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To address the demand for precise patient-medical expert matching in online 
healthcare Q&A communities, this study proposes a multi-feature health community 
expert recommendation model integrating GRU, convolutional neural networks 
(CNN), and attention mechanisms. By analyzing textual semantic features from 
patients’ question titles, content, tags and personal profiles, while incorporating 
medical experts’ professional credentials information and historical reply sequences, 
we construct a recommendation framework with multi-dimensional feature fusion. 
The CNN model extracts deep semantic information from patient inquiries, coupled 
with a bidirectional GRU network to align with experts’ specialized medical domains, 
thereby optimizing recommendation accuracy and relevance. Experimental results 
demonstrate significant improvements in recommendation precision compared 
to traditional text matching methods (e.g., LSTM) and previous state-of-the-art 
approaches, particularly in handling unstructured, short-text, and multi-domain 
classification scenarios. This research provides technical references for resource 
optimization and personalized services in online medical communities, offering 
practical implementation value.
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1 Introduction

Patients seek professional medical advice from healthcare experts via question-and-answer 
(Q&A) online health communities (OHCs)—either prior to formal medical visits or during 
treatment and recovery phases—to better understand and manage their conditions. Multiple 
physicians respond to patient inquiries; users may pose follow-up questions based on 
physicians’ replies and ultimately endorse specific responses. OHCs, serving as pivotal 
platforms in digital health ecosystems, have demonstrated significant potential in alleviating 
clinical overload and enhancing physician-patient communication (1, 2). However, the 
exponential growth of user bases (exceeding 120 million monthly active users in mainstream 
platforms) has intensified systemic mismatches between heterogeneous patient demands and 
constrained high-quality medical resources (3). Three critical operational bottlenecks emerge 
in healthcare platforms: demand–supply disparity persists as current matching mechanisms 
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fail to establish accurate mappings between patient inquiries and 
physician specialty profiles, allocating high-value medical resources 
to low-relevance consultations; temporal efficiency degradation 
occurs when legacy recommendation systems inadequately capture 
physicians’ dynamic competency trajectories (e.g., evolving expertise, 
availability fluctuations), causing urgent cases to experience matching 
delays exceeding 24 h; service quality heterogeneity arises from 
superficial text matching that neglects patients’ personalized tags and 
the semantic depth of issues, frequently generating low-quality 
responses that significantly reduce user satisfaction (4). These 
operational deficiencies not only undermine platform efficacy but also 
exacerbate systemic healthcare resource disparities, particularly in 
underserved regions with physician-to-population ratios below 
1:4000, with compounded effects manifesting as $2.1 billion annual 
economic losses from misallocated consultations in U.S. telemedicine 
systems alone (43).

Current mainstream expert recommendation models 
predominantly rely on static similarity computation between patient 
queries and physician profiles (e.g., keyword matching, TF-IDF 
weighting), which faces three critical limitations: Firstly, over-
simplification in feature extraction fails to integrate multi-dimensional 
features including patients’ historical behaviors and individual 
attributes; Secondly, the lack of temporal modeling prevents 
quantitative characterization of dynamic evolution patterns in experts’ 
response quality; Thirdly, superficial semantic understanding induced 
by short-text sparsity often leads to semantic deviations and domain 
drift. Consequently, developing medical context-adaptive deep 
matching models that incorporate multi-dimensional features has 
emerged as a critical breakthrough for optimizing service ecosystems 
in online health communities.

To address the aforementioned challenges, this study proposes a 
deep learning-based multi-feature expert matching framework for 
medical Q&A communities. The innovations are demonstrated 
through three key contributions: (1) a dual-channel heterogeneous 
feature encoder combining Convolutional Neural Networks (CNNs) 
for capturing local semantic patterns in patient question titles with 
Bidirectional Gated Recurrent Units (Bi-GRUs) to model temporal 
dependencies in physicians’ historical responses; (2) an attention 
mechanism that dynamically aligns patient question representations 
with physicians’ domain expertise to enhance semantic feature 
interactions; and (3) optimized objectives that jointly improve 
recommendation accuracy while minimizing resource redundancy. 
Using real-world interaction data from two major Chinese healthcare 
platforms—"YouWenBiDa” and “XunYiWenYao”—experimental 
results demonstrate our model’s superior performance over baseline 
methods in accuracy and precision metrics, providing an extensible 
deep learning solution for intelligent medical resource allocation.

The practical implications span three key dimensions: First, 
enhancing service efficiency enables online health platforms to 
establish dynamic physician competency profiling systems that 
achieve multi-granular alignment between consultation demands 
and specialist expertise. Second, optimizing ecological 
mechanisms incentivizes physicians through precise 
recommendations to engage in high-value problem-solving, 
thereby driving platforms to develop quality-efficient physician-
patient matching. Third, extending social benefits alleviates 
unnecessary occupation of offline medical resources by non-urgent 
consultations, facilitating digital transformation in hierarchical 

diagnosis systems. Crucially, online medical Q&A platforms 
address global healthcare disparities via expert recommendation 
systems that match patients with specialists digitally—mitigating 
issues like top-tier U.S. hospitals handling primary care while 
improving triage efficiency in regions with limited capacity. This 
establishes scalable frameworks for overburdened healthcare 
systems, advancing the WHO’s vision of universal digital 
health coverage.

2 Related work

The core value of online Q&A communities relies on expert 
users’ sustained contributions of high-quality answers to maintain 
the sustainable development of community knowledge ecosystems 
(5). In response to this requirement, building accurate expert 
identification and recommendation mechanisms has become 
critical for optimizing community service efficiency. This involves 
dynamically mining domain-specialized, response-active, and 
high-quality experts to achieve precise alignment between 
questioners’ needs and responders’ capabilities (6, 7). This research 
direction has garnered widespread attention from academia and 
industry, achieving groundbreaking progress in the 
healthcare domain.

2.1 Research review on traditional expert 
recommendation methods

2.1.1 Content matching-based recommendation
Early studies primarily employed text similarity-driven 

recommendation strategies. The Vector Space Model calculated text 
matching degrees between expert profiles, historical answers, and 
current questions using cosine similarity or Pearson correlation 
coefficients (8, 9). However, the vectorization process in Bag-of-Words 
models frequently induced the dimensionality curse, resulting in 
semantic sparsity issues.

Language models operated on generative probability assumptions 
to predict experts’ likelihood of answering questions. Zheng et al. 
integrated the Query Likelihood Language Model with the Maximum 
Entropy Model to quantify the alignment between experts’ 
professional competence and question topics, effectively alleviating 
semantic sparsity in high-dimensional spaces. Nevertheless, these 
methods exhibited sensitivity to cold-start problems (10).

Topic modeling approaches predominantly leverage Latent 
Dirichlet Allocation (LDA) to model question-expert topic 
associations (11). Sahu et al. (12) enhanced LDA by integrating user 
tags and social behavioral features to construct dynamic expert 
profiles, though the interpretability of derived topics remained 
constrained by the domain-specific nature of medical terminology.

While text content-matching based expert recommendation 
methods demonstrate broad applicability, they persistently face critical 
challenges including: absence of tacit knowledge representation in 
expert competence modeling; isolation in multi-dimensional 
information extraction (e.g., textual, behavioral, and contextual data 
fragmentation), these limitations not only reflect technical constraints 
but also raise methodological and ethical challenges, particularly in 
clinical decision-support scenarios.
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2.1.2 Classification model-based expert 
recommendation

Researchers have transformed expert identification problems into 
supervised learning tasks by extracting features from heterogeneous 
data to train classifiers, a paradigm typically involving two critical 
phases: feature engineering that constructs multidimensional features 
encompassing user activity patterns, question characteristics, answer 
quality assessments, and expert profiles; and classifier benchmarking 
comparing algorithmic performance across Support Vector Machines 
(SVM) (13), Random Forest (RF) (14), Naïve Bayes (NB) (15), and 
AdaBoost (16). Model parameters are optimized through question-
expert matching degree evaluation, and while these approaches 
enhance recommendation stability, feature redundancy persistently 
compromises model generalization capabilities.

