populations (8–10). These factors are essential 
for understanding contemporary risk assessment.

 3. Theoretical Disintegration: Prevailing frameworks often 
dissociate individual risk perception from macro-level public 
health determinants, including energy transitions, 
environmental policies (e.g., air quality regulations), and 
systemic economic vulnerabilities (11–14). This disconnection 
impedes comprehensive understanding.

These limitations directly impact on health behaviors (e.g., 
vaccination hesitancy and suboptimal antiviral use (15, 16)), leading 
to systematic underestimation of disease severity and substantial 
miscalibration of hospitalization risks–problems further compounded 
by limited health literacy impairing risk assessment capabilities. The 
inability to model the interconnected system of cognitive, 
socioeconomic, and environmental factors dynamically shaping risk 
perception in the current era highlights the urgent need for 
novel approaches.

This study conceptualizes family protection motivation as an 
individual’s intrinsic drive to protect family members from health 
threats, particularly influenza. This motivation stems from concerns 
about intra-family disease transmission, where individuals assume 
responsibility for preventing infection spread within their 
household unit. It encompasses emotional concerns, protective 
behavioral intentions, and multidimensional risk perception (17). 
This operationalization is pivotal for understanding the psychosocial 
mechanisms underlying preventive health behaviors like 
vaccination adoption and hygiene compliance in familial 
contexts (18).

The theoretical framework builds upon the Extended Protection 
Motivation Theory (PMT), which postulates that protective behaviors 
emerge from dual appraisal processes: threat appraisal (perceived 
severity and vulnerability) and coping appraisal (response efficacy and 
self-efficacy) (19). Our extension incorporates two novel dimensions: 
(1) family-oriented protection motives that amplify threat appraisal in 
collectivist cultures (20), and (2) socio-economic vulnerabilities that 
modulate coping appraisal capacities (21). This adaptation addresses 
PMT’s Western-centric limitation by contextualizing protection 
motivation within China’s familial-social ecosystem (22).

While traditional models like the Health Belief Model (HBM) 
employ linear pathways between perceived susceptibility, severity, and 
behavioral outcomes, they fail to capture the complex, recursive nature 
of risk perception systems. Network analysis overcomes these 
limitations through three key advantages: (1) mapping bidirectional 
relationships between cognitive, behavioral, and contextual factors 
(23); (2) identifying system-critical nodes (e.g., family concerns as 
bridge elements between threat appraisal and economic constraints) 
(17); and (3) revealing non-linear dynamics where socio-economic 
vulnerabilities may paradoxically inhibit protective behaviors despite 
high threat perception (24). This systems-level approach provides 
unprecedented insights into how family protection motivations 
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interact with structural constraints to shape pandemic 
preparedness behaviors.

This study addresses these limitations through three 
key innovations:

 1. Network Psychometrics Framework: We  pioneer the 
application of network analysis to conceptualize influenza risk 
perception as a dynamic, interconnected system. This approach 
surpasses traditional linear regression by elucidating complex 
interactions among cognitive, affective, and behavioral 
components, offering unprecedented insights into system 
structure and dynamics.

 2. Integrated Multi-Scale Determinants: We  innovatively 
incorporate family-level protection motivations, 
socioeconomic stress (economic vulnerability), household 
structure, and environmental co-exposures into a unified 
analytical framework, bridging the critical divide between 
micro-level cognition and macro-level structural determinants.

 3. Identification of Critical Network Features: Our methodology 
uniquely identifies previously unexplored structural 
characteristics within the risk perception network, including: 
① Core drivers (most influential nodes); ② Bridge nodes 
(connecting distinct cognitive/behavioral domains such as 
scientific knowledge and protective actions); ③ Behavioral-
inhibition modules (network clusters potentially hindering 
mitigation efforts).

These features provide novel targets for intervention. As illustrated 
in Figure 1, our research design specifically investigates: ① The core 
network structure of influenza risk perception among Chinese adults; 
② Critical hubs (bridge nodes) linking scientific knowledge systems 
with behavioral domains (e.g., vaccination intent and hygiene 
practices); ③ Mechanisms of network reconfiguration driven by 
socioeconomic mediators (e.g., economic vulnerability) and 
environmental mediators (e.g., regional pollution levels).

Collectively, these innovations provide a causal framework for 
precision interventions. Our findings simultaneously account for 
individual cognition (25, 26), structural determinants (27, 28), and the 
pandemic-altered behavioral context, thereby advancing both 
theoretical foundations and practical implementation of effective 
influenza prevention strategies.

Subjects and methods

Study participants

This cross-sectional study employed convenience sampling was 
used to recruit from the general Chinese population (including public 
service workers, professionals, business personnel, agricultural 
workers, and students) between January 1, 2025 and March 1, 2025. 
Inclusion criteria were: ① Aged 18–70 years; ② Voluntary participation; 
③ Ability to properly understand study materials and questionnaires; 
④ Normal communication capacity. Exclusion criteria included: ① 
Unwillingness to cooperate; ② Diagnosis of severe mental illness or 
cognitive impairment. Elimination criteria comprised: ① Withdrawal 
during survey/experiment; ② Samples with ≥20% missing data; ③ A 
completion time <120 s or >30 min.

Research instruments

The study utilized three assessment tools: a general information 
questionnaire, the Perceived Influenza Risk Scale (PIRS), and an 
influenza science knowledge awareness survey.

