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To address the demand for precise patient-medical expert matching in online
healthcare Q&A communities, this study proposes a multi-feature health community
expert recommendation model integrating GRU, convolutional neural networks
(CNN), and attention mechanisms. By analyzing textual semantic features from
patients’ question titles, content, tags and personal profiles, while incorporating
medical experts’ professional credentials information and historical reply sequences,
we construct a recommendation framework with multi-dimensional feature fusion.
The CNN model extracts deep semantic information from patient inquiries, coupled
with a bidirectional GRU network to align with experts’ specialized medical domains,
thereby optimizing recommendation accuracy and relevance. Experimental results
demonstrate significant improvements in recommendation precision compared
to traditional text matching methods (e.g., LSTM) and previous state-of-the-art
approaches, particularly in handling unstructured, short-text, and multi-domain
classification scenarios. This research provides technical references for resource
optimization and personalized services in online medical communities, offering
practical implementation value.

KEYWORDS

online health community, expert recommendation, multi-dimensional feature, deep
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1 Introduction

Patients seek professional medical advice from healthcare experts via question-and-answer
(Q&A) online health communities (OHCs)—either prior to formal medical visits or during
treatment and recovery phases—to better understand and manage their conditions. Multiple
physicians respond to patient inquiries; users may pose follow-up questions based on
physicians’ replies and ultimately endorse specific responses. OHCs, serving as pivotal
platforms in digital health ecosystems, have demonstrated significant potential in alleviating
clinical overload and enhancing physician-patient communication (1, 2). However, the
exponential growth of user bases (exceeding 120 million monthly active users in mainstream
platforms) has intensified systemic mismatches between heterogeneous patient demands and
constrained high-quality medical resources (3). Three critical operational bottlenecks emerge
in healthcare platforms: demand-supply disparity persists as current matching mechanisms
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fail to establish accurate mappings between patient inquiries and
physician specialty profiles, allocating high-value medical resources
to low-relevance consultations; temporal efliciency degradation
occurs when legacy recommendation systems inadequately capture
physicians’ dynamic competency trajectories (e.g., evolving expertise,
availability fluctuations), causing urgent cases to experience matching
delays exceeding 24 h; service quality heterogeneity arises from
superficial text matching that neglects patients’ personalized tags and
the semantic depth of issues, frequently generating low-quality
responses that significantly reduce user satisfaction (4). These
operational deficiencies not only undermine platform efficacy but also
exacerbate systemic healthcare resource disparities, particularly in
underserved regions with physician-to-population ratios below
1:4000, with compounded effects manifesting as $2.1 billion annual
economic losses from misallocated consultations in U.S. telemedicine
systems alone (43).

Current mainstream expert recommendation models
predominantly rely on static similarity computation between patient
queries and physician profiles (e.g., keyword matching, TF-IDF
weighting), which faces three critical limitations: Firstly, over-
simplification in feature extraction fails to integrate multi-dimensional
features including patients’ historical behaviors and individual
attributes; Secondly, the lack of temporal modeling prevents
quantitative characterization of dynamic evolution patterns in experts’
response quality; Thirdly, superficial semantic understanding induced
by short-text sparsity often leads to semantic deviations and domain
drift. Consequently, developing medical context-adaptive deep
matching models that incorporate multi-dimensional features has
emerged as a critical breakthrough for optimizing service ecosystems
in online health communities.

To address the aforementioned challenges, this study proposes a
deep learning-based multi-feature expert matching framework for
medical Q&A communities. The innovations are demonstrated
through three key contributions: (1) a dual-channel heterogeneous
feature encoder combining Convolutional Neural Networks (CNNs)
for capturing local semantic patterns in patient question titles with
Bidirectional Gated Recurrent Units (Bi-GRUs) to model temporal
dependencies in physicians’ historical responses; (2) an attention
mechanism that dynamically aligns patient question representations
with physicians’ domain expertise to enhance semantic feature
interactions; and (3) optimized objectives that jointly improve
recommendation accuracy while minimizing resource redundancy.
Using real-world interaction data from two major Chinese healthcare
platforms—"YouWenBiDa” and “XunYiWenYao”—experimental
results demonstrate our model’s superior performance over baseline
methods in accuracy and precision metrics, providing an extensible
deep learning solution for intelligent medical resource allocation.

The practical implications span three key dimensions: First,
enhancing service efficiency enables online health platforms to
establish dynamic physician competency profiling systems that
achieve multi-granular alignment between consultation demands
and specialist expertise. Second,

optimizing ecological

mechanisms  incentivizes  physicians  through  precise
recommendations to engage in high-value problem-solving,
thereby driving platforms to develop quality-efficient physician-
patient matching. Third, extending social benefits alleviates
unnecessary occupation of offline medical resources by non-urgent

consultations, facilitating digital transformation in hierarchical
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diagnosis systems. Crucially, online medical Q&A platforms
address global healthcare disparities via expert recommendation
systems that match patients with specialists digitally—mitigating
issues like top-tier U.S. hospitals handling primary care while
improving triage efficiency in regions with limited capacity. This
establishes scalable frameworks for overburdened healthcare
systems, advancing the WHO’s vision of universal digital
health coverage.

2 Related work

The core value of online Q&A communities relies on expert
users’ sustained contributions of high-quality answers to maintain
the sustainable development of community knowledge ecosystems
(5). In response to this requirement, building accurate expert
identification and recommendation mechanisms has become
critical for optimizing community service efficiency. This involves
dynamically mining domain-specialized, response-active, and
high-quality experts to achieve precise alignment between
questioners’ needs and responders’ capabilities (6, 7). This research
direction has garnered widespread attention from academia and
achieving

industry, groundbreaking  progress in the

healthcare domain.

2.1 Research review on traditional expert
recommendation methods

2.1.1 Content matching-based recommendation

Early studies primarily employed text similarity-driven
recommendation strategies. The Vector Space Model calculated text
matching degrees between expert profiles, historical answers, and
current questions using cosine similarity or Pearson correlation
coefficients (8, 9). However, the vectorization process in Bag-of-Words
models frequently induced the dimensionality curse, resulting in
semantic sparsity issues.

Language models operated on generative probability assumptions
to predict experts’ likelihood of answering questions. Zheng et al.
integrated the Query Likelihood Language Model with the Maximum
Entropy Model to quantify the alignment between experts
professional competence and question topics, effectively alleviating
semantic sparsity in high-dimensional spaces. Nevertheless, these
methods exhibited sensitivity to cold-start problems (10).

Topic modeling approaches predominantly leverage Latent
Dirichlet Allocation (LDA) to model question-expert topic
associations (11). Sahu et al. (12) enhanced LDA by integrating user
tags and social behavioral features to construct dynamic expert
profiles, though the interpretability of derived topics remained
constrained by the domain-specific nature of medical terminology.