2.1.3 Collaborative filtering and hybrid 
recommendation

Collaborative filtering approaches mine implicit associations 
through user-item interaction matrices but suffer from data sparsity 
and cold-start bottlenecks. Jiang et al. (17) addressed these limitations 
by integrating user tags to construct auxiliary information networks, 
enabling community-wide user interest discovery to mitigate 
recommendation bias in sparse scenarios.

Hybrid recommendation models combine multiple methodologies 
for enhanced performance (18). Wang et al. proposed the TPLMRank 
algorithm, which fuses text topic modeling with expert link analysis 
(e.g., PageRank) through semantic-structural dual-channel feature 
integration. While this method improved recommendation 
robustness, it incurred high computational complexity (19).

2.1.4 Adaptability research in healthcare 
scenarios

Expert recommendation in the medical domain requires balanced 
integration of clinical expertise and operational efficiency. Gong and 
Sun designed time-constrained probabilistic factors to mine physician 
authority from physician-patient interaction graphs, employing 
Ranking Support Vector Machines (Ranking SVM) to achieve 
dynamic demand-resource matching. However, this approach 
neglected variations in individual patient health characteristics (20). 
To address the complexity of patient-physician relationship modeling 
in medical contexts, Mondal et al. proposed a multi-layer graph data 
model-based physician recommendation system. By constructing 
multi-dimensional graph structures with graph topology-based trust 
factors, this model optimized recommendation logic and achieved 
approximately 40% improvement in complex relational query 
efficiency compared to conventional methods. Notably, it 
demonstrated superior capability in processing nonlinear correlations 
within massive heterogeneous medical data, such as cross-department 
referral preferences and dynamic physician-patient matching 
demands (21).

Ensemble learning and multi-source data fusion significantly 
enhance disease recognition accuracy, exemplified by a physician-AI 
collaboration model for diabetes that achieved 99.6% accuracy 
through sensor-EHR integration (22), while CNN-based fracture 
detection attained 92% sensitivity (23). Feng et al.’s (24) association 
rule-based expert recommender employs Pearson correlation and 
FP-growth to mine optimal team patterns, demonstrating high 
accuracy/coverage yet facing cold-start limitations with new patients/

experts. Mai et  al. (25) fused clinical guidelines with real-world 
evidence for hypertension drug recommendations, achieving 96% 
expert alignment in top-3 suggestions despite data gaps. Hassan et al. 
(26) enabled closed-loop health management via SVM-RF disease 
prediction and treatment generation, though rare-disease performance 
remains suboptimal. Nagaraj et al. (27) used grid search-optimized 
random forests to predict diabetes subtypes and recommend 
personalized dietary/insulin regimens based on physiological 
parameters, but omitted critical lifestyle factors.

Existing methods exhibit limitations in feature representation 
capacity, cold-start robustness, and healthcare scenario adaptability, 
which constrain the precision and intelligence level of 
recommendation systems. Consequently, constructing deep 
recommendation models that integrate multi-feature medical data 
with domain knowledge awareness has emerged as a critical pathway 
to enhance the service efficacy of physician-patient Q&A interactions 
in online health communities.

2.2 Research progress in deep 
learning-based expert recommendation

With the rapid development of artificial intelligence technology, 
deep learning has demonstrated significant advantages in the field of 
expert recommendation (28, 29). Compared with traditional methods 
relying on manual feature engineering, deep learning automatically 
extracts high-order features and complex interaction patterns through 
multi-layer nonlinear network structures, constructing efficient 
feature representation models via backpropagation mechanisms.

Current mainstream deep neural network architectures exhibit 
distinct characteristics: Recent improvements include He et al. (30) 
applying Long Short-Term Memory (LSTM) networks to expert 
recommendation through semantic feature extraction; Sharma et al. 
(31) proposing the LDW-CNN model with a Linear Discriminant 
Wolf Pack Algorithm to address medical data imbalance; Kumar et al. 
(32) leveraged a disease-symptom knowledge graph, patient profiles, 
and BERT-based sentiment analysis to generate multidimensional 
physician service quality scores, enabling self-diagnosis guidance and 
precision physician-patient matching; Gao et al. (33) developing a 
Dynamic Tripartite Subgraph Convolutional Network to analyze 
physician-patient interactions; Fu et al. (34) designing a Text Recurrent 
Memory Reasoning Network (RMRN) to mine query-response 
correlations; and Liu et  al. (35) proposing an LSTM-GCN hybrid 
model for joint text-network analysis. Sahoo et al. (36) proposed a 
convolutional RBM-CNN hybrid leveraging patient-hospital ratings 
for personalized recommendations, significantly lowering RMSE/
MAE errors but requiring explicit ratings and raising privacy concerns. 
Deng et  al. (37) integrated multi-source data via a hybrid model 
combining CTR and VAE to capture latent relationships from patient 
profiles, physician descriptions, and rating matrices, significantly 
improving Recall@k over baselines across three datasets. Cherukuri 
et al. (38) employed GNNs to model associations in heterogeneous 
medical data (e.g., histories, symptoms, expertise), dynamically 
constructing knowledge graphs for semantic relationship capture, 
achieving precision expert matching with high accuracy and AUC.

These studies exhibit notable limitations, most systems focus 
solely on superficial textual correlations between user queries and 
expert responses, failing to effectively integrate multi-dimensional 
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features information such as questioner profiles and health status, 
while also inadequately modeling the deep alignment between 
expert competencies and problem requirements. To address these 
gaps, this study proposes a parallel feature mining framework. The 
architecture employs a dual-channel network to separately extract 
features from patient queries and expert competencies, 
incorporates attention mechanisms for fine-grained feature 
interaction, and ultimately constructs an integrated 
recommendation model based on GRU and CNN. This approach 
effectively enhances the precision and interpretability of expert 
recommendations in medical Q&A communities while maintaining 
computational efficiency.

3 Medical expert recommendation 
model for online health communities

The Convolutional Neural Network (CNN), a feedforward 
neural network originating from the local weight-sharing 
mechanism of Time Delay Neural Networks (TDNN) (39), leverage 
local perception, weight sharing, and pooling operations to capture 
spatial local–global feature correlations for multidimensional data 
processing, was first engineered by LeCun et al. (40) in the LeNet-5 
architecture for handwritten digit recognition, and has evolved into 
a core deep learning framework for processing high-dimensional 
heterogeneous data. In medical expert recommendation scenarios, 
CNNs demonstrate three significant advantages: their local 
perception property uses convolutional kernels’ sliding window 
mechanism to focus on local semantic units (e.g., symptom 
keywords, disease entities) in patient problem descriptions while 
filtering noise; the parameter sharing mechanism reuses identical 
convolutional kernels across input matrix positions to reduce model 
parameters and mitigate overfitting from medical data sparsity; and 
hierarchical feature extraction enables shallow layers to capture 
word-level features and deeper layers to aggregate sentence-level 
semantic patterns for multi-granularity medical text analysis.