 1. General Information Questionnaire
Researcher-developed, collecting demographic data including 
age, gender, ethnicity, occupation, marital status, monthly 
household income per capita, and healthcare payment methods.

 2. Perceived Influenza Risk Scale (PIRS)
Developed by the research team based on previous experience 
(29), this 18-item scale assesses four dimensions: risk familiarity 
perception (6 items), risk controllability perception (4 items), 
risk severity perception (5 items), and risk susceptibility 
perception (3 items). Items employ a 5-point Likert scale 
(1 = “strongly disagree” to 5 = “strongly agree”), with total 
scores ranging up to 90 (higher scores indicate greater risk 
perception). Six senior experts (medicine, psychology, 
sociology) evaluated content validity, showing excellent results: 
item-level content validity index (I-CVI) ≥ 0.889 and scale-level 
content validity index (S-CVI) = 0.988. Internal consistency was 
strong (Cronbach’s α = 0.840 overall; subscales: risk familiarity 
α = 0.934, controllability α = 0.850, severity α = 0.903, 
susceptibility α = 0.978).

 3. Influenza Science Knowledge Awareness Survey
Two supplemental questions assessed participants’ and family 
members’ influenza knowledge: “How familiar are you with 
influenza-related scientific knowledge?” and “How familiar are 
your family members with influenza-related scientific 
knowledge?” Responses used a 5-point scale (1 = “not familiar 
at all” to 5 = “very familiar”).

Survey methodology and quality control

Sample size calculation
This multicenter cross-sectional study complied with the STROBE 

(Strengthening the Reporting of Observational Studies in 
Epidemiology) guidelines for cross-sectional research (30). The 
sample size was determined using the standard formula for cross-
sectional studies (31): n = [Z_(1-α/2) / δ]^2 × p × (1- p), where Z_
(1-α/2) represents the standard normal distribution value 
corresponding to the confidence level. At α = 0.05, Z_(1-α/2) = 1.96; 
p denotes the estimated variation proportion, set to 0.5 to maximize 
sample size; and δ represents the acceptable margin of error, defined 
as 0.05 (5%). The theoretical sample size was calculated as 385 
participants. To account for potential attrition during the study, an 
additional 10–20% sample size was added, resulting in a final sample 
size of ≥ 424 participants.

Pilot survey
Before the formal survey, this study determined the pre-survey 

sample size according to 10 to 30% of the total sample size (32). 
According to the calculation, the sample size of the formal survey was 
determined to be 462 people, so the pre-survey sample size should 
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FIGURE 1

Research design.
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be 46 to 139 people. In this study, convenience sampling was used to 
select 50 members of the public in Sichuan Province for the pre-survey 
to test the clarity and appropriateness of the questionnaire. Based on 
the feedback from the pre-survey, the questionnaire content was 
modified and adjusted as necessary to ensure that the entries were 
accurate and easy to understand. The pretest results showed that the 
Cronbach’s α internal consistency coefficient of the PIRS scale was 
0.874, and the α values of the subscales were risk familiarity 
(α = 0.936), risk controllability (α = 0.810), risk severity (α = 0.896), 
and risk susceptibility (α = 0.993), indicating that the scales had good 
internal consistency.

Formal survey
The formal survey was administered electronically via 

Wenjuanxing (Doi: www.wjx.cn), a professional online questionnaire 
platform widely utilized in China for its operational efficiency, 
security, and anonymity. QR codes generated through the platform 
were distributed across institutional networks (school classes, hospital 
departments, community health groups) to recruit mainland Chinese 
residents. Upon accessing the questionnaire, participants encountered 
an introductory page detailing research objectives, completion 
guidelines, and privacy protection measures. Electronic informed 
consent was mandatory prior to survey initiation, with platform 
settings restricting submissions to one response per IP address.

Quality control
Ethical compliance was ensured through fully anonymized data 

collection, exclusion of personal identifiers, and encrypted data storage 
with access controls. The study protocol received approval from the 
West China Hospital Biomedical Ethics Committee (Approval No. 
787/2021). Electronic questionnaires incorporated compulsory 
informed consent pages with automated recording of response times 
and IP addresses to ensure procedural standardization and traceability. 
Data quality control involved dual independent data cleaning by 
trained researchers, applying three exclusion criteria: ① Completeness: 
Questionnaires with >20% missing values; ② Consistency: ≥3 logical 
contradictions; ③ Validity: >80% repetitive responses. Discrepancies 
were resolved by senior researchers. Comprehensive data audit trails 
and quality control logs were maintained throughout data collection 
and analysis, strictly adhering to STROBE guidelines.

Statistical analyses
In this study, statistical analyses were conducted utilising R software 

(version 4.4.3). The analysis was primarily facilitated by the qgraph and 
bootnet packages, which were employed for network analysis. Initially, 
descriptive statistics were generated for all variables. Continuous 
variables were expressed as mean ± standard deviation, and categorical 
variables as frequencies and percentages. In order to assess the degree of 
variability in the items of the PIRS scale, standard deviation was used as 
an indicator of informativeness. Redundancy between items was checked 
to ensure that there was no excessive overlap between scale entries.