While text content-matching based expert recommendation
methods demonstrate broad applicability, they persistently face critical
challenges including: absence of tacit knowledge representation in
expert competence modeling; isolation in multi-dimensional
information extraction (e.g., textual, behavioral, and contextual data
fragmentation), these limitations not only reflect technical constraints
but also raise methodological and ethical challenges, particularly in
clinical decision-support scenarios.
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2.1.2 Classification model-based expert
recommendation

Researchers have transformed expert identification problems into
supervised learning tasks by extracting features from heterogeneous
data to train classifiers, a paradigm typically involving two critical
phases: feature engineering that constructs multidimensional features
encompassing user activity patterns, question characteristics, answer
quality assessments, and expert profiles; and classifier benchmarking
comparing algorithmic performance across Support Vector Machines
(SVM) (13), Random Forest (RF) (14), Naive Bayes (NB) (15), and
AdaBoost (16). Model parameters are optimized through question-
expert matching degree evaluation, and while these approaches
enhance recommendation stability, feature redundancy persistently
compromises model generalization capabilities.

2.1.3 Collaborative filtering and hybrid
recommendation

Collaborative filtering approaches mine implicit associations
through user-item interaction matrices but suffer from data sparsity
and cold-start bottlenecks. Jiang et al. (17) addressed these limitations
by integrating user tags to construct auxiliary information networks,
enabling community-wide user interest discovery to mitigate
recommendation bias in sparse scenarios.

Hybrid recommendation models combine multiple methodologies
for enhanced performance (18). Wang et al. proposed the TPLMRank
algorithm, which fuses text topic modeling with expert link analysis
(e.g., PageRank) through semantic-structural dual-channel feature
integration. While this method improved recommendation
robustness, it incurred high computational complexity (19).

2.1.4 Adaptability research in healthcare
scenarios

Expert recommendation in the medical domain requires balanced
integration of clinical expertise and operational efficiency. Gong and
Sun designed time-constrained probabilistic factors to mine physician
authority from physician-patient interaction graphs, employing
Ranking Support Vector Machines (Ranking SVM) to achieve
dynamic demand-resource matching. However, this approach
neglected variations in individual patient health characteristics (20).
To address the complexity of patient-physician relationship modeling
in medical contexts, Mondal et al. proposed a multi-layer graph data
model-based physician recommendation system. By constructing
multi-dimensional graph structures with graph topology-based trust
factors, this model optimized recommendation logic and achieved
approximately 40% improvement in complex relational query
Notably, it
demonstrated superior capability in processing nonlinear correlations

efficiency compared to conventional methods.

within massive heterogeneous medical data, such as cross-department
referral preferences and dynamic physician-patient matching
demands (21).

Ensemble learning and multi-source data fusion significantly
enhance disease recognition accuracy, exemplified by a physician-AI
collaboration model for diabetes that achieved 99.6% accuracy
through sensor-EHR integration (22), while CNN-based fracture
detection attained 92% sensitivity (23). Feng et al’s (24) association
rule-based expert recommender employs Pearson correlation and
FP-growth to mine optimal team patterns, demonstrating high
accuracy/coverage yet facing cold-start limitations with new patients/
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experts. Mai et al. (25) fused clinical guidelines with real-world
evidence for hypertension drug recommendations, achieving 96%
expert alignment in top-3 suggestions despite data gaps. Hassan et al.
(26) enabled closed-loop health management via SVM-RF disease
prediction and treatment generation, though rare-disease performance
remains suboptimal. Nagaraj et al. (27) used grid search-optimized
random forests to predict diabetes subtypes and recommend
personalized dietary/insulin regimens based on physiological
parameters, but omitted critical lifestyle factors.

Existing methods exhibit limitations in feature representation
capacity, cold-start robustness, and healthcare scenario adaptability,
which
recommendation

constrain the precision and intelligence level of

systems. Consequently, constructing deep
recommendation models that integrate multi-feature medical data
with domain knowledge awareness has emerged as a critical pathway
to enhance the service efficacy of physician-patient Q&A interactions

in online health communities.

2.2 Research progress in deep
learning-based expert recommendation

With the rapid development of artificial intelligence technology,
deep learning has demonstrated significant advantages in the field of
expert recommendation (28, 29). Compared with traditional methods
relying on manual feature engineering, deep learning automatically
extracts high-order features and complex interaction patterns through
multi-layer nonlinear network structures, constructing efficient
feature representation models via backpropagation mechanisms.

Current mainstream deep neural network architectures exhibit
distinct characteristics: Recent improvements include He et al. (30)
applying Long Short-Term Memory (LSTM) networks to expert
recommendation through semantic feature extraction; Sharma et al.
(31) proposing the LDW-CNN model with a Linear Discriminant
Wolf Pack Algorithm to address medical data imbalance; Kumar et al.
(32) leveraged a disease-symptom knowledge graph, patient profiles,
and BERT-based sentiment analysis to generate multidimensional
physician service quality scores, enabling self-diagnosis guidance and
precision physician-patient matching; Gao et al. (33) developing a
Dynamic Tripartite Subgraph Convolutional Network to analyze
physician-patient interactions; Fu et al. (34) designing a Text Recurrent
Memory Reasoning Network (RMRN) to mine query-response
correlations; and Liu et al. (35) proposing an LSTM-GCN hybrid
model for joint text-network analysis. Sahoo et al. (36) proposed a
convolutional RBM-CNN hybrid leveraging patient-hospital ratings
for personalized recommendations, significantly lowering RMSE/
MAE errors but requiring explicit ratings and raising privacy concerns.
Deng et al. (37) integrated multi-source data via a hybrid model
combining CTR and VAE to capture latent relationships from patient
profiles, physician descriptions, and rating matrices, significantly
improving Recall@k over baselines across three datasets. Cherukuri
et al. (38) employed GNNs to model associations in heterogeneous
medical data (e.g., histories, symptoms, expertise), dynamically
constructing knowledge graphs for semantic relationship capture,
achieving precision expert matching with high accuracy and AUC.

These studies exhibit notable limitations, most systems focus
solely on superficial textual correlations between user queries and
expert responses, failing to effectively integrate multi-dimensional
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features information such as questioner profiles and health status,
while also inadequately modeling the deep alignment between
expert competencies and problem requirements. To address these
gaps, this study proposes a parallel feature mining framework. The
architecture employs a dual-channel network to separately extract
features from patient queries and expert competencies,
incorporates attention mechanisms for fine-grained feature
interaction, and ultimately constructs an integrated
recommendation model based on GRU and CNN. This approach
effectively enhances the precision and interpretability of expert
recommendations in medical Q&A communities while maintaining

computational efficiency.

3 Medical expert recommendation
model for online health communities

The Convolutional Neural Network (CNN), a feedforward
neural network originating from the local weight-sharing
mechanism of Time Delay Neural Networks (TDNN) (39), leverage
local perception, weight sharing, and pooling operations to capture
spatial local-global feature correlations for multidimensional data
processing, was first engineered by LeCun et al. (40) in the LeNet-5
architecture for handwritten digit recognition, and has evolved into
a core deep learning framework for processing high-dimensional
heterogeneous data. In medical expert recommendation scenarios,
CNNs demonstrate three significant advantages: their local
perception property uses convolutional kernels’ sliding window
mechanism to focus on local semantic units (e.g., symptom
keywords, disease entities) in patient problem descriptions while
filtering noise; the parameter sharing mechanism reuses identical
convolutional kernels across input matrix positions to reduce model
parameters and mitigate overfitting from medical data sparsity; and
hierarchical feature extraction enables shallow layers to capture
word-level features and deeper layers to aggregate sentence-level
semantic patterns for multi-granularity medical text analysis.