The Gated Recurrent Unit (GRU) neural network (41), a 
streamlined variant of Long Short-Term Memory (LSTM) 
architectures with dual-gate design (update gate and reset gate), 
reduces model parameters by approximately one-third compared to 
standard LSTM while enhancing computational efficiency for medical 
text processing, addressing challenges from limited training data and 
effectively capturing long-range dependencies in medical terminology. 
In healthcare AI applications, GRU-based models exhibit robust 
capabilities in: clinical logic parsing through accurate deconstruction 
of diagnostic-therapeutic workflows from unstructured medical 
narratives; medical dialogue processing via efficient handling of 
temporal dependencies in clinician-patient interactions; and decision 
support by providing technical foundations for evidence-based 
clinical decision-making through sequential pattern recognition (42).

3.1 Expert recommendation model for 
medical Q&A communities

In this study, we  propose a Hybrid-GRUCNN-Attention 
recommendation framework (as shown in Figure 1), which integrates 

GRU and CNN networks. The framework comprises the following 
key steps.

3.1.1 Input layer of expert recommendation 
system

A patient information processing channel is constructed using 
text vectors derived from preprocessed, tokenized, and BERT-based 
word vectorization, encompassing the question title, content text, and 
patient personal information. Simultaneously, an expert information 
processing channel is built from text vectors processed through 
tokenization and word embedding, incorporating physician expertise 
and historical sequences of physician responses.

3.1.2 Feature extraction
The convolutional feature extraction employs multi-scale 

convolutional kernels (2 × 2) to capture fine-grained semantic patterns 
in patient complaints, including disease entities, symptom descriptions, 
and physician expertise through hierarchical local perception, 
enhanced by ReLU activation whose single-sided inhibition enables 
sparse feature encoding. Compared to Sigmoid, ReLU combined with 
L2 regularization reduces gradient decay risks while accelerating 
convergence. Meanwhile, feature interaction fusion aggregates multi-
granularity features via global max-pooling for dimensionality 
reduction and noise filtering, coupled with attention mechanisms to 
adaptively weight critical semantic information.

Word vector representation of question title: assuming the words 
in the question title w are represented as w = [w₁, w₂, …, wn], where 
wᵢ denotes the i-th word in the title, i ∈ {1, 2, …, n}, and n represents 
the title length. The transformed word vectors of the question title are 
defined as (see Equation 1):

	 ( ) 1 2 nW embedding w W ,W ,W = =   	 (1)

Convolutional layer output: the vector after convolutional layer 
processing is (see Equation 2):

	 [ ]( )− += × + c
i c n M,n Mc relu W W b

	
(2)

where: relu(x) = max(0,x), W[n-M,n + M] represents concatenated 
word embeddings within the window([i-M, i + M]), with M = 1, 
bcand Wc are learnable parameters in the convolutional network.

Attention mechanism: Attention mechanism is a neural 
network technique that dynamically assigns varying weights to 
input elements (33), allowing models to focus on contextually 
critical features during processing. It improves tasks like expert 
recommendation by efficiently prioritizing relevant information 
while suppressing less useful data. The attention intermediate 
variable αi is computed as (see  Equation 3):

	 ( )i i btanh v c vα = × +
	 (3)

The weight vector v and learnable bias vb transform the context 
vector cᵢ into a scalar value through the tanh activation function.
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The attention weight ai is obtained through softmax normalization 
(see  Equation 4):

	

( )
( )

α

α
=

=
∑

i

1

exp
a

exp

i
n

ij 	

(4)

Weighted title representation: the final title representation ew 
combines attention weights and CNN-processed vectors (see  Equation 5):

	 =
=∑w 1e n

i ii a c 	 (5)

The tokenized question content with BERT-based word 
embeddings is represented as (see Equation 6):

	 ( )= = …  1 2 rT embedding t T ,T , ,T 	 (6)

Question content processing: After convolutional processing, the 
question content is represented as (see Equation 7):

	 =
=∑t 1e n

i ii a t 	 (7)

The vectorization pipeline applies identically to Question content, 
Personal/disease-related details, and Question semantic tags, 
generating respective representations et,ez,er.

Patient profile integration: the comprehensive patient 
representation becomes (see Equation 8):

	 =  w t z re e ,e ,e ,e 	 (8)

Physician response history sequence: the proposed framework 
employs a Bi-directional GRU (Bi-GRU) network to process physicians’ 
historical consultation records. This architecture performs bidirectional 
temporal modeling to capture contextual dependencies in diagnostic 

FIGURE 1

Architecture of the Hybrid-GRUCNN-Attention expert recommendation model. The patient’s problem information includes the question title, content, 
personal/disease-related details, and question semantic tags; the physician’s professional information encompasses their professional credentials and 
historical reply sequences.
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decision-making. The model utilizes gating mechanisms to filter noisy 
dialogue segments, applies scaled dot-product attention to mitigate 
dimensional bias and extract critical semantics. Using the attention matrix 
to enhance fusion: an attention matrix strengthens semantic relevance 
across expert response sequences, with elevating weight coefficients for 
disease entity terms, amplifing weights for clinical operation terminology, 
scaling dot-product attention for dimension-aware normalization.

Recent 15-day response physician sequences are chronologically 
ordered as R = [R1, R2, …, Rk], where k denotes sequence length. 
Historical queries are vectorized as E (see Equation 9):

	 = …  1 2 kE e ,e , ,e 	 (9)

After Bi-GRU Processing (see Equations 10– 14):

	
( )t z t 1 tz W · h ,Eσ −=    	 (10)

	
( )t r t 1 tr W · h ,E−= σ    	 (11)

	 ( )t ah t 1 t 1 ttanh W· r h ,E− − = × 


	 (12)

	 ( ) tht t t 1 th 1 z h z−= − × + × 
	 (13)

	

+
=h

2

t t
f bD D

	
(14)

The temporal feature h is processed through attention mechanism 
to derive (see Equation 15):

	 =
=∑d 1r n

i ii a h 	 (15)

Expert profile integration: Static expertise and professional titles 
are encoded via CNN and attention mechanisms as rs. The integrated 
expert representation becomes (see Equation 16):

	 =  s dr r ,r 	 (16)

Matching layer: patient-physician feature vectors from dual 
channels undergo the following steps: concatenation of patient e 
and expert r representations; adaptive pooling to compress 
redundant dimensions while preserving information entropy; and 
projection of features into physician-question matching space 
through fully connected layers.

We resolve cold-start challenges through dual-path enhancements: 
For physicians with sparse consultation histories (<5 replies), we integrate 
professional credentials (e.g., medical title, hospital tier) with ICD-11-
based medical knowledge graph features—querying disease-treatment-
drug relationships—fusing credential attributes with knowledge graph 
embeddings to create enhanced physician inputs. For patients with 
limited symptom descriptions, we extract core symptoms using BioBERT, 
expand symptom ontologies via UMLS APIs (synonyms/related 
symptoms), and combine extended symptom lists with personal metadata 

and question titles to form augmented patient inputs. These enriched 
representations feed into our Hybrid-GRUCNN-Attention model where 
both pathways connect at the fusion layer for matching prediction.

This study pursues dual objectives: enhancing 
recommendation accuracy while minimizing resource 
redundancy. Our expert recommendation model achieves this 
through hyperparameter optimization of the Sigmoid objective 
function, with performance validated across cold-start/warm-
start scenarios against baselines and prior research. Additional 
experiments verify real-time efficiency, popularity bias 
mitigation, and the impact of patient/physician input feature 
variations. The optimal parameter configuration maximizes 
recommendation accuracy while minimizing computational, 
storage, and temporal overheads during expert matching tasks—
achieving the defined optimization objectives.