Estimation and validation of PIRS network 
structure

Network analysis is a data-driven approach capable of revealing 
independent relationships between variables and exploring interactions 
among multiple variables in complex systems (33). In this study, network 
analysis was employed to investigate the association patterns among the 

18 influenza risk perception items in the PIRS scale and how they 
collectively influence public risk perception of influenza. The network 
structure was constructed and visualized using the qgraph package in R 
software, where partial correlation matrices were transformed into 
network graphs displaying only significant edges (p < 0.05). The PIRS 
network was built using LASSO-regularized partial correlation analysis 
(34), which reduces noise through regularization to generate a sparser 
network that highlights key associations among risk perception items. 
Model selection was optimized using the Extended Bayesian 
Information Criterion (EBIC) to ensure both model fit and parsimony 
(35, 36). Network visualization implemented the Fruchterman-Reingold 
algorithm (“spring” layout) (37), which positions nodes with greater 
influence (risk perception items) centrally and clusters strongly 
associated items in close proximity, thereby providing an intuitive 
representation of the relationships among risk perception items.

In the constructed network: ① Nodes represent the 18 risk 
perception items from the PIRS scale (e.g., “F_Are you familiar with 
the sources of influenza transmission?”); ② Edges denote partial 
correlation coefficients between two items after controlling for all 
other items; ③ Edge thickness reflects association strength: thicker 
edges indicate stronger associations, while thinner edges indicate 
weaker associations; ④ Edge color: green edges represent positive 
correlations (e.g., when two risk perception items increase 
simultaneously), while red edges represent negative correlations (e.g., 
when one risk perception item increases while another decreases).

This visualization approach effectively demonstrates the complex 
structure of public influenza risk perception. The network 
characteristics are characterized by three metrics: Strength, Bridge 
Strength, and Predictability (37–39). ① Node Strength is defined as the 
sum of absolute weights of all edges connected to a given node, 
reflecting the overall influence of an influenza risk perception item 
within the network. For example, this metric can determine whether 
“Influenza may cause severe socioeconomic losses” serves as a central 
component in public risk perception; ② Bridge Strength represents the 
sum of edge weights connecting a node to items across different 
dimensions, measuring its cross-dimensional influence (37). A practical 
example would be examining how “My family members may contract 
influenza” influences “I may contract influenza”; ③ Predictability 
indicates the degree to which a risk perception item can be predicted 
by other items in the network. For instance, it measures how susceptible 
“My family members may contract influenza” is to being influenced by 
other risk perception items (e.g., “I may contract influenza”).

To ensure the reliability of the network analysis results, we employed 
edge accuracy evaluation and centrality stability analysis to verify the 
accuracy and stability of the network (34). Edge accuracy was assessed 
using 95% nonparametric confidence intervals (CIs) derived from 1,000 
bootstrap samples. Narrower CIs indicate more precise estimation of 
edge weights (40). Centrality stability was examined using the 
correlation stability coefficient (CS coefficient) for node strength. A CS 
coefficient above 0.25 indicates acceptable results, while values 
exceeding 0.5 are considered ideal (36). For comparisons of edge weights 
and node strength, bootstrap CIs were utilized for difference testing. 
Statistical significance was determined when the CIs excluded zero.

Association between risk perception and 
influenza knowledge

To identify which PIRS items were most strongly associated with 
public influenza knowledge, we integrated an “Influenza Knowledge 
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Awareness” node into the existing PIRS network structure. Regularized 
partial correlation analysis consistent with the LASSO methodology 
was applied to estimate association strengths between the knowledge 
node and each PIRS item, maintaining methodological consistency 
with the primary network estimation to ensure robust and parsimonious 
results (34). The resultant edge weights, visualized through network 
graphs, quantitatively represent the association strength between 
influenza knowledge and each risk perception item, thereby revealing 
the most knowledge-relevant components of public risk perception.

Results

Sample characteristics and demographic 
analysis

A total of 1,577 questionnaires were collected, yielding a 100% 
response rate. After rigorous quality control, 161 invalid questionnaires 
were excluded (55 from respondents aged <18 or >70 years, 20 with 
illogical responses, and 86 with completion times <120 min), resulting 
in 1,416 valid questionnaires (validity rate: 88.63%, 1,416/1,577). The 
sample demonstrated strong representativeness, covering 15 provinces 
across five regions of mainland China: Northern China (Beijing, Jilin, 
Liaoning), Southern China (Guangdong, Fujian, Yunnan), Eastern 
China (Jiangxi, Shandong, Zhejiang), Western China (Gansu, Sichuan, 
Yunnan) and Central China (Henan, Hubei, Hunan). The 
demographic characteristics revealed.

An analysis of demographic characteristics reveals that the gender 
ratio is moderate, with 46.8% of the population identifying as male and 
53.2% as female. The majority of the population falls within the 18–30 
age bracket (68.3%), with 12.8% falling within the 31–40 age bracket. 
The ethnic composition of the population is predominantly Han 
Chinese (89.6%), with other ethnic groups accounting for 10%. The data 
indicates that 4% of the population is employed in the public sector, 
with 37.7% of jobs in this sector. The second largest sector is education, 
with 25.1% of the population employed as students, while 13.4% are 
employed in commercial services. The third largest sector is the tertiary 
education sector, with 20.5% of the population employed in vocational/
technical education, and 42.8% of the population employed in bachelor’s 
degree programmes. The majority of the population (60.8%) is married, 
and the vast majority (94.1%) of the public reported no religious 
affiliation. The geographical distribution of the population is as follows: 
47.7% of the population resided in the countryside, while 52.3% resided 
in towns. The majority (27.6%) of households reported an income 
between $4,000 and $6,000, followed by those with an income below 
$4,000 (21.5%) and above $12,001 (19.6%). The majority (79.4%) of the 
population reported having medical insurance, and 73.2% of the 
population reported previous experience of severe influenza (Table 1).