The Gated Recurrent Unit (GRU) neural network (41), a
streamlined variant of Long Short-Term Memory (LSTM)
architectures with dual-gate design (update gate and reset gate),
reduces model parameters by approximately one-third compared to
standard LSTM while enhancing computational efficiency for medical
text processing, addressing challenges from limited training data and
effectively capturing long-range dependencies in medical terminology.
In healthcare AI applications, GRU-based models exhibit robust
capabilities in: clinical logic parsing through accurate deconstruction
of diagnostic-therapeutic workflows from unstructured medical
narratives; medical dialogue processing via efficient handling of
temporal dependencies in clinician-patient interactions; and decision
support by providing technical foundations for evidence-based
clinical decision-making through sequential pattern recognition (42).

3.1 Expert recommendation model for
medical QA communities

In this study, we propose a Hybrid-GRUCNN-Attention
recommendation framework (as shown in Figure 1), which integrates
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GRU and CNN networks. The framework comprises the following
key steps.

3.1.1 Input layer of expert recommendation
system

A patient information processing channel is constructed using
text vectors derived from preprocessed, tokenized, and BERT-based
word vectorization, encompassing the question title, content text, and
patient personal information. Simultaneously, an expert information
processing channel is built from text vectors processed through
tokenization and word embedding, incorporating physician expertise
and historical sequences of physician responses.

3.1.2 Feature extraction

The convolutional feature extraction employs multi-scale
convolutional kernels (2 x 2) to capture fine-grained semantic patterns
in patient complaints, including disease entities, symptom descriptions,
and physician expertise through hierarchical local perception,
enhanced by ReLU activation whose single-sided inhibition enables
sparse feature encoding. Compared to Sigmoid, ReLU combined with
L2 regularization reduces gradient decay risks while accelerating
convergence. Meanwhile, feature interaction fusion aggregates multi-
granularity features via global max-pooling for dimensionality
reduction and noise filtering, coupled with attention mechanisms to
adaptively weight critical semantic information.

Word vector representation of question title: assuming the words
in the question title w are represented as w = [wy, W, ..., W,], where
w; denotes the i-th word in the title, i € {1, 2, ..., n}, and n represents
the title length. The transformed word vectors of the question title are
defined as (see Equation 1):

W =embedding(w)= [Wl ,Wz,Wn] 1)

Convolutional layer output: the vector after convolutional layer
processing is (see Equation 2):

¢ = relu(WC X W[n—M,nJrM] + bc) ()

where: relu(x) = max(0,X), Wi, mn+ ) Fepresents concatenated
word embeddings within the window([i-M, i + M]), with M =1,
bcand W, are learnable parameters in the convolutional network.

Attention mechanism: Attention mechanism is a neural
network technique that dynamically assigns varying weights to
input elements (33), allowing models to focus on contextually
critical features during processing. It improves tasks like expert
recommendation by efficiently prioritizing relevant information
while suppressing less useful data. The attention intermediate
variable o; is computed as (see Equation 3):

on :tanh(vxci+vb) (3)

The weight vector v and learnable bias v, transform the context
vector ¢; into a scalar value through the tanh activation function.
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FIGURE 1

Architecture of the Hybrid-GRUCNN-Attention expert recommendation model. The patient’s problem information includes the question title, content,
personal/disease-related details, and question semantic tags; the physician’s professional information encompasses their professional credentials and

The attention weight a; is obtained through softmax normalization
(see Equation 4):

we—la) @)

> exp(e)

Weighted title representation: the final title representation e,
combines attention weights and CNN-processed vectors (see Equation 5):

n
ew =) . ai; (©)

The tokenized question content with BERT-based word
embeddings is represented as (see Equation 6):

T= embedding(t) :[TI,TZ,. . .,Tr] 6)

Frontiers in Public Health

Question content processing: After convolutional processing, the
question content is represented as (see Equation 7):

n
ec=>. aii @)

The vectorization pipeline applies identically to Question content,
Personal/disease-related details, and Question semantic tags,
generating respective representations e,e,,e,.

Patient profile integration: the comprehensive patient
representation becomes (see Equation 8):
e =[ew,et,ez,er] (8)

Physician response history sequence: the proposed framework
employs a Bi-directional GRU (Bi-GRU) network to process physicians’
historical consultation records. This architecture performs bidirectional
temporal modeling to capture contextual dependencies in diagnostic
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decision-making. The model utilizes gating mechanisms to filter noisy
dialogue segments, applies scaled dot-product attention to mitigate
dimensional bias and extract critical semantics. Using the attention matrix
to enhance fusion: an attention matrix strengthens semantic relevance
across expert response sequences, with elevating weight coefficients for
disease entity terms, amplifing weights for clinical operation terminology,
scaling dot-product attention for dimension-aware normalization.
Recent 15-day response physician sequences are chronologically
ordered as R=[R;, R, ..
Historical queries are vectorized as E (see Equation 9):

.» RyJ, where k denotes sequence length.

E:[el,ez,...,ek] 9)

After Bi-GRU Processing (see Equations 10— 14):

2e=0(W, [h 1)) (10)
r=o(We {he B, ) (1)

i =atanh(W [y xhe By ) (12)
hy = (1-2¢)xheg +2, xht (13)

The temporal feature h is processed through attention mechanism
to derive (see Equation 15):

g = Z:l:laihi (15)

Expert profile integration: Static expertise and professional titles
are encoded via CNN and attention mechanisms as r. The integrated
expert representation becomes (see Equation 16):

rz[rs,rd] (16)

Matching layer: patient-physician feature vectors from dual
channels undergo the following steps: concatenation of patient e
and expert r representations; adaptive pooling to compress
redundant dimensions while preserving information entropy; and
projection of features into physician-question matching space
through fully connected layers.

We resolve cold-start challenges through dual-path enhancements:
For physicians with sparse consultation histories (<5 replies), we integrate
professional credentials (e.g., medical title, hospital tier) with ICD-11-
based medical knowledge graph features—querying disease-treatment-
drug relationships—fusing credential attributes with knowledge graph
embeddings to create enhanced physician inputs. For patients with
limited symptom descriptions, we extract core symptoms using BioBERT,
expand symptom ontologies via UMLS APIs (synonyms/related
symptoms), and combine extended symptom lists with personal metadata
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and question titles to form augmented patient inputs. These enriched
representations feed into our Hybrid-GRUCNN-Attention model where
both pathways connect at the fusion layer for matching prediction.

This dual
recommendation accuracy while

study  pursues objectives:  enhancing

minimizing resource
redundancy. Our expert recommendation model achieves this
through hyperparameter optimization of the Sigmoid objective
function, with performance validated across cold-start/warm-
start scenarios against baselines and prior research. Additional
experiments verify real-time efficiency, popularity bias
mitigation, and the impact of patient/physician input feature
variations. The optimal parameter configuration maximizes
recommendation accuracy while minimizing computational,
storage, and temporal overheads during expert matching tasks—

achieving the defined optimization objectives.