3.1.3 Output layer of the expert prediction 
recommendation model

The output layer of the recommendation model is used for 
generating recommendation scores, the concatenated patient-
physician vectors are fed into a fully connected layer, and the 
Sigmoid function outputs the physician compatibility probability, 
i.e., the predicted probability. For a given question qx, the matching 
expert user ux can be  calculated using the formula below (see 
Equation 17):

	
( ) ( )( )= Ψ T

x q FC x xScore q ,u sigmoid r e
	

(17)

The fully connected (FC) layer processes a 128-dimensional patient 
vector rx (containing question semantics, medical history, and urgency 
level) and a 128-dimensional physician vector ex (with professional 
qualifications, domain expertise, and historical sequences). Through 
concatenation rx

Tex, these form a 256-dimensional joint feature vector 
that learns patient-physician feature interactions.

The FC layer uses trainable parameters: a weight matrix Wfc ∈ 
ℝ^{256×1} and a bias term bfc ∈ ℝ. The transformation is computed as: 
ΨFC(z) = Wfc · z + bfc. Finally, a Sigmoid activation function converts the 
output into a probability score between 0 and 1: Score = σ( ΨFC(z)) = 1 /  
(1 + exp(–ΨFC(z))).

3.2 Evaluation metrics for the 
recommendation system

This study employs Accuracy (ACC) and the Area Under the ROC 
Curve (AUC) as core evaluation metrics, which evaluate the 
recommendation performance of the classification model from 
different perspectives. Where, ROC is the Receiver Operating 
Characteristic Curve, which is drawn with false positive rate as the 
X-axis and true positive rate as the Y-axis.

Accuracy (ACC): accuracy is a fundamental evaluation metric for 
classification tasks, indicating the overall correctness of the model’s 
predictions. It is calculated as the ratio of correctly predicted samples 
to the total number of samples (see Equation 18):

	
+

=
+ + +

ACC TP TN
TP FP FN TN 	

(18)
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where: TP (True Positive) represents the number of samples 
correctly predicted as positive (actual positive cases), FP (False 
Positive) represents the number of samples incorrectly predicted as 
positive (actual negative cases), FN (False Negative) represents the 
number of samples incorrectly predicted as negative (actual positive 
cases), TN (True Negative) represents the number of samples correctly 
predicted as negative (actual negative cases).

Area under the ROC curve (AUC): the AUC provides a robust 
evaluation of a model’s discriminative ability by comprehensively 
assessing classifier performance across different thresholds. The 
mathematical expectation of ROC is equivalent to the probability that 
the classifier correctly ranks a randomly chosen positive instance 
higher than a negative one. The AUC value ranges between 0 and 1, 
with the following interpretation: 0.5 indicates random guessing; 
0.7–0.8 suggests moderate discriminative capability; 0.8–0.9 
demonstrates strong discriminative capability; and >0.9 signifies 
exceptional classification performance.

Compared to the single-threshold ACC metric, AUC offers three key 
advantages: insensitivity to class imbalance; comprehensive evaluation 
across all threshold intervals; reflection of ranking quality. This is 
particularly critical for medical text classification tasks, which often face 
challenges of imbalanced positive/negative sample distributions.

In addition to ACC and AUC, the model employs the following 
metrics to evaluate performance:

Precision@10: the proportion of correctly identified relevant 
physicians (positive class) among the top 10 recommendations. This 
measures recommendation accuracy by minimizing 
irrelevant suggestions.

Recall@10: the fraction of all truly relevant physicians successfully 
captured within the top  10 recommendations. This evaluates the 
model’s ability to comprehensively cover user needs.

NDCG@10 (Normalized Discounted Cumulative Gain): a ranking 
quality metric that prioritizes higher-ranked relevant physicians by 
assigning greater weight to top positions. Computes relevance scores 
(e.g., Softmax probability × authority weight) and normalizes against 
ideal ranking.

To evaluate the model’s real-time performance, we  adopt the 
following three metrics:

Avg. Inference Latency: the mean processing time required to 
generate recommendations per request. This reflects overall system 
responsiveness and supports capacity planning and 
performance benchmarking.

P99 Inference Time: the threshold below which 99% of requests 
complete processing. Identifies long-tail latency outliers to ensure 
service stability for the vast majority of users and maintain 
SLA compliance.

SLA Compliance Rate: the proportion of requests processed 
within the predefined threshold (500 ms). Directly quantifies real-
time performance against Service Level Agreement requirements.

To evaluate the model’s popularity bias, we employ the following 
three metrics:

Exposure Rate: quantifies frequency disparity between popular 
and niche experts in recommendations. Calculated as the ratio of 
exposures for top-tier experts versus long-tail providers.

Recall@10: proportion of truly relevant experts captured in top-10 
recommendations. Evaluates whether popularity bias suppresses 
personalized long-tail needs by comparing against actual 
user preferences.

Coverage Contribution: long-tail experts’ percentage share in 
recommendation results. Measures system capability to surface niche 
expertise, assessing diversity and fairness.

4 Experimental design and analysis

4.1 Experimental environment 
configuration

The experiments were implemented in Python using TensorFlow 
and Keras, and were run on an NVIDIA DGX Station A100 system 
featuring an AMD EPYC 7742 CPU.

4.2 Data sources and preprocessing

This experiment aims to validate model accuracy through 
expanded data volume, utilizing fully de-identified historical 
physician-patient interaction data collected via a web crawler from 
Chinese online medical platforms (XunyiWenyao and 
Youwenbidawang) between January 1, 2018, and December 31, 2022. 
The dual-channel data architecture includes patient problem 
components including: personal/disease-related details (age, gender, 
region, disease), medical history features (past medical history, 
medication records, allergy history in structured fields), question titles 
(averaging 15 characters), question content (averaging 128 characters), 
and semantic tags (symptom classification labels via LDA topic 
modeling with 8 major categories and 32 subcategories).

This experiment analyzes the physician’s professional information 
including professional credentials information (title: Chief/Associate 
Chief/Attending Physician; hospital tier; specialty under ICD-11 
standards; temporal adoption rate curves) and historical reply 
sequences (historical answer text sequences spanning ≥3 years).

The key steps in data preprocessing involve: multi-source data 
cleaning through outlier filtering to remove noisy entries with response 
lengths <20 characters or >2000 characters; for continuous variables 
(e.g., age), Generative Adversarial Imputation Networks (GAIN) is 
employed for imputation; for categorical variables (e.g., gender), the 
‘Unknown’ category is used to avoid introducing bias, medical text 
augmentation via the integration of domain-specific lexicons and 
hybrid tokenization strategies combining Chinese Jieba tokenization 
with medical entity recognition for semantic processing; and deep 
semantic representation using a pre-trained Chinese BERT language 
model(BERT-wwm-ext) for word embedding. Data quality is ensured 
through medical accuracy validation conducted by a panel of 
physicians (3 Associate Chief Physicians) on 5% of samples.

Experimental datasets. After preprocessing, Dataset M1 (sourced 
from Xunyi Wenyao) contains 86,910 detailed records while Dataset 
M2 (from Youwenbidawang) includes 75,481 records. Each dataset 
systematically incorporates: (a) user question titles; (b) full question 
content; (c) multi-dimensional user profile tags (encompassing 
personal identifiers and disease-related metadata); (e)question 
semantic tags; (f) Physicians’ professional credentials information with 
specialty fields and professional titles; and (g) temporally-sequenced 
records of physicians’ historical replies, serving as parallel input 
channels for the Hybrid-GRUCNN-Attention architecture. The volume 
of data in the dataset and the fields it contains are shown in Tables 1, 2.
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4.3 Experimental design
4.3.1 Parameter configuration optimization

The combined dataset (M1 + M2) was divided into training, 
validation, and test sets using a 6:2:2 ratio to evaluate model 
performance and generalization accuracy. After model training, 
optimal hyperparameters were determined based on validation 
set performance. Through multiple experiments, the final 
network architecture and parameter configurations were 
established as follows: a pooling window (2 × 2 with ‘same’ 
padding) maintains feature map dimensions; a dropout rate of 0.5 
mitigates overfitting; four training epochs ensure sufficient 
learning; a regularization coefficient (λ  = 3) enhances 
generalization; a batch size of 256 improves efficiency; the Adam 
optimizer ensures stable convergence; ReLU activation introduces 
nonlinearity; Binary Cross-Entropy (BCE) loss measures 
prediction error; and a learning rate of 0.01 controls 
parameter updates.