Measurement tools and core variable 
analysis

Table 2 presents the descriptive statistics (Mean ± SD) for the 18 
items in the PIRS scale. Initial analysis confirmed data quality: ① All 
items demonstrated standard deviations within acceptable ranges; ② 
No low-information items were identified (i.e., SDs >2.5σ below the 
mean); ③ Inter-item correlations were <0.25, indicating no redundant 

TABLE 1 Characteristics of the public (N = 1,416).

Characteristics Frequency (n) Percentage (%)

Gender

 Male 662 46.8

 Female 754 53.2

Age (years)

 18 ~ 30 967 68.3

 31 ~ 40 308 21.8

 41 ~ 50 81 5.7

 51 ~ 70 60 4.2

Ethnicity

 Han 1,269 89.6

 Others 147 10.4

Occupations

 Public service 534 37.7

 Technical professionals 137 9.7

 Commercial workers 190 13.4

 Agricultural workers 126 8.9

 Students 356 25.1

 Others 73 5.2

Educational level

  Primary education or 

below
57 4

 Secondary education 70 4.9

  Vocational/Technical 

education
390 27.5

 Bachelor’s degree 606 42.8

 Master’s degree or above 293 20.7

Marital status

 Married 861 60.8

 Single 555 39.2

Religious beliefs

 No 1,332 94.1

 Yes 84 5.9

Household registration location

 Countryside 676 47.7

 Town 740 52.3

Monthly income per capita

 Less than 2,000 RMB 304 21.5

 2,000 RMB-4,000 RMB 391 27.6

 4,001 RMB-6000 RMB 203 14.3

 6,001 RMB-8000 RMB 128 9

 8,001 RMB -10000 RMB 113 8

 Above 10,001 RMB 277 19.6

Payment methods for medical activities

 Private paymentt 259 18.3

 Medical insurance 1,124 79.4

(Continued)
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items and confirming that each item independently measured distinct 
dimensions of public influenza risk perception. Additionally, the 
influenza-related knowledge assessment yielded the following scores: 
Public knowledge: 2.46 ± 1.10 and Family members’ knowledge: 
1.95 ± 0.81.

PIRS network characteristics analysis

Network structure features
Figure  2A presents the network structure of the PIRS scale, 

comprising 18 nodes representing influenza risk perception items 
across four dimensions: Risk Familiarity (F_1-F_6), Risk 
Controllability (C_1-C_4), Risk Severity (S_1-S_5), and Risk 
Susceptibility (M_1-M_3). The network contained 73 non-zero edges 
(47.71% of possible edges, 73/153) with a mean edge weight of 0.054, 
indicating moderate-to-strong inter-item associations. Edges were 
derived from graphical partial correlation matrices, displaying only 
significant correlations. Green edges represent positive correlations, 
while red edges indicate negative correlations, with edge thickness and 
color intensity reflecting association strength.

Strength centrality
As shown in Figure 3A, strength centrality and expected influence 

were analyzed for all 18 nodes. The susceptibility item “M_2: My 
family members may contract influenza” demonstrated the highest 
strength centrality (Strength = 2.165), indicating its central role in the 
PIRS network and predominant influence on public risk perception. 
This was followed by familiarity items “F_3: Are you familiar with 
influenza infectivity?” (Strength = 1.520) and “F_2: Are you familiar 
with transmission routes?” (Strength = 1.478).

Bridge strength
Figure 3B displays bridge strength and bridge expected influence 

analysis results. The severity item “S_2: Influenza may cause severe 
socioeconomic losses” exhibited the highest bridge strength (Bridge 
Strength = 2.037), suggesting its crucial role in connecting different 
risk perception dimensions. Controllability items “C_3: Do you believe 
influenza duration is controllable?” (Bridge Strength = 1.774) and 
“C_1: Do you  believe influenza is controllable?” (Bridge 
Strength = 1.691) ranked second and third, respectively.

Node predictability
Node predictability is visualized in Figure 2B through concentric 

circles, ranging from 50.5 to 95.2% (Table 3). The susceptibility item 
“M_2” showed the highest predictability (R2 = 0.952), indicating 

95.2% of its variance could be explained by other network items. This 
was followed by “M_3: My relatives/friends may contract influenza” 
(R2 = 0.916) and “M_1: I may contract influenza” (R2 = 0.893) in the 
susceptibility dimension.

Accuracy and stability analysis of PIRS 
network

Edge weight accuracy
Figure 4A presents an accuracy analysis of edge weights in the 

PIRS network, where the 95% nonparametric confidence intervals 
(CIs) of the edge weights were calculated through 1,000 bootstrap 
samples. The results demonstrate that the average CI range for 
network edge weights was [0.0256, 0.0838], with a median connection 
strength of 0.0544, indicating moderate connectivity characteristics 
across the network. Specifically, most edge connections exhibited 
relatively narrow CIs (e.g., an average interval width of 0.0582), 
confirming high precision and stability in the estimation of core 
network parameters. However, it is noteworthy that some edges 
approaching zero showed wider CIs (interval width > 0.1), suggesting 
certain uncertainties in the estimation of these weaker connections. 
This finding not only validates the reliability of the PIRS network’s 
core structure but also provides important statistical reference for 
interpreting secondary associations within the network. 
We recommend further validation of these edge connections with 
larger samples in subsequent studies.