3.1.3 Output layer of the expert prediction
recommendation model

The output layer of the recommendation model is used for
generating recommendation scores, the concatenated patient-
physician vectors are fed into a fully connected layer, and the
Sigmoid function outputs the physician compatibility probability,
i.e., the predicted probability. For a given question q,, the matching
expert user u, can be calculated using the formula below (see
Equation 17):

Score(qx,uq) = sigmoid(‘I’FC (rxTeX )) (17)

The fully connected (FC) layer processes a 128-dimensional patient
vector r, (containing question semantics, medical history, and urgency
level) and a 128-dimensional physician vector e, (with professional
qualifications, domain expertise, and historical sequences). Through
concatenation r,e,, these form a 256-dimensional joint feature vector
that learns patient-physician feature interactions.

The FC layer uses trainable parameters: a weight matrix Wy, €
RA{256x1} and a bias term by, € R. The transformation is computed as:
Wec(z) = Wy, - Z + by Finally, a Sigmoid activation function converts the
output into a probability score between 0 and 1: Score = 6( Wrc(2)) =1/
(1 + exp(-¥rc(2))).

3.2 Evaluation metrics for the
recommendation system

This study employs Accuracy (ACC) and the Area Under the ROC
Curve (AUC) as core evaluation metrics, which evaluate the
recommendation performance of the classification model from
different perspectives. Where, ROC is the Receiver Operating
Characteristic Curve, which is drawn with false positive rate as the
X-axis and true positive rate as the Y-axis.

Accuracy (ACC): accuracy is a fundamental evaluation metric for
classification tasks, indicating the overall correctness of the model’s
predictions. It is calculated as the ratio of correctly predicted samples
to the total number of samples (see Equation 18):

ACC——__ TP+TN (18)
TP+FP+FN+TN
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where: TP (True Positive) represents the number of samples
correctly predicted as positive (actual positive cases), FP (False
Positive) represents the number of samples incorrectly predicted as
positive (actual negative cases), FN (False Negative) represents the
number of samples incorrectly predicted as negative (actual positive
cases), TN (True Negative) represents the number of samples correctly
predicted as negative (actual negative cases).

Area under the ROC curve (AUC): the AUC provides a robust
evaluation of a model’s discriminative ability by comprehensively
assessing classifier performance across different thresholds. The
mathematical expectation of ROC is equivalent to the probability that
the classifier correctly ranks a randomly chosen positive instance
higher than a negative one. The AUC value ranges between 0 and 1,
with the following interpretation: 0.5 indicates random guessing;
0.7-0.8 suggests moderate discriminative capability; 0.8-0.9
demonstrates strong discriminative capability; and >0.9 signifies
exceptional classification performance.

Compared to the single-threshold ACC metric, AUC offers three key
advantages: insensitivity to class imbalance; comprehensive evaluation
across all threshold intervals; reflection of ranking quality. This is
particularly critical for medical text classification tasks, which often face
challenges of imbalanced positive/negative sample distributions.

In addition to ACC and AUC, the model employs the following
metrics to evaluate performance:

Precision@10: the proportion of correctly identified relevant
physicians (positive class) among the top 10 recommendations. This
measures recommendation accuracy by  minimizing
irrelevant suggestions.

Recall@10: the fraction of all truly relevant physicians successfully
captured within the top 10 recommendations. This evaluates the
model’s ability to comprehensively cover user needs.

NDCG@10 (Normalized Discounted Cumulative Gain): a ranking
quality metric that prioritizes higher-ranked relevant physicians by
assigning greater weight to top positions. Computes relevance scores
(e.g.» Softmax probability x authority weight) and normalizes against
ideal ranking.

To evaluate the models real-time performance, we adopt the
following three metrics:

Avg. Inference Latency: the mean processing time required to
generate recommendations per request. This reflects overall system
responsiveness and  supports  capacity  planning and
performance benchmarking.

P99 Inference Time: the threshold below which 99% of requests
complete processing. Identifies long-tail latency outliers to ensure
service stability for the vast majority of users and maintain
SLA compliance.

SLA Compliance Rate: the proportion of requests processed
within the predefined threshold (500 ms). Directly quantifies real-
time performance against Service Level Agreement requirements.

To evaluate the model’s popularity bias, we employ the following
three metrics:

Exposure Rate: quantifies frequency disparity between popular
and niche experts in recommendations. Calculated as the ratio of
exposures for top-tier experts versus long-tail providers.

Recall@10: proportion of truly relevant experts captured in top-10
recommendations. Evaluates whether popularity bias suppresses
personalized long-tail needs by comparing against actual
user preferences.
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Coverage Contribution: long-tail experts’ percentage share in
recommendation results. Measures system capability to surface niche
expertise, assessing diversity and fairness.

4 Experimental design and analysis

4.1 Experimental environment
configuration

The experiments were implemented in Python using TensorFlow
and Keras, and were run on an NVIDIA DGX Station A100 system
featuring an AMD EPYC 7742 CPU.

4.2 Data sources and preprocessing

This experiment aims to validate model accuracy through
expanded data volume, utilizing fully de-identified historical
physician-patient interaction data collected via a web crawler from
Chinese online medical platforms (XunyiWenyao and
Youwenbidawang) between January 1, 2018, and December 31, 2022.
The dual-channel data architecture includes patient problem
components including: personal/disease-related details (age, gender,
region, disease), medical history features (past medical history,
medication records, allergy history in structured fields), question titles
(averaging 15 characters), question content (averaging 128 characters),
and semantic tags (symptom classification labels via LDA topic
modeling with 8 major categories and 32 subcategories).

This experiment analyzes the physicians professional information
including professional credentials information (title: Chief/Associate
Chief/Attending Physician; hospital tier; specialty under ICD-11
standards; temporal adoption rate curves) and historical reply
sequences (historical answer text sequences spanning >3 years).

The key steps in data preprocessing involve: multi-source data
cleaning through outlier filtering to remove noisy entries with response
lengths <20 characters or >2000 characters; for continuous variables
(e.g., age), Generative Adversarial Imputation Networks (GAIN) is
employed for imputation; for categorical variables (e.g., gender), the
‘Unknown’ category is used to avoid introducing bias, medical text
augmentation via the integration of domain-specific lexicons and
hybrid tokenization strategies combining Chinese Jieba tokenization
with medical entity recognition for semantic processing; and deep
semantic representation using a pre-trained Chinese BERT language
model(BERT-wwm-ext) for word embedding. Data quality is ensured
through medical accuracy validation conducted by a panel of
physicians (3 Associate Chief Physicians) on 5% of samples.

Experimental datasets. After preprocessing, Dataset M1 (sourced
from Xunyi Wenyao) contains 86,910 detailed records while Dataset
M2 (from Youwenbidawang) includes 75,481 records. Each dataset
systematically incorporates: (a) user question titles; (b) full question
content; (c) multi-dimensional user profile tags (encompassing
personal identifiers and disease-related metadata); (e)question
semantic tags; (f) Physicians’ professional credentials information with
specialty fields and professional titles; and (g) temporally-sequenced
records of physicians historical replies, serving as parallel input
channels for the Hybrid-GRUCNN-Attention architecture. The volume
of data in the dataset and the fields it contains are shown in Tables 1, 2.
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4.3 Experimental design
4.3.1 Parameter configuration optimization

The combined dataset (M1 + M2) was divided into training,
validation, and test sets using a 6:2:2 ratio to evaluate model
performance and generalization accuracy. After model training,
optimal hyperparameters were determined based on validation
set performance. Through multiple experiments, the final
network architecture and parameter configurations were
established as follows: a pooling window (2 x 2 with ‘same’
padding) maintains feature map dimensions; a dropout rate of 0.5
mitigates overfitting; four training epochs ensure sufficient
=3)
generalization; a batch size of 256 improves efficiency; the Adam

learning; a regularization coefficient (4 enhances
optimizer ensures stable convergence; ReLU activation introduces
nonlinearity; Binary Cross-Entropy (BCE) loss measures
prediction error; and a learning rate of 0.01 controls

parameter updates.