4.3.2 Baseline model selection
To comprehensively evaluate the performance of the proposed 

Hybrid-GRUCNN-Attention model, five representative temporal 
modeling models were selected as baselines:

LSTM (Long Short-Term Memory): Solves the vanishing gradient 
problem in traditional RNNs via gating mechanisms, excelling at 
capturing long-range temporal dependencies.

GRU (Gated Recurrent Unit): An improved variant of LSTM that 
merges forget and input gates into an update gate, achieving 33% 
higher parameter efficiency.

Bi-GRU (Bidirectional GRU): A bidirectional architecture 
capturing both forward and backward temporal features to enhance 
contextual understanding.

Bi-GRU-ATT (Attention-Enhanced Bidirectional GRU): 
Integrates attention mechanisms into Bi-GRU, using a learnable 
weight matrix to highlight critical temporal nodes.

CN-DSSM (Convolutional Deep Semantic Matching Model): 
Constructs a deep semantic space via convolutional neural 

networks (CNNs), extracting local contextual patterns through 
sliding windows.

In addition, we introduce four critical benchmark models: (1) an 
attention-ablated Hybrid-GRUCNN variant, alongside three state-of-
the-art approaches from prior research: (2) Kumar et al.’s (32) deep 
learning architecture, (3) Hassan and Elagamy’s (26) SVM-Random 
Forest hybrid, and (4) Cherukuri et  al.’s (38) graph neural 
network implementation.

4.4 Performance evaluation and result 
analysis of the hybrid-GRUCNN-attention 
model

4.4.1 Impact of fully connected layer depth on 
results

This study employs Accuracy (ACC) and the Area Under the 
ROC Curve (AUC) as core metrics to systematically compare the 
Hybrid-GRUCNN-Attention medical expert recommendation 
model with baseline methods. As shown in Figure 2, controlled 
experiments on fully connected (FC) layer depth demonstrate: a 
4-layer FC structure achieves optimal validation performance with 
ACC/AUC increases of ~5%/10%, while exceeding 5 layers causes 
significant validation degradation (ΔACC = −6%) despite training 
improvements, indicating overfitting from excessive complexity. 
These results highlight the architectural balance between 
representation capacity and generalization, with regularization or 
early stopping recommended for risk mitigation.

4.4.2 Impact of training epochs on results
Model convergence analysis, as shown in Figure  3 (accuracy vs. 

epoch) and Figure 4 (AUC vs. epoch), reveals two distinct phases: rapid 
improvement during epochs 1–4 with ACC/AUC rising from 0.852/0.853 
to 0.893/0.88 through discriminative feature capture, followed by stable 
saturation (epochs >4) where metric fluctuations narrow to <±0.5% while 
declining validation scores indicate overfitting risks.

TABLE 1  Dataset size metrics post-data-cleansing.

Dataset M1 Size Dataset M2 Size

User count 24,000 Physician reply count 16,000

User question count 86,910 Physician reply count 75,481

Physician count 42,175 Physician reply count 11,326

Physician reply count 463,006 Physician reply count 371,214

Each patient question receives multiple responses from different physicians.

TABLE 2  Dataset attribute metrics.

Name Data fields

Question titles Averaging 15 characters

Question content Averaging 128 characters

Personal/disease-related details Age, gender, region, disease, medical history features (past medical history, medication records, allergy history in structured fields)

Question semantic tags Symptom classification labels via LDA topic modeling with 8 major categories and 32 subcategories

Physicians’ professional credentials 

information

Title: Chief/Associate Chief/Attending Physician; hospital tier; specialty under ICD-11 standards; temporal adoption rate curves

Physicians’ historical reply sequences Historical answer text sequences spanning ≥3 years
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Based on the above observations, this study adopts an Early 
Stopping strategy with a training epoch setting of 4. This decision 
balances model performance and computational efficiency: Under 
GPU acceleration, 4 epochs require only 18.7 min, saving 34.3% of 
computational resources compared to 5-epoch training while 
maintaining peak performance.

4.4.3 Impact of training dataset size on results
Controlled experiments validate the relationship between 

training data scale and algorithm performance. As shown in 
Figures  5, 6, prediction accuracy in expert-patient demand 
matching exhibits a significant upward trend as the training data 
increases from 10% to the full dataset. This demonstrates that 
expanding training data effectively enhances the model’s 
representational precision, enabling it to better capture complex 
mappings between medical experts and patient needs.

Remarkably, under extreme low-resource conditions 
(utilizing only 10% of training data), the model sustains an 83% 
matching accuracy, demonstrating two critical methodological 
strengths: pre-trained word embeddings substantially mitigate 
performance degradation through context-aware semantic 
representations, while the attention mechanism framework 
ensures generalization capability by adaptively weighting 
discriminative features, thereby maintaining system robustness 
under pronounced data sparsity. When training data exceeds 

60%, performance improves markedly, indicating that surpassing 
a critical data volume threshold allows the algorithm to better 
exploit deep semantic correlations in medical texts.

The experiments ultimately achieved a matching accuracy of 
89.3% and an AUC of 88.0% on the full dataset. These empirical 
results not only validate the rationality of the model’s architectural 
design but also rigorously demonstrate the algorithm’s stability during 
data scale expansion through quantitative performance analysis. This 
provides theoretical support for its large-scale deployment in smart 
healthcare platforms.

FIGURE 2

Model performance with varying fully connected (FC) layer depths.

FIGURE 3

Accuracy (ACC) variation across training epochs.

FIGURE 4

AUC variation across training epochs.

FIGURE 5

ACC results with varying dataset sizes.

FIGURE 6

AUC results with varying dataset sizes.
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4.4.4 Comparative analysis with baseline models
All experiments are now repeated 5 times with different random 

seeds. Performance comparisons were conducted between our 
proposed model, benchmark models, and State-of-the-art classical 
models on cold-start, hot-start, and the overall dataset under 
standardized configurations (4 fully connected layers, 4 training 
epochs) demonstrates clear methodological progression. These 
comparisons are summarized in Table 3.

The results presented in Table 3 indicate that the conventional 
LSTM architecture substantially underperforms due to its limited 
capacity in modeling long-range dependencies. In contrast, the 
GRU variant, enhanced through refined gating mechanisms, 
elevates all evaluation metrics by approximately 2% relative to 
LSTM. This improvement is further amplified by the BiGRU 
framework (bidirectional information flow). The better 
performance emerges from the BiGRU-ATT model, where 

attention-driven dynamic weighting of critical semantic features 
delivers absolute various indexes improvement over standard 
BiGRU, validating the necessity of feature prioritization in 
semantic understanding tasks.

Notably, while the CNN-DSSM baseline demonstrates 
enhanced contextual awareness through convolutional kernels’ 
sliding-window operations—achieving a 2.2% recall improvement 
over BiGRU-ATT—the proposed Hybrid-GRUCNN-Attention 
model establishes new performance thresholds via its dual-channel 
synergistic architecture. This framework strategically combines: (i) 
a BiGRU temporal branch that decodes bidirectional long-range 
dependencies in user behavioral sequences, and (ii) a CNN spatial 
branch employing multilayer convolutions to distill expert feature 
hierarchies. Crucially, its attention mechanism dynamically 
mediates cross-modal interactions by computing adaptive weights 
through pairwise cross-correlation, thereby selectively emphasizing 

TABLE 3  Performance comparison with baseline and state-of-the-art methods.