Centrality stability
As illustrated in Figure  4B, the stability analysis of strength 

centrality and bridge strength is evaluated using the correlation 
stability (CS) coefficient. The findings indicate that the CS coefficient 
for strength centrality attained 0.750, while bridge strength achieved 
0.517, both surpassing the recommended threshold of 0.5 (36). This 
finding suggests that the centrality indices maintain high stability even 
when sample sizes are reduced, thereby indicating the robustness of 
the network analysis outcomes.

Within-network variance test
Figures  5–7 illustrate the results of the comparison of edge 

weights, node strength centrality and bridge strength centrality in the 
PIRS network using the bootstrap difference test.

Edge weight variance tests
As shown in Figure 5, this study systematically evaluated the edge 

weights of the PIRS network through bootstrap difference testing. 
Matrix analysis revealed that the majority of edge connections in the 
network exhibited significant differences (black squares > 65%), 
indicating high stability in network parameter estimation. Notably, the 
strongest connection strength was observed between M_2 (“My 
family members might contract the flu”) and M_3 (“My relatives or 
friends might contract the flu”) in the risk susceptibility dimension 
(edge weight = 0.667, 95% CI [0.609, 0.751]). This significant 
association (p < 0.001) reflects participants’ pervasive concern 
regarding influenza risk.

Additionally, stable moderate-strength connections were 
identified, such as M_1–M_2 (0.605, 95% CI [0.544, 0.693]) and 
S_4–S_5 (0.546, 95% CI [0.487, 0.610]). These findings collectively 

TABLE 1 (Continued)

Characteristics Frequency (n) Percentage (%)

 Others 33 2.3

Have you ever had the flu

 Yes 1,036 73.2

 No 380 26.8

Occupations were categorized into seven groups based on their primary work nature: public 
service (e.g., civil servants, healthcare workers, teachers), commercial workers (e.g., company 
employees, managers, self-employed individuals), other (retirement, etc). Single indicated 
separated, divorced, widowed, or never married, and married indicated married or 
partnered. “Yes” includes Buddhism, Christianity, Islam, Catholicism, Taoism.
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reveal core structural characteristics of influenza risk perception, where 
concerns about close interpersonal relationships constitute the most 
stable connections in the network. This provides critical evidence for 
developing targeted health education strategies for influenza prevention.

A small number of non-significant edges (gray squares) were 
observed, primarily distributed among secondary cross-dimensional 
connections, suggesting relatively weaker stability in these associations.

Node strength centrality difference test
As illustrated in Figure 6, the outcomes of the bootstrap difference 

test for node strength centrality (Strength) are presented. The matrix 
diagonal displays the strength centrality values for each node, with 
grey boxes denoting non-significant differences and black boxes 
indicating significant differences. The results demonstrate that M_2 
(Strength = 2.165, see Figure 2A) in the risk susceptibility dimension 
and F_3 (Strength = 1.520, see Figure  2A) in the risk familiarity 
dimension exhibit significant differences from the majority of other 
nodes, with a greater number of black boxes in their corresponding 
rows. This finding serves to further validate the pivotal role of M_2 
and F_3 in the PIRS network, thereby suggesting that the public’s 
perception of risk regarding the potential contraction of influenza by 
their family members, coupled with their familiarity with the 
contagious nature of the virus, exerts a substantial influence on the 
network dynamics.

As illustrated in Figure  7, the results of the bootstrap test of 
variance for node Bridge Strength are presented, and the matrix 

structure is analogous to that of Figure 6. The results demonstrate that 
S_2 (Bridge Strength = 2.037, see Figure  2B) in the risk severity 
dimension and C_3 (Bridge Strength = 1.774, see Figure 2B) in the 
risk controllability dimension exhibit significant differences from the 
majority of the other nodes, with the black boxes predominating in 
their respective rows. This finding indicates that S_2 and C_3 play a 
pivotal role in the network structure, facilitating connections between 
different dimensions of risk perception (e.g., risk severity vs. risk 
controllability). This observation underscores the significance of the 
public’s perceptions regarding the potential economic losses caused by 
influenza and the perceived manageability of the influenza duration 
within the network structure.

The results of the aforementioned difference-in-difference tests 
provide substantial support for the accuracy of the PIRS network 
estimates, indicating that the differences in the centrality and 
bridging roles of the core nodes (e.g., M_2, F_3, S_2, and C_3) in 
the network are statistically significant. These nodes represent the 
public’s risk perceptions that their family members may contract 
influenza, that they are familiar with the contagiousness of 
influenza, that influenza can cause severe socioeconomic losses, 
and that influenza lasts for a manageable period of time, 
respectively. This highlights the critical position of these risk 
perception items in the structure of the public’s perception of the 
risk of influenza, and provides important references for subsequent 
interventions (e.g., influenza science awareness design 
and application).

TABLE 2 The Perceived Influenza Risk Scale (PIRS) and descriptive statistics for each risk perception question within the scale.