4.3.2 Baseline model selection

To comprehensively evaluate the performance of the proposed
Hybrid-GRUCNN-Attention model, five representative temporal
modeling models were selected as baselines:

LSTM (Long Short-Term Memory): Solves the vanishing gradient
problem in traditional RNNs via gating mechanisms, excelling at
capturing long-range temporal dependencies.

GRU (Gated Recurrent Unit): An improved variant of LSTM that
merges forget and input gates into an update gate, achieving 33%
higher parameter efficiency.

Bi-GRU (Bidirectional GRU): A bidirectional architecture
capturing both forward and backward temporal features to enhance
contextual understanding.

Bi-GRU-ATT GRU):
Integrates attention mechanisms into Bi-GRU, using a learnable

(Attention-Enhanced  Bidirectional
weight matrix to highlight critical temporal nodes.

CN-DSSM (Convolutional Deep Semantic Matching Model):
Constructs a deep semantic space via convolutional neural

TABLE 1 Dataset size metrics post-data-cleansing.

10.3389/fpubh.2025.1633754

networks (CNNs), extracting local contextual patterns through
sliding windows.

In addition, we introduce four critical benchmark models: (1) an
attention-ablated Hybrid-GRUCNN variant, alongside three state-of-
the-art approaches from prior research: (2) Kumar et al’s (32) deep
learning architecture, (3) Hassan and Elagamy’s (26) SVM-Random
Forest hybrid, and (4) Cherukuri et al’s (38) graph neural
network implementation.

4.4 Performance evaluation and result
analysis of the hybrid-GRUCNN-attention
model

4.4.1 Impact of fully connected layer depth on
results

This study employs Accuracy (ACC) and the Area Under the
ROC Curve (AUC) as core metrics to systematically compare the
Hybrid-GRUCNN-Attention medical expert recommendation
model with baseline methods. As shown in Figure 2, controlled
experiments on fully connected (FC) layer depth demonstrate: a
4-layer FC structure achieves optimal validation performance with
ACC/AUC increases of ~5%/10%, while exceeding 5 layers causes
significant validation degradation (AACC = —6%) despite training
improvements, indicating overfitting from excessive complexity.
These results highlight the architectural balance between
representation capacity and generalization, with regularization or
early stopping recommended for risk mitigation.

4.4.2 Impact of training epochs on results

Model convergence analysis, as shown in Figure 3 (accuracy vs.
epoch) and Figure 4 (AUC vs. epoch), reveals two distinct phases: rapid
improvement during epochs 1-4 with ACC/AUC rising from 0.852/0.853
to 0.893/0.88 through discriminative feature capture, followed by stable
saturation (epochs >4) where metric fluctuations narrow to <+0.5% while
declining validation scores indicate overfitting risks.

Dataset M1 Size Dataset M2 Size
User count 24,000 Physician reply count 16,000
User question count 86,910 Physician reply count 75,481
Physician count 42,175 Physician reply count 11,326
Physician reply count 463,006 Physician reply count 371,214

Each patient question receives multiple responses from different physicians.

TABLE 2 Dataset attribute metrics.

Name Data fields

Question titles Averaging 15 characters

Question content Averaging 128 characters

Personal/disease-related details

Age, gender, region, disease, medical history features (past medical history, medication records, allergy history in structured fields)

Question semantic tags

Symptom classification labels via LDA topic modeling with 8 major categories and 32 subcategories

Physicians’ professional credentials

information

Title: Chief/Associate Chief/Attending Physician; hospital tier; specialty under ICD-11 standards; temporal adoption rate curves

Physicians’ historical reply sequences

Historical answer text sequences spanning >3 years
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Based on the above observations, this study adopts an Early
Stopping strategy with a training epoch setting of 4. This decision
balances model performance and computational efficiency: Under
GPU acceleration, 4 epochs require only 18.7 min, saving 34.3% of
computational resources compared to 5-epoch training while
maintaining peak performance.

4.4.3 Impact of training dataset size on results
Controlled experiments validate the relationship between
training data scale and algorithm performance. As shown in
Figures 5, 6, prediction accuracy in expert-patient demand
matching exhibits a significant upward trend as the training data
increases from 10% to the full dataset. This demonstrates that
expanding training data effectively enhances the model’s
representational precision, enabling it to better capture complex
mappings between medical experts and patient needs.
Remarkably, under extreme low-resource conditions
(utilizing only 10% of training data), the model sustains an 83%
matching accuracy, demonstrating two critical methodological
strengths: pre-trained word embeddings substantially mitigate
performance degradation through context-aware semantic
representations, while the attention mechanism framework
ensures generalization capability by adaptively weighting
discriminative features, thereby maintaining system robustness

under pronounced data sparsity. When training data exceeds
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AUC results with varying dataset sizes.

60%, performance improves markedly, indicating that surpassing
a critical data volume threshold allows the algorithm to better
exploit deep semantic correlations in medical texts.

The experiments ultimately achieved a matching accuracy of
89.3% and an AUC of 88.0% on the full dataset. These empirical
results not only validate the rationality of the model’s architectural
design but also rigorously demonstrate the algorithm’s stability during
data scale expansion through quantitative performance analysis. This
provides theoretical support for its large-scale deployment in smart
healthcare platforms.
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4.4.4 Comparative analysis with baseline models

All experiments are now repeated 5 times with different random
seeds. Performance comparisons were conducted between our
proposed model, benchmark models, and State-of-the-art classical
models on cold-start, hot-start, and the overall dataset under
standardized configurations (4 fully connected layers, 4 training
epochs) demonstrates clear methodological progression. These
comparisons are summarized in Table 3.

The results presented in Table 3 indicate that the conventional
LSTM architecture substantially underperforms due to its limited
capacity in modeling long-range dependencies. In contrast, the
GRU variant, enhanced through refined gating mechanisms,
elevates all evaluation metrics by approximately 2% relative to
LSTM. This improvement is further amplified by the BiGRU
The better
performance emerges from the BiGRU-ATT model, where

framework (bidirectional information flow).

10.3389/fpubh.2025.1633754

attention-driven dynamic weighting of critical semantic features
delivers absolute various indexes improvement over standard
BiGRU, validating the necessity of feature prioritization in
semantic understanding tasks.

Notably, while the CNN-DSSM baseline demonstrates
enhanced contextual awareness through convolutional kernels’
sliding-window operations—achieving a 2.2% recall improvement
over BiGRU-ATT—the proposed Hybrid-GRUCNN-Attention
model establishes new performance thresholds via its dual-channel
synergistic architecture. This framework strategically combines: (i)
a BiGRU temporal branch that decodes bidirectional long-range
dependencies in user behavioral sequences, and (ii) a CNN spatial
branch employing multilayer convolutions to distill expert feature
hierarchies. Crucially, its attention mechanism dynamically
mediates cross-modal interactions by computing adaptive weights
through pairwise cross-correlation, thereby selectively emphasizing

TABLE 3 Performance comparison with baseline and state-of-the-art methods.