Algorithm Test set ACC AUC Precision@10 Recall@10 NDGC@10

LSTM

Cold 0.191 ± 0.01 0.097 ± 0.05 0.172 ± 0.05 0.078 ± 0.05 0.105 ± 0.04

Warm 0.799 ± 0.02 0.805 ± 0.03 0.373 ± 0.03 0.299 ± 0.04 0.322 ± 0.07

All 0.749 ± 0.02* 0.728 ± 0.04* 0.315 ± 0.04* 0.218 ± 0.03* 0.265 ± 0.04*

GRU

Cold 0.210 ± 0.03 0.132 ± 0.02 0.195 ± 0.07 0.097 ± 0.04 0.120 ± 0.04

Warm 0.823 ± 0.02 0.822 ± 0.04 0.382 ± 0.04 0.323 ± 0.06 0.343 ± 0.03

All 0.763 ± 0.01* 0.759 ± 0.02* 0.341 ± 0.05* 0.273 ± 0.02* 0.285 ± 0.03*

Bi-GRU

Cold 0.247 ± 0.03 0.203 ± 0.04 0.188 ± 0.06 0.106 ± 0.03 0.198 ± 0.04

Warm 0.851 ± 0.02 0.833 ± 0.02 0.423 ± 0.02 0.402 ± 0.03 0.331 ± 0.04

All 0.792 ± 0.01* 0.778 ± 0.03* 0.410 ± 0.06* 0.358 ± 0.03* 0.285 ± 0.04*

Bi-GRU-ATT

Cold 0.252 ± 0.02 0.265 ± 0.02 0.195 ± 0.02 0.125 ± 0.05 0.199 ± 0.06

Warm 0.861 ± 0.02 0.885 ± 0.03 0.467 ± 0.03 0.422 ± 0.03 0.425 ± 0.04

All 0.815 ± 0.02** 0.805 ± 0.02** 0.392 ± 0.02** 0372 ± 0.04** 0.366 ± 0.04**

CSS-DSSN

Cold 0.327 ± 0.03 0.253 ± 0.03 0.198 ± 0.05 0.145 ± 0.03 0.172 ± 0.03

Warm 0.882 ± 0.02 0.879 ± 0.03 0.487 ± 0.05 0.431 ± 0.05 0.520 ± 0.05

All 0.834 ± 0.03** 0.827 ± 0.02* 0.426 ± 0.04** 0.347 ± 0.02** 0.471 ± 0.03**

Hybrid-GRUCNN

Cold 0.342 ± 0.01 0.313 ± 0.02 0.197 ± 0.03 0.189 ± 0.03 0.199 ± 0.02

Warm 0.894 ± 0.03 0.874 ± 0.02 0.573 ± 0.05 0.543 ± 0.04 0.780 ± 0.03

All 0.839 ± 0.02** 0.825 ± 0.02** 0.541 ± 0.03** 0.479 ± 0.02** 0.749 ± 0.02**

Kumar et al. (32)

Cold 0341 ± 0.03 0.214 ± 0.03 0.153 ± 0.07 0.145 ± 0.06 0.143 ± 0.04

Warm 0.703 ± 0.03 0.612 ± 0.04 0.464 ± 0.08 0.402 ± 0.05 0.581 ± 0.05

All 0.6541 ± 0.03* 0.565 ± 0.03* 0.413 ± 0.06* 0.345 ± 0.03* 0.539 ± 0.04*

Hassan and Elagamy 

(26)

Cold 0.321 ± 0.04 0.217 ± 0.02 0.186 ± 0.07 0.176 ± 0.03 0.157 ± 0.06

Warm 0.704 ± 0.02 0.603 ± 0.02 0.493 ± 0.09 0.479 ± 0.05 0.682 ± 0.04

All 0.6121 ± 0.04* 0.603 ± 0.02* 0.436 ± 0.07* 0.418 ± 0.03* 0.653 ± 0.03*

Cherukuri et al. (38)

Cold 0.349 ± 0.01 0.226 ± 0.03 0.194 ± 0.09 0.184 ± 0.04 0.196 ± 0.04

Warm 0.805 ± 0.01 0.785 ± 0.02 0.579 ± 0.09 0.567 ± 0.03 0.756 ± 0.03

All 0.746 ± 0.01* 0.727 ± 0.02* 0.524 ± 0.09* 0.534 ± 0.02* 0.718 ± 0.03*

Hybrid-GRUCNN-

Attention

Cold 0.372 ± 0.02*** 0.317 ± 0.01*** 0.235 ± 0.03*** 0.271 ± 0.02*** 0.202 ± 0.02***

Warm 0.932 ± 0.02*** 0.920 ± 0.01*** 0.715 ± 0.02*** 0.712 ± 0.02*** 0.827 ± 0.02***

All 0.893 ± 0.02*** 0.880 ± 0.01*** 0.675 ± 0.02*** 0.671 ± 0.02*** 0.823 ± 0.02***

Significant results via pairwise t-tests (α = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

https://doi.org/10.3389/fpubh.2025.1633754
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2025.1633754

Frontiers in Public Health 11 frontiersin.org

discriminative features across heterogeneous data streams. 
Empirical validation confirms the model’s architectural superiority: 
Hybrid-GRUCNN-Attention attains 89.3% accuracy (+5.9% vs. 
CNN-DSSM) and 88.0% AUC (+5.3% vs. CNN-DSSM), 
establishing state-of-the-art performance through unified 
spatiotemporal representation learning. Furthermore, it surpasses 
previous state-of-the-art approaches based on both ensemble 
methods (26) and deep learning methods (32, 38) (43) across all 
evaluation metrics.

Results in Table 3 demonstrate that the Hybrid-GRUCNN-
Attention model, incorporating an attention mechanism, 
significantly improves cold-start recall compared to the Hybrid-
GRUCNN model (Recall@10 ↑43.4%). This validates the attention 
mechanism’s enhancement for medical expert recommendation, 
proving its effectiveness in capturing long-tail expert features and 
mitigating popularity bias. In warm scenarios with sufficient 
physician data, it achieves an NDCG@10 of 0.827, indicating 
excellent ranking quality. Its Recall@10 of 0.671 represents a 40.1% 
increase over the base model Hybrid-GRUCNN (0.479 → 0.671). 
Crucially, it achieves balanced performance for the first time 
between cold-start and warm scenarios (All-scenario Recall/
NDCG >0.67), solving the scenario adaptation challenge in 
medical recommendation. Overall, the Hybrid-GRUCNN-
Attention model surpasses all baselines comprehensively across 
cold-start (Cold), warm scenarios (Warm), and overall 
performance (All), achieving statistically significant improvements 
(p  < 0.001) on all six metrics, further confirming the attention 
mechanism’s reinforcing effect.

To verify the real-time performance of the model, we conducted 
real-time benchmarking tests on the trained Hybrid-GRUCNN-
Attention model, with the comparative results shown in Table 4.

In Table 4, the Hybrid-GRUCNN-Attention model achieves a 
breakthrough in real-time performance for medical recommendation 
systems: with an average inference time of 85 ms and P99 latency of 
220 ms (meeting emergency-grade response requirements), it delivers 
a 15% speed improvement over the best baseline at equivalent model 
complexity, establishing the technical foundation for large-scale 
clinical deployment. The 85 ms average response enables processing 
11.7 concurrent requests per second (satisfying peak demand in tier-3 

hospitals), while the 220 ms P99 latency ensures 99% of emergency 
consultations are matched within the duration of a human blink 
(200-300 ms). This P99 latency is a further 18.5% reduction compared 
to the next-best model (Cherukuri 2025 = 270 ms), demonstrating 
superior resilience against traffic fluctuations. Crucially, this is 
achieved under the constraint of a fixed model size (34.7 MB), 
simultaneously boosting inference speed ↑15% [vs. Cherukuri (38)], 
these results confirm the model’s full compliance with emergency 
response standards.