Items Item description Mean SD

Risk familiarity

F_1 (1) Are you familiar with the infectious agents of influenza? 1.79 0.77

F_2 (2) Are you familiar with how the flu is spread? 1.61 0.62

F_3 (3) Are you familiar with how contagious the flu is? 1.69 0.69

F_4 (4) Are you familiar with who is susceptible to the flu? 1.79 0.80

F_5 (5) Are you familiar with the dangers of the flu? 1.64 0.66

F_6 (6) Are you familiar with flu protection? 1.59 0.62

Risk controllability

C_1 (1) Do you think the flu is controllable? 1.95 0.63

C_2 (2) Do you think the danger posed by the flu is manageable? 2.19 0.81

C_3 (3) Do you think the duration of the flu is manageable? 2.51 0.98

C_4 (4) Do you think the flu is affecting a manageable amount of people? 2.17 0.83

Risk seriousness

S_1 (1) Influenza can have serious physical and psychological effects on individuals 1.95 0.80

S_2 (2) Influenza can cause serious socio-economic losses 1.74 0.68

S_3 (3) Influenza can take a heavy financial toll on families 1.89 0.74

S_4 (4) The flu can threaten my health and life and that of my family 1.91 0.79

S_5 (5) The flu can affect my daily life and that of my family 1.86 0.74

Risk munity

M_1 (1) I might get the flu. 3.19 1.15

M_2 (2) My family could get the flu. 3.2 1.14

M_3 (3) My relatives and friends could get the flu. 3.12 1.12

F, risk familiarity; C, risk controllability; S, risk seriousness; M, risk munity.
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FIGURE 2

Influenza Risk Perception network diagram (N = 1,416). (A) Influenza risk perception network structure of 18 nodes, constructed using the graph 
package based on a partial correlation matrix. (B) Influenza risk perception network structure and predictability of the 18 nodes.

FIGURE 3

Results of strength and bridge strength analysis. (A) Strength centrality and expected influence for the 18 nodes in the network. (B) Bridge strength 
centrality and bridge expected influence for the 18 nodes in the network.
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Associations between risk perception and 
knowledge of influenza science

As illustrated in Figure 8, the network correlation analysis reveals 
a relationship between the 18 risk perception items in the PIRS scale 
and two distinct dimensions of knowledge: public knowledge of 
influenza science (Knowledge, K_1) and family knowledge of 
influenza science (Knowledge, K_2). The results demonstrated that 
C_3 (the extent to which respondents deemed the duration of 
influenza to be manageable) and K_1 (public knowledge of influenza) 
of the risk controllability dimension exhibited the strongest 
association (Edge Weight = 0.25), followed by F_5 (respondents’ 
familiarity with the dangers of influenza) and K_2 (family knowledge 
of influenza) of the risk familiarity dimension (Edge Weight = 0.21). 
Meanwhile, K_1 (public knowledge of influenza) and K_2 (family 
knowledge of influenza) of the influenza knowledge dimension also 
demonstrated a strong association (Edge Weight = 0.42).

Discussion

Post-pandemic influenza risk perception: 
redefining vulnerability in the twindemic 
era

The COVID-19 pandemic has fundamentally altered influenza 
risk cognition patterns. Our network analysis reveals a collectivized 
family-knowledge-economy structure that differs markedly from 
pre-pandemic individual-centric models (41). Three paradigm 
shifts emerge.

Collectivization of fear
Household infection risk (M_2, Strength = 2.165) dominates the 

network topology, reflecting familial altruism rooted in sociocultural 
contexts. This aligns with global observations of immunity debt while 
contrasting with Western models emphasizing personal susceptibility 
(42, 43).

Economization of risk
Socioeconomic loss (S_2) emerged as the strongest bridge node 

(Bridge Strength = 2.037), demonstrating how pandemic-induced 
financial insecurity amplifies perceived influenza severity  - a 
dimension overlooked in classical Health Belief Models (44). This 
finding corroborates studies linking economic vulnerability with 
vaccine hesitancy (45).

Knowledge-control paradox: While scientific literacy enhanced 
perceived controllability (C_3-K_1 edge = 0.25), it showed negligible 
impact on economic anxiety (S_2-K_1 edge = 0.08), explaining 
persistent vaccine hesitancy despite education campaigns. This aligns 
with research showing knowledge alone cannot overcome structural 
barriers to vaccination (45).

Theoretical implications
This triadic structure challenges linear knowledge-deficit models, 

positioning family protection motivation and structural vulnerability 
as co-determinants of risk perception - a critical advancement for 
collectivist societies (41).

Network psychometrics: decoding 
complexity through systemic modeling

Our network analytic approach addresses three key limitations in 
risk perception research.

First, the LASSO-regularized partial correlation model (EBIC 
tuning = 0.5) uncovered non-linear pathways obscured by 
traditional methods (46). It revealed how transmissibility 
knowledge (F_3) amplifies family infection fear (M_2, edge 
weight = 0.38), which then exacerbates socioeconomic 
concerns (S_2, edge weight = 0.29) - a feedback loop explaining 
intervention failures. This systemic perspective aligns with 
findings that cognitive and affective risk dimensions interact 
dynamically (47).

Second, we identified three high-leverage node types with distinct 
intervention functions:

Core drivers (e.g., M_2: Family infection risk, strength = 2.165) 
serve as network anchors, consistent with studies showing kinship 
concerns dominate health decisions.

Knowledge amplifiers (e.g., F_3: Infectivity knowledge, 
strength = 1.520) function as information gateways, supporting 
targeted education strategies (48).