Algorithm Test set Precision@10 Recall@10 NDGC@10
Cold 0.191 +0.01 0.097 + 0.05 0.172 +0.05 0.078 + 0.05 0.105 + 0.04
LSTM Warm 0.799 + 0.02 0.805 + 0.03 0.373 +0.03 0.299 + 0.04 0.322+0.07
All 0.749 + 0.02° 0.728 +0.04" 0.315 % 0.04" 0.218 +0.03" 0.265 + 0.04"
Cold 0.210 +0.03 0.132+0.02 0.195 + 0.07 0.097 +0.04 0.120 + 0.04
GRU Warm 0.823 +0.02 0.822 +0.04 0.382 +0.04 0.323 +0.06 0.343 +0.03
All 0.763 + 0.01° 0.759 + 0.02° 0.341 +0.05" 0.273 +0.02" 0.285 + 0.03°
Cold 0.247 +0.03 0.203 + 0.04 0.188 + 0.06 0.106 + 0.03 0.198 + 0.04
Bi-GRU Warm 0.851 % 0.02 0.833 +0.02 0.423 +0.02 0.402 + 0.03 0.331 +0.04
All 0.792 +0.01° 0.778 + 0.03° 0.410 + 0.06" 0.358 + 0.03" 0.285 + 0.04°
Cold 0.252 +0.02 0.265 + 0.02 0.195 + 0.02 0.125 +0.05 0.199 + 0.06
Bi-GRU-ATT Warm 0.861 + 0.02 0.885 + 0.03 0.467 + 0.03 0.422 +0.03 0.425 +0.04
All 0.815 +0.02" 0.805 +0.02” 0.392 +0.02" 0372 +0.04"™ 0.366 % 0.04™
Cold 0.327 +0.03 0.253 +0.03 0.198 + 0.05 0.145 + 0.03 0.172 +0.03
CSS-DSSN Warm 0.882 +0.02 0.879 +0.03 0.487 + 0.05 0.431 +0.05 0.520 + 0.05
All 0.834 +0.03" 0.827 +0.02° 0.426 +0.04™ 0.347 +0.02 0.47140.03™
Cold 0.342 +0.01 0.313 +0.02 0.197 +0.03 0.189 +0.03 0.199 % 0.02
Hybrid-GRUCNN Warm 0.894 + 0.03 0.874 +0.02 0.573 +0.05 0.543 + 0.04 0.780 + 0.03
All 0.839 +0.02" 0.825 +0.02" 0.541 +0.03" 0.479 +0.02° 0.749 + 0,02
Cold 0341 +0.03 0.214 +0.03 0.153 +0.07 0.145 + 0.06 0.143 + 0.04
Kumar et al. (32) Warm 0.703 + 0.03 0.612 + 0.04 0.464 + 0.08 0.402 + 0.05 0.581 % 0.05
All 0.6541 + 0.03° 0.565 + 0.03° 0.413 + 0.06" 0.345 + 0.03" 0.539 + 0.04°
Cold 0.321 % 0.04 0.217 +0.02 0.186 + 0.07 0.176 +0.03 0.157 +0.06
Hassan and Elagamy
oo Warm 0.704 % 0.02 0.603 % 0.02 0.493 + 0.09 0.479 +0.05 0.682 +0.04
All 0.6121 +0.04" 0.603 % 0.02° 0.436 % 0.07" 0.418 +0.03" 0.653 + 0.03"
Cold 0.349 + 0.01 0.226 + 0.03 0.194 + 0.09 0.184 + 0.04 0.196 + 0.04
Cherukurietal. (38) = Warm 0.805 + 0.01 0.785 + 0.02 0.579 +0.09 0.567 + 0.03 0.756 + 0.03
All 0.746 % 0.01" 0.727 +0.02° 0.524 % 0.09" 0.534 +0.02" 0.718 + 0.03"
Cold 0.372 + 0,02+ 0.317 £ 0.01%%* 0.235 + 0,03%% 0.271 + 0,025 0.202 + 0,02%%*
Hybrid-GRUCNN-
Attention Warm 0.932 =+ 0,02+ 0.920 + 0,017 0.715 + 0,02%% 0.712 + 0,025 0.827 + 0,02%%*
All 0.893 = 0,02+ 0.880 + 0,017 0.675 + 0.02%% 0.671 + 0,027 0.823 + 0,02%%*

Significant results via pairwise t-tests (a = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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discriminative features across heterogeneous data streams.
Empirical validation confirms the model’s architectural superiority:
Hybrid-GRUCNN-Attention attains 89.3% accuracy (+5.9% vs.
CNN-DSSM) and 88.0% AUC (+5.3% CNN-DSSM),
state-of-the-art through unified
spatiotemporal representation learning. Furthermore, it surpasses

Vs.
establishing performance
previous state-of-the-art approaches based on both ensemble
methods (26) and deep learning methods (32, 38) (43) across all
evaluation metrics.

Results in Table 3 demonstrate that the Hybrid-GRUCNN-
Attention model, incorporating an attention mechanism,
significantly improves cold-start recall compared to the Hybrid-
GRUCNN model (Recall@10 143.4%). This validates the attention
mechanism’s enhancement for medical expert recommendation,
proving its effectiveness in capturing long-tail expert features and
mitigating popularity bias. In warm scenarios with sufficient
physician data, it achieves an NDCG@10 of 0.827, indicating
excellent ranking quality. Its Recall@10 of 0.671 represents a 40.1%
increase over the base model Hybrid-GRUCNN (0.479 — 0.671).
Crucially, it achieves balanced performance for the first time
between cold-start and warm scenarios (All-scenario Recall/
NDCG >0.67), solving the scenario adaptation challenge in
medical recommendation. Overall, the Hybrid-GRUCNN-
Attention model surpasses all baselines comprehensively across
cold-start (Cold), (Warm),
performance (All), achieving statistically significant improvements

warm scenarios and overall
(p <0.001) on all six metrics, further confirming the attention
mechanism’s reinforcing effect.

To verify the real-time performance of the model, we conducted
real-time benchmarking tests on the trained Hybrid-GRUCNN-
Attention model, with the comparative results shown in Table 4.

In Table 4, the Hybrid-GRUCNN-Attention model achieves a
breakthrough in real-time performance for medical recommendation
systems: with an average inference time of 85 ms and P99 latency of
220 ms (meeting emergency-grade response requirements), it delivers
a 15% speed improvement over the best baseline at equivalent model
complexity, establishing the technical foundation for large-scale
clinical deployment. The 85 ms average response enables processing
11.7 concurrent requests per second (satisfying peak demand in tier-3

10.3389/fpubh.2025.1633754

hospitals), while the 220 ms P99 latency ensures 99% of emergency
consultations are matched within the duration of a human blink
(200-300 ms). This P99 latency is a further 18.5% reduction compared
to the next-best model (Cherukuri 2025 = 270 ms), demonstrating
superior resilience against traffic fluctuations. Crucially, this is
achieved under the constraint of a fixed model size (34.7 MB),
simultaneously boosting inference speed 115% [vs. Cherukuri (38)],
these results confirm the model’s full compliance with emergency
response standards.