To avoid the system excessively recommending popular experts 
(e.g., those with high exposure or senior titles), which could lead to 
the neglect of long-tail experts (such as newcomers or specialists in 
niche fields), a popularity bias evaluation was conducted to ensure all 
experts receive reasonable exposure opportunities. Comparative 
results are shown in Table 5. The proportions Head (10%), Middle 
(40%), and Tail (50%) objectively reflect the distribution of experts in 
the dataset.

Results in Table 5 demonstrate that Hybrid-GRUCNN-Attention 
achieves a fairness breakthrough in medical recommendation systems: 
it elevates tail expert exposure to 30% while compressing head expert 
exposure to 28% (versus 30–37% in other models), all while 
maintaining a 72% ultra-high recall rate for head experts—resolving 
the long-standing fairness-precision trade-off. Compared to Hybrid-
GRUCNN, the model delivers a 50% increase in tail expert exposure, 
substantially expanding service opportunities for tail physicians. Its 
72% head expert recall ensures critically ill patients match top 
specialists, while 38% tail recall marks an 18.7% improvement over 
the next-best model (38), proving superior long-tail mining capability. 
Crucially, it optimizes resource allocation by boosting head expert 
recall despite reduced exposure, achieving balanced coverage: mid-tier 
experts at 44% (approaching their 40% population share) and tail 
experts at 38% (nearing their 50% population share), all improvements 
are statistically significant (p < 0.001).

4.4.5 Analysis of the impact of multimodal input 
features on recommendation effectiveness

Patient input feature design and ablation experiment setup: 
to investigate the contribution of different multi-feature in 
patient question representation, this study designs five ablation 

TABLE 4  Real-time performance comparison: baseline vs. state-of-the-art methods.

Algorithm Test set Avg. inference 
(ms)

P99 inference 
time (ms)

Model size 
(MB)

Meets requirement 
(<500 ms)

LSTM All 210 510 34.7 No

GRU All 190 380 34.7 Yes

Bi-GRU All 180 336 34.7 Yes

Bi-GRU-ATT All 140 298 34.7 Yes

CSS-DSSN All 145 285 34.7 Yes

Hybrid-GRUCNN All 105 265 34.7 Yes

Kumar et al. (32) All 120 300 34.7 Yes

Hassan and Elagamy (26) All 110 280 34.7 Yes

Cherukuri et al. (38) All 100 270 34.7 Yes

Hybrid-GRUCNN-

Attention All 85 220 34.7 Yes

Latency results were collected from a controlled environment with <1% background CPU utilization, where repeated measurements showed no statistically significant variance (p > 0.1). The 
bold text indicates the best average inference time and P99 latency.
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experiment groups (Ablation Study). The impact of feature 
combinations on recommendation effectiveness is  
evaluated using the controlled variable method, as shown in 
Table 6.

The results in Table 6 reveal significant performance variations 
across input combinations:

In single-modality scenarios: E1 (Content-only) performed worst 
(ACC = 0.755, AUC = 0.745, Precision@10 = 0.586, 

TABLE 5  Popularity bias comparison: baseline vs. state-of-the-art methods.

Algorithm Expert group Exposure rate Recall@10 Coverage contribution 
(%)

LSTM

Head 36% ± 0.3%* 60% ± 0.2%* 38% ± 0.4%*

Middle 41% ± 0.5%*** 45% ± 0.2%*** 30% ± 0.2%***

Tail 23% ± 0.2%*** 28% ± 0.2%*** 32% ± 0.4%***

GRU

Head 22% ± 0.1%*** 62% ± 0.2%*** 38 ± 0.2%***

Middle 45 ± 0.4%*** 47% ± 0.2%*** 34% ± 0.5%***

Tail 33% ± 0.6%*** 26% ± 0.2%*** 33% ± 0.2%***

Bi-GRU

Head 36 ± 0.2%*** 65% ± 0.2%*** 30 ± 0.4%***

Middle 48% ± 0.4%*** 66% ± 0.2%*** 47% ± 0.2%***

Tail 16% ± 0.2%*** 24% ± 0.2%*** 23 ± 0.5%***

Bi-GRU-ATT

Head 37% ± 0.5%*** 65% ± 0.2%*** 30% ± 0.2%***

Middle 46% ± 0.2%*** 48% ± 0.2%*** 46% ± 0.2%***

Tail 17% ± 0.4%*** 64% ± 0.2%*** 24% ± 0.3%***

CSS-DSSN

Head 35% ± 0.2%*** 60 ± 0.2%*** 30% ± 0.2%***

Middle 47% ± 0.4%*** 48% ± 0.2%*** 46% ± 0.5%***

Tail 17% ± 0.2%*** 29% ± 0.2%*** 24% ± 0.2%***

Hybrid-GRUCNN

Head 34% ± 0.3%*** 60% ± 0.2%*** 32 ± 0.4%***

Middle 46% ± 0.5%*** 47% ± 0.2%*** 34% ± 0.2%***

Tail 20% ± 0.2%*** 29% ± 0.2%*** 32% ± 0.2%***

Kumar et al. (32)

Head 37% ± 0.5%*** 61% ± 0.2%*** 23% ± 0.5%***

Middle 46% ± 0.2%*** 48% ± 0.2%*** 46% ± 0.2%***

Tail 17% ± 0.2%*** 28 ± 0.2%*** 31% ± 0.6%***

Hassan and Elagamy (26)

Head 35% ± 0.2%** 62 ± 0.2%** 26% ± 0.2%**

Middle 46% ± 0.4%*** 49% ± 0.2%*** 40% ± 0.2%***

Tail 19% ± 0.2%*** 27% ± 0.4%*** 33% ± 0.5%***

Cherukuri et al. (38)

Head 36% ± 0.2%*** 64% ± 0.2%*** 24% ± 0.3%***

Middle 43% ± 0.4%*** 49% ± 0.2%*** 30% ± 0.2%***

Tail 21% ± 0.2%*** 32% ± 0.3%*** 36% ± 0.2%***

Hybrid-GRUCNN-Attention

Head 28% ± 0.1%*** 72% ± 0.2%*** 18% ± 0.4%***

Middle 42% ± 0.2%*** 58% ± 0.1%*** 44% ± 0.1%***

Tail 30% ± 0.2%*** 38% ± 0.2%*** 38 ± 0.2%***

Significant results via pairwise t-tests (α = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

TABLE 6  Results with different question input combinations.

Patient query input ACC AUC Precision@10 Recall@10 NDGC@10

Question Content (E1) 0.755 ± 0.02* 0.745 ± 0.01* 0.568 ± 0.01* 0.573 ± 0.02* 0.754 ± 0.01*

Question semantic Tags (E2) 0.789 ± 0.01** 0.774 ± 0.02** 0.589 ± 0.02** 0.601 ± 0.01** 0.795 ± 0.02**

Question Title (E3) 0.813 ± 0.0 ** 0.803 ± 0.01** 0.623 ± 0.01** 0.612 ± 0.02** 0.812 ± 0.0 **

QuestionTitle+Content (E4) 0.847 ± 0.02*** 0.852 ± 0.02*** 0.635 ± 0.02*** 0.627 ± 0.02*** 0.821 ± 0.02***

Full Context (E5) 0.893 ± 0.01*** 0.880 ± 0.01*** 0.675 ± 0.02*** 0.671 ± 0.01*** 0.823 ± 0.02***

Significant results via pairwise t-tests (α = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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Recall@10 = 0.573, NDGC@10 = 0.754) due to semantic ambiguity 
caused by low information density. E2 (Tags-only) and E3 (Title-only) 
showed improvements across all metrics, with NDGC@10 increasing 
by 4.1%. This demonstrates that structured tags mitigate noise in 
lengthy texts, while keywords in titles play a central role in 
representing patient questions.