Structural bridges (e.g., S_2: Economic loss, bridge 
strength = 2.037) connect biological and material risks, necessitating 
integrated policies (45).

Third, the model quantified household-level diffusion dynamics, 
with the robust K_1-K_2 edge (weight = 0.42) confirming families as 
fundamental behavioral units. This finding extends neurocognitive 
evidence about kinship-based empathy while providing actionable 
precision for resource allocation (49).

TABLE 3 List of nodes, their predictability, and their centality estimation.

Nodes Variables Predictability 
(R2)

F_1 Familiar with the source of infection 0.652

F_2 Familiar with transmission channels 0.798

F_3 Familiar with infectivity 0.765

F_4 Familiar with susceptible populations 0.635

F_5 Familiar with hazards 0.671

F_6 Familiar with protective measures 0.706

C_1 Flu controllable 0.502

C_2 Harm controllable 0.566

C_3 Controllable duration 0.516

C_4 Controllable range 0.505

S_1 Sphysiology and psychology 0.534

S_2 Socio economic losses 0.670

S_3 Family economic losses 0.657

S_4 Threatening health and life 0.637

S_5 Affects daily life 0.671

M_1 I may get the flu 0.893

M_2 My family may have the flu 0.952

M_3 My relatives and friends may have the flu 0.916

F_1 Familiar with the source of infection 0.652

F, risk familiarity; C, risk controllability; S, risk seriousness; M, risk munity.
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Methodological validation: Our model showed superior predictive 
accuracy (centrality stability CS = 0.75) compared to linear approaches 
(mean R2 = 0.53), with bootstrap tests confirming node significance 
[ΔStrength (M_2 − F_3) = 0.645, p < 0.001]. Narrow confidence 
intervals for core edges [e.g., M_2-M_3: 95% CI (0.609, 0.751)] further 
validate its reliability (50). These psychometric properties align with 
recent advances in network medicine methodologies (51).

Precision policy framework: from nodes to 
national strategy

Our findings necessitate a Precision Policy Framework that tailors 
interventions to specific network roles.

Firstly, tiered communication strategies must be implemented.
For critical bridge populations [e.g., low-income groups (monthly 

income <4,000 RMB; 21.5% of our sample)] and older adults [aged 
≥60; high morbidity group underrepresented in our cohort (4.2%)], 
interventions should: ① Develop culturally sensitive narratives 
delivered via accessible channels (e.g., community theater, local radio, 
and social media platforms like Douyin/TikTok), focusing on 
economic risk mitigation (e.g., “Flu prevention protects your family’s 
income”) and vaccine cost subsidies (52); ② Distribute health kits 
containing rapid tests, masks, and pictorial educational materials in 
collaboration with neighborhood committees (53).

For core-driver groups [e.g., parents/caregivers (60.8% married 
in sample)], strategies include: ① School-based vaccination programs 
linked to incentives (e.g., childcare vouchers); ② Digital tools 
(WeChat mini-programs) providing family infection risk assessments 
and clinic locators.

Secondly, structural interventions must target key socioeconomic 
nodes, such as: ① Piloting flu-season income supplements for informal 
workers (e.g., 30% wage coverage during sick leave); ② Insurance 
premium reductions for vaccinated households (e.g., 5% discount on 
critical illness insurance) (54).

Finally, real-time surveillance of network dynamics through: ① 
Social media sentiment analysis (e.g., monitoring keywords: “flu 
costs,” “family infection fear”); ② Agent-based modeling simulating 
policy impacts on bridge nodes (e.g., economic loss perception) (55).

The triadic model’s value for emerging 
“coinfection diseases”

The Triadic Model demonstrates considerable potential for 
addressing emerging challenges in coinfection diseases, particularly 
in the context of concurrent influenza and COVID-19 infections 
(often referred to as “twindemic” scenarios) (56). This framework 
offers distinct advantages over conventional linear models by 
effectively capturing the complex interplay of risk perception and 
behavioral responses inherent in coinfection situations (57).

The model’s strength lies in its ability to analyze how 
individuals simultaneously evaluate multiple pathogen threats, 

FIGURE 4

Accuracy and stability analysis of the influenza risk perception network. (A) Accuracy analysis of the edge weights. (B) Stability analysis of the centrality indices.

FIGURE 5

Bootstrapped difference test of edge weights. The x-axis and y-axis 
represent individual edge within the PIRS network. Gray boxes 
indicate non-significant differences, while black boxes indicate 
significant differences.
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including assessments of susceptibility, severity, and 
controllability - often while navigating overlapping symptoms and 
conflicting public health information (58). Through its network 
structure, the model identifies critical drivers (e.g., persistent 
family infection concerns) and key bridging elements (e.g., 
heightened socioeconomic loss anxieties), revealing dynamic 

interactions between perceptions of different pathogens within 
the triadic structure (59).

Notably, the model highlights important behavioral insights, such 
as how scientific literacy may enhance perceived disease controllability 
without necessarily alleviating economic anxieties  - a crucial 
consideration for intervention design (60). This finding underscores 

FIGURE 6

Bootstrapped difference test of the node strength centrality. The x-axis and y-axis represent individual nodes within the PIRS network. Strength 
centrality values are plotted on the diagonal. Gray boxes indicate non-significant differences, while black boxes indicate significant differences.