To avoid the system excessively recommending popular experts
(e.g., those with high exposure or senior titles), which could lead to
the neglect of long-tail experts (such as newcomers or specialists in
niche fields), a popularity bias evaluation was conducted to ensure all
experts receive reasonable exposure opportunities. Comparative
results are shown in Table 5. The proportions Head (10%), Middle
(40%), and Tail (50%) objectively reflect the distribution of experts in
the dataset.

Results in Table 5 demonstrate that Hybrid-GRUCNN-Attention
achieves a fairness breakthrough in medical recommendation systems:
it elevates tail expert exposure to 30% while compressing head expert
exposure to 28% (versus 30-37% in other models), all while
maintaining a 72% ultra-high recall rate for head experts—resolving
the long-standing fairness-precision trade-off. Compared to Hybrid-
GRUCNN, the model delivers a 50% increase in tail expert exposure,
substantially expanding service opportunities for tail physicians. Its
72% head expert recall ensures critically ill patients match top
specialists, while 38% tail recall marks an 18.7% improvement over
the next-best model (38), proving superior long-tail mining capability.
Crucially, it optimizes resource allocation by boosting head expert
recall despite reduced exposure, achieving balanced coverage: mid-tier
experts at 44% (approaching their 40% population share) and tail
experts at 38% (nearing their 50% population share), all improvements
are statistically significant (p < 0.001).

4.4.5 Analysis of the impact of multimodal input
features on recommendation effectiveness

Patient input feature design and ablation experiment setup:
to investigate the contribution of different multi-feature in
patient question representation, this study designs five ablation

TABLE 4 Real-time performance comparison: baseline vs. state-of-the-art methods.

Algorithm Test set Avg. inference P99 inference Model size Meets requirement
(ms) time (ms) (MB) (<500 ms)

LSTM All 210 510 347 No

GRU All 190 380 347 Yes
Bi-GRU All 180 336 347 Yes
Bi-GRU-ATT All 140 298 347 Yes
CSS-DSSN All 145 285 347 Yes
Hybrid-GRUCNN All 105 265 347 Yes
Kumar et al. (32) All 120 300 34.7 Yes
Hassan and Elagamy (26) All 110 280 34.7 Yes
Cherukuri et al. (38) All 100 270 347 Yes
Hybrid-GRUCNN-

Attention All 85 220 34.7 Yes

Latency results were collected from a controlled environment with <1% background CPU utilization, where repeated measurements showed no statistically significant variance (p > 0.1). The

bold text indicates the best average inference time and P99 latency.

Frontiers in Public Health

11

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1633754
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Zhang et al. 10.3389/fpubh.2025.1633754

TABLE 5 Popularity bias comparison: baseline vs. state-of-the-art methods.

Algorithm Expert group Exposure rate Recall@10 Coverage contribution
(%)
Head 36% + 0.3%* 60% + 0.2% 38% + 0.4%*
LSTM Middle 41% + 0.5%%+* 45% + 029 30% + 0.2%%%*
Tail 23% + 0.29%%+* 28% + 029+ 32% + 0.4%%+*
Head 22% + 0.1%%+% 62% + 0.29%% 38 + 0,206
GRU Middle 45 + 0.49 47% + 0.2%%* 34% + 0.5%%*
Tail 33% + 0.6%%+* 26% + 0,297 33% + 0.29%%%*
Head 36 + 0,29 65% + 0,297 30 + 0.497
Bi-GRU Middle 48% + 0.49%%+* 66% + 0,297 47% + 0.29%%%%
Tail 16% + 0,20 24% + 0,297 23 + (.59
Head 37% + 0.5%%%* 65% + 0.29%%* 30% + 0.29%%*
Bi-GRU-ATT Middle 46% + 029 48% + 0,29+ 46% + 0.2%%+*
Tail 17% + 0.4% 64% + 0.29%%* 24% + 0.3%%%
Head 35% + 029 60 + 0,297 30% + 0.29%%%
CSS-DSSN Middle 47% + 0.4%%% 48% =+ 0.29% 46% + 0.5%%*
Tail 17% + 0.2% 29% + 029 24% + 0,29
Head 34% + 0.3%%%% 60% + 0.29 %% 32 + 049
Hybrid-GRUCNN Middle 46% + 0.5%% 47% % 0,29+ 34% + 0.29%%%
Tail 20% + 029 29% + 0.29%%% 32% + 029
Head 37% + 0.5%%% 61% + 0.29%%% 23% + 0.5%%%%
Kumar et al. (32) Middle 46% + 029 48% =+ 0.29%%* 46% + 029
Tail 17% + 0.2%% 28 + 0,297 31% =+ 0.6%%*
Head 35% % 0.2% 62 % 0.2% 26% + 0.2%
Hassan and Elagamy (26) Middle 46% + 0.4%*** 49% + 0.2%*** 40% + 0.2%%**
Tail 19% + 0.29% 27% & 0.49%%* 33% + 0.5%%%*
Head 36% + 029 64% + 0297 24% + 0.3%%%
Cherukuri et al. (38) Middle 43% + 0.4%%* 49% =+ 029 30% + 029
Tail 21% + 0.29% %% 32% + 0.3%%%% 36% + 029
Head 28% + .19 72% + 0,20 18% + 0.4%%
Hybrid-GRUCNN-Attention Middle 42% + 0,29 589% + 0.1%%* 44% + 0.1%%
Tail 30% = 0.206%%* 389% + 0,20 38 + 0207

Significant results via pairwise t-tests (@ = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; **#*p-value < 0.001.

TABLE 6 Results with different question input combinations.

Patient query input Precision@10 Recall@10 NDGC@10
Question Content (E1) 0.755 + 0.02* 0.745 + 0.01* 0.568 + 0.01* 0.573 £ 0.02* 0.754 £ 0.01*
Question semantic Tags (E2) 0.789 + 0.01%*%* 0.774 + 0.02%* 0.589 + 0.02%* 0.601 £+ 0.01%* 0.795 + 0.02%*
Question Title (E3) 0.813 + 0.0 ** 0.803 + 0.01%* 0.623 + 0.01%* 0.612 + 0.02%* 0.812 + 0.0 **
QuestionTitle+Content (E4) 0.847 + 0.027%%* 0.852 + 0.02%** 0.635 + 0.027%** 0.627 £ 0.027%** 0.821 + 0.027%**
Full Context (E5) 0.893 + 0.01°%** 0.880 + 0.01°%** 0.675 + 0.027%** 0.671 + 0.017%** 0.823 £ 0.027%*%*

Significant results via pairwise t-tests (@ = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

experiment groups (Ablation Study). The impact of feature The results in Table 6 reveal significant performance variations
combinations on  recommendation  effectiveness is  across input combinations:

evaluated using the controlled variable method, as shown in In single-modality scenarios: E1 (Content-only) performed worst
Table 6. (ACC =0.755, AUC = 0.745, Precision@10 = 0.586,
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Recall@10 = 0.573, NDGC@10 = 0.754) due to semantic ambiguity
caused by low information density. E2 (Tags-only) and E3 (Title-only)
showed improvements across all metrics, with NDGC@10 increasing
by 4.1%. This demonstrates that structured tags mitigate noise in
lengthy texts, while keywords in titles play a central role in
representing patient questions.