With dual-feature fusion (E4: Title + Content): ACC and AUC 
rose to 0.847 and 0.852 respectively, proving the complementarity 
between keyword-focused titles and detailed content descriptions.

Through full-modality integration (E5: Title + Content + Tags): 
Optimal performance was achieved (ACC = 0.893, AUC = 0.880, 
Precision@10 = 0.675, Recall@10 = 0.671, NDGC@10 = 0.823), 
indicating that multimodal features enable semantic 
enhancement  – particularly when processing diverse medical 
Q&A information.

These results demonstrate that effective medical question 
representation necessitates integrating multi-granularity textual 
information with domain-specific knowledge tags, as single-feature 
inputs (E1-E3) fail to meet complex clinical demands. Performance 
consistently improves with richer inputs: from single features to 
combined features (E4) and full-context inputs (E5), all metrics 
increase progressively. The full-context model (E5) achieves peak 
performance with exceptional stability (ACC/AUC SD ≤ 0.02, 
p < 0.001): Precision@10 = 0.675 (+18.8% vs. E1), Recall@10 = 0.671 
(+11.6% vs. E2), and statistically significant gains across all metrics 
(p < 0.001). Crucially, while question-title-only inputs (E3) offer speed 
but limited precision (risking misdiagnosis), full-context integration 
enables dual “precision-comprehensiveness” outcomes: record-high 
Precision@10 (0.675) and superior ranking quality 
(NDCG@10 = 0.823).

Medical expert input feature design and ablation experiment 
setup: in medical expert modeling, the selection of different 
information sources significantly impacts model-predictive 
performance. Using a controlled-variable methodology, three 
information schemes were tested: the Basic Information Group (F1: 
Professional credentials only), Temporal Behavior Group (F2: 
physicians’ historical reply sequences), and Integrated Information 
Group (combined F1 + F2), as shown in Table 7.

As Table  7 shows, ACC and AUC reached 0.893 and 0.880, 
respectively, (6% higher than the professional credentials group), 
while Precision@10 increased by 6% versus the professional 
credentials group (F1)—reducing mismatched recommendation risks. 
Recall@10 rose by 5.9% versus professional credentials attributes 
(F1)—minimizing omissions of critical experts and outperforming 
physicians’ historical reply sequences models. NDCG@10 improved 
by 4.5% versus professional credentials group (F1), and improved by 
7% versus physician reply history group (F2), reflecting superior 
ranking quality. All metrics showed statistically significant gains 

(p < 0.001), confirming synergistic gains from dual-feature integration 
of basic attributes and temporal behaviors.

5 Discussion and future work

This study addresses two core challenges in online health 
communities: patients’ difficulty in obtaining timely, high-quality 
responses and physicians’ inability to precisely match domain-specific 
queries. We propose the Hybrid-GRUCNN-Attention medical expert 
recommendation model, which integrates physicians’ professional 
attributes (hospital affiliation, title, age), temporal behavioral features 
(historical response patterns), and semantic patient queries through a 
multidimensional feature representation system. We  propose the 
Hybrid-GRUCNN-Attention model for medical expert 
recommendation, combining GRU, CNN, and attention mechanisms. 
This system integrates physicians’ professional credentials information 
(hospital affiliation, title, age), their behavioral patterns (historical 
reply sequences), and semantic patient queries (question titles/
content, health details, and tags) through multidimensional feature 
processing to generate recommendations. The CNN component 
extracts deep semantic features from patient inquiries, while the 
bidirectional GRU aligns these with experts’ specialized medical 
domains; an attention mechanism then dynamically weights critical 
features across this integrated representation, thereby optimizing 
recommendation accuracy and clinical relevance. Rigorous data 
filtering, parameter optimization, and multi-dimensional 
comparisons—against classical research models and prior studies 
across cold-start, warm-start, and comprehensive performance 
experiments—demonstrate the model’s significant superiority over 
baselines in core metrics. Recommendation accuracy improved 
substantially (p  < 0.001), validating the attention mechanism’s 
enhancement effect. Real-time evaluations show gains in both 
inference speed and recommendation precision. Popularity bias tests 
confirm reduced head-expert exposure while increasing their recall 
rate (ensuring critically ill patients match top specialists), alongside an 
18.7% tail-expert recall improvement—proving exceptional long-tail 
mining capability—and balanced model coverage. This research 
provides a novel methodological framework for optimizing intelligent 
medical recommendation systems.

The implementation yields three critical outcomes: (1) alleviating 
congestion in top-tier hospitals while enabling patient enrollment 
with platform physicians, thereby enhancing primary care engagement 
and establishing closed-loop chronic disease management; (2) 
mitigating geographical barriers in medically underserved regions to 
reduce patient costs and uphold WHO equity principles; (3) resolving 
the core paradox of traditional referral systems through our ‘Digital 
Triage and Offline Escalation’ framework—which standardizes 

TABLE 7  Results of different physician information input.

Physician information input ACC AUC Precision@10 Recall@10 NDGC@10

Professional credentials (F1) 0.832 ± 0.02* 0.825 ± 0.01* 0.615 ± 0.01* 0.612 ± 0.02* 0.778 ± 0.01*

Physician Reply History (F2) 0.819 ± 0.01** 0.804 ± 0.02** 0.599 ± 0.02** 0.587 ± 0.01** 0.753 ± 0.02**

Full Context (F3: Combined Credentials+ 

history reply sequences)
0.893 ± 0.02*** 0.880 ± 0.01*** 0.675 ± 0.02*** 0.671 ± 0.02*** 0.823 ± 0.02***

Significant results via pairwise t-tests (α = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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treatment protocols (e.g., hypertension management by community 
GPs) for primary care, while directly matching complex cases (e.g., 
oncology) with relevant specialists through shared diagnostic 
histories, thereby optimizing resource allocation across overburdened 
tertiary and underutilized primary institutions. This research 
demonstrates an AI-driven expert referral system that fulfills WHO’s 
digital health equity mandate by connecting patients in remote areas 
with specialists within 2 h—a 92% reduction compared to traditional 
5-day averages—while establishing a replicable framework for global 
healthcare resource optimization.

This study has two main limitations: semantic ambiguity—when 
patient descriptions contain vague or incomplete information, the 
consistency of the existing labeling system decreases; data sparsity—
for newly registered or low-activity physicians, although the scarce 
historical response data has enhanced semantic representation 
through knowledge graph embedding, it still affects the model’s 
effectiveness to a certain extent. These limitations may hinder the 
model’s generalization ability in practical scenarios.

Future research trajectories will pursue three synergistic axes to 
advance clinical AI capabilities: Firstly, dynamic feature enhancement 
through longitudinal tracking of patient social network dynamics (e.g., 
follow relationships, community engagement) coupled with physician 
multi-dimensional evaluations (likes, saves) to build comprehensive 
user profiles; Secondly, the architecture will incorporate cross-modal 
reasoning modules synergized with medical knowledge graph 
embeddings, thereby improving contextual semantic precision. Thirdly, 
adaptive transfer learning frameworks will be  deployed, utilizing 
domain-invariant representation learning to mitigate physician-
specific data sparsity. Additionally, collaborations with mainstream 
medical platforms will be pursued to refine model performance in real-
world clinical settings and facilitate translational applications.
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