FIGURE 7

Bootstrapped difference test of the node bridge strength centrality. The x-axis and y-axis represent individual nodes within the PIRS network. Node 
bridge strength values are plotted on the diagonal. Gray boxes indicate non-significant differences, while black boxes indicate significant differences.

https://doi.org/10.3389/fpubh.2025.1633541
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2025.1633541

Frontiers in Public Health 13 frontiersin.org

a critical gap in current approaches: effective coinfection management 
requires not only integrated disease knowledge but also targeted 
strategies to address compounded socioeconomic concerns that may 
impede adherence to complex mitigation protocols.

For enhanced predictive capability in coinfection research, future 
model iterations should incorporate several key expansions: ① 
Coinfection-specific risk perception metrics (assessing combined 
susceptibility/severity); ② Protective behavior nodes (e.g., dual 
vaccination uptake, combined protocol adherence); ③ Information 
complexity parameters (difficulty distinguishing diseases/accessing 
unified guidance); ④ Healthcare system strain indicators.

These enhancements would enable researchers to simulate how 
targeted interventions propagate through the network system, 
ultimately informing more effective public health strategies for 
concurrent epidemic scenarios (61). The model’s adaptability suggests 
particular promise for investigating behavioral dynamics surrounding 
emerging challenges like vaccination hesitancy and social distancing 
compliance in coinfection contexts (62).

Global implications and future research

This framework holds significant global implications but requires 
contextual adaptation. Cross-cultural adjustments are essential; while 
our family-centric model proved effective, its application in 
individualistic societies may require prioritizing different network 
clusters (63). Integrating environmental risk factors is critical for 
regions facing compound health crises (64).

Future research should track long-term network changes to 
disentangle COVID-19 effects from structural shifts (65). Scalable 
intervention platforms represent a key pathway, including developing 
mobile apps with gamified education and establishing network 
response teams trained in targeted outreach.

Limitations and future research 
directions

While this study provides valuable insights, several limitations 
warrant attention. First, the cross-sectional design precludes causal 
inference, and the network structure may vary dynamically with 
influenza epidemic cycles. Future research should adopt longitudinal 
designs to examine network evolution during pandemic fluctuations, 
incorporate neuroimaging techniques (e.g., fMRI) to investigate the 
neural mechanisms of risk assessment, and ultimately develop 
AI-powered dynamic risk early-warning systems. Despite these 
methodological constraints, our findings establish an important 
theoretical framework and intervention targets for post-pandemic 
influenza prevention, which should be empirically validated through 
randomized controlled trials.

Second, the sample exhibits significant demographic imbalances 
that may limit generalizability. Specifically: ① Age distribution was 
skewed toward younger adults (68.3% aged 18–30), with severe 
underrepresentation of older populations (only 4.2% aged 51–70). 
This may weaken the validity of findings for older adult subgroups 
who face higher influenza morbidity/mortality risks; ② 
Low-education groups were insufficiently captured (only 4% with 
primary education or below), potentially overlooking 
socioeconomic vulnerabilities linked to health literacy; ③ The 
convenience sampling approach and online questionnaire delivery 
may have excluded digitally disadvantaged populations (e.g., rural 
older adult, low-income households without internet access), 
introducing selection bias.

Consequently, policy implications—particularly those advocating 
family-centered interventions—should be interpreted with caution 
regarding generalizability to older adults and marginalized 
communities. Future studies must prioritize probability sampling 
(e.g., stratified random sampling) with quotas for underrepresented 

FIGURE 8

Associations between influenza risk perceived items and knowledge of science and technology.
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groups and employ mixed-mode surveys (online + community-based 
interviews) to enhance coverage.

Finally, the data collection approach may introduce measurement 
bias. The use of voluntary online self-report questionnaires risks social 
desirability bias and selection bias. Notably, the absence of 
standardized assessment tools for science knowledge measurement 
may affect the accuracy of network analysis results. Future research 
should combine subjective and objective measures (e.g., standardized 
tests, behavioral experiments) and adopt mixed-methods approaches 
(qualitative interviews + quantitative surveys) for triangulation 
validation. We also recommend developing cross-culturally adapted 
influenza knowledge assessment scales to enhance ecological validity.

Conclusion

In this study, innovative network analysis methods were applied to 
reveal the triad driving mechanism of influenza risk perception among 
the Chinese public. The study found that family centrality and the fear 
of family members contracting influenza (M_2) were the core drivers 
of the risk perception network, highlighting the key role of the “family 
protection motive” in a collectivist culture. The findings of the study 
demonstrated a robust correlation between the awareness of 
infectiousness (F_3) and socioeconomic concerns (S_2), thereby 
underscoring the necessity for science education to encompass both 
biological perceptions and economic risk communication. 
Furthermore, the study identified a positive feedback loop between 
knowledge and sense of control, thus providing a precise target for 
“network interruption” interventions. In terms of practical implications, 
the following recommendations are made: the development of family-
centred mitigation strategies, including the incorporation of 
vaccination reminders and financial compensation policies into family 
health kits; the design of tiered communication materials that 
emphasise data evidence for the highly educated and narrative case 
studies for the disadvantaged; and the establishment of a dynamic 
monitoring system to warn of sudden changes in risk perceptions using 
cyberindicators. This study innovatively applied network science to the 
study of influenza risk perception, providing new ideas for improving 
public health risk perception and optimising public health intervention 
strategies. It is imperative that future studies focus on the further 
optimisation of the network intervention model through the 
implementation of longitudinal designs and multi-country validation.
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