With dual-feature fusion (E4: Title + Content): ACC and AUC
rose to 0.847 and 0.852 respectively, proving the complementarity
between keyword-focused titles and detailed content descriptions.

Through full-modality integration (E5: Title + Content + Tags):
Optimal performance was achieved (ACC = 0.893, AUC = 0.880,
Precision@10 = 0.675, Recall@10 = 0.671, NDGC@10 = 0.823),
that
enhancement - particularly when processing diverse medical
Q&A information.

These results demonstrate that effective medical question

indicating multimodal features enable semantic

representation necessitates integrating multi-granularity textual
information with domain-specific knowledge tags, as single-feature
inputs (E1-E3) fail to meet complex clinical demands. Performance
consistently improves with richer inputs: from single features to
combined features (E4) and full-context inputs (E5), all metrics
increase progressively. The full-context model (E5) achieves peak
performance with exceptional stability (ACC/AUC SD <0.02,
P <0.001): Precision@10 = 0.675 (+18.8% vs. E1), Recall@10 = 0.671
(+11.6% vs. E2), and statistically significant gains across all metrics
(p < 0.001). Crucially, while question-title-only inputs (E3) offer speed
but limited precision (risking misdiagnosis), full-context integration
enables dual “precision-comprehensiveness” outcomes: record-high
Precision@10  (0.675) and
(NDCG@10 = 0.823).

Medical expert input feature design and ablation experiment

superior  ranking  quality

setup: in medical expert modeling, the selection of different

information sources significantly impacts model-predictive
performance. Using a controlled-variable methodology, three
information schemes were tested: the Basic Information Group (F1:
Professional credentials only), Temporal Behavior Group (F2:
physicians’ historical reply sequences), and Integrated Information
Group (combined F1 + F2), as shown in Table 7.

As Table 7 shows, ACC and AUC reached 0.893 and 0.880,
respectively, (6% higher than the professional credentials group),
while Precision@10 increased by 6% versus the professional
credentials group (F1)—reducing mismatched recommendation risks.
Recall@10 rose by 5.9% versus professional credentials attributes
(F1)—minimizing omissions of critical experts and outperforming
physicians’ historical reply sequences models. NDCG@10 improved
by 4.5% versus professional credentials group (F1), and improved by
7% versus physician reply history group (F2), reflecting superior

ranking quality. All metrics showed statistically significant gains

TABLE 7 Results of different physician information input.

Physician information input

10.3389/fpubh.2025.1633754

(p < 0.001), confirming synergistic gains from dual-feature integration
of basic attributes and temporal behaviors.

5 Discussion and future work

This study addresses two core challenges in online health
communities: patients’ difficulty in obtaining timely, high-quality
responses and physicians’ inability to precisely match domain-specific
queries. We propose the Hybrid-GRUCNN- Attention medical expert
recommendation model, which integrates physicians’ professional
attributes (hospital affiliation, title, age), temporal behavioral features
(historical response patterns), and semantic patient queries through a
multidimensional feature representation system. We propose the
Hybrid-GRUCNN-Attention
recommendation, combining GRU, CNN, and attention mechanisms.

model for medical expert
This system integrates physicians’ professional credentials information
(hospital affiliation, title, age), their behavioral patterns (historical
reply sequences), and semantic patient queries (question titles/
content, health details, and tags) through multidimensional feature
processing to generate recommendations. The CNN component
extracts deep semantic features from patient inquiries, while the
bidirectional GRU aligns these with experts’ specialized medical
domains; an attention mechanism then dynamically weights critical
features across this integrated representation, thereby optimizing
recommendation accuracy and clinical relevance. Rigorous data
filtering,
comparisons—against classical research models and prior studies

parameter  optimization, and multi-dimensional
across cold-start, warm-start, and comprehensive performance
experiments—demonstrate the model’s significant superiority over
baselines in core metrics. Recommendation accuracy improved
substantially (p <0.001), validating the attention mechanism’s
enhancement effect. Real-time evaluations show gains in both
inference speed and recommendation precision. Popularity bias tests
confirm reduced head-expert exposure while increasing their recall
rate (ensuring critically ill patients match top specialists), alongside an
18.7% tail-expert recall improvement—proving exceptional long-tail
mining capability—and balanced model coverage. This research
provides a novel methodological framework for optimizing intelligent
medical recommendation systems.

The implementation yields three critical outcomes: (1) alleviating
congestion in top-tier hospitals while enabling patient enrollment
with platform physicians, thereby enhancing primary care engagement
and establishing closed-loop chronic disease management; (2)
mitigating geographical barriers in medically underserved regions to
reduce patient costs and uphold WHO equity principles; (3) resolving
the core paradox of traditional referral systems through our ‘Digital
Triage and Offline Escalation’ framework—which standardizes

Precision@10 Recall@10 NDGC@l10

Professional credentials (F1) 0.832 +0.02" 0.825 +0.01" 0.615 +0.01" 0.612 +0.02" 0.778 £0.01"
Physician Reply History (F2) 0.819 +0.01™ 0.804 + 0.02™ 0.599 + 0.02 0.587 £0.01" 0.753 £ 0.02"
Full Context (F3: Combined Credentials+

0.893 + 0.02%** 0.880 + 0.017%** 0.675 + 0.02%** 0.671 £ 0.02%*%* 0.823 + 0.02%%*
history reply sequences)

Significant results via pairwise t-tests (@ = 0.01) comparing with the baseline model are highlighted in bold. *p-value < 0.05; **p-value < 0.01; **#*p-value < 0.001.
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treatment protocols (e.g., hypertension management by community
GPs) for primary care, while directly matching complex cases (e.g.,
oncology) with relevant specialists through shared diagnostic
histories, thereby optimizing resource allocation across overburdened
tertiary and underutilized primary institutions. This research
demonstrates an Al-driven expert referral system that fulfills WHO’s
digital health equity mandate by connecting patients in remote areas
with specialists within 2 h—a 92% reduction compared to traditional
5-day averages—while establishing a replicable framework for global
healthcare resource optimization.

This study has two main limitations: semantic ambiguity—when
patient descriptions contain vague or incomplete information, the
consistency of the existing labeling system decreases; data sparsity—
for newly registered or low-activity physicians, although the scarce
historical response data has enhanced semantic representation
through knowledge graph embedding, it still affects the model’s
effectiveness to a certain extent. These limitations may hinder the
model’s generalization ability in practical scenarios.

Future research trajectories will pursue three synergistic axes to
advance clinical Al capabilities: Firstly, dynamic feature enhancement
through longitudinal tracking of patient social network dynamics (e.g.,
follow relationships, community engagement) coupled with physician
multi-dimensional evaluations (likes, saves) to build comprehensive
user profiles; Secondly, the architecture will incorporate cross-modal
reasoning modules synergized with medical knowledge graph
embeddings, thereby improving contextual semantic precision. Thirdly,
adaptive transfer learning frameworks will be deployed, utilizing
domain-invariant representation learning to mitigate physician-
specific data sparsity. Additionally, collaborations with mainstream
medical platforms will be pursued to refine model performance in real-
world clinical settings and facilitate translational applications.
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