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Background: Hand, foot, and mouth disease (HFMD) is a pediatric infectious disease prevalent in the Asia-Pacific region, requiring accurate forecasting for effective public health interventions. This study aims to compare the performance of time series foundation models (TimesFM and Moirai) with traditional methods (ARIMA and LSTM) in predicting HFMD outbreaks across various datasets and forecasting horizons.

Methods: The study analyzed weekly HFMD incidence data from Korea (2015–2024), Singapore (2012–2018), and Chongqing, China (2015–2024). Zero-shot versions of TimesFM (200 M and 500 M) and Moirai models were assessed against ARIMA and LSTM using forecasting horizons of 1 week, 5 weeks, and 10 weeks. Lookback windows of 50 and 100 weeks were used across experiments. Performance was evaluated based on forecasting accuracy across all datasets. Computational resource requirements were also analyzed.

Results: For 1-step predictions, ARIMA and Moirai delivered comparable results. TimesFM-500 M achieved the best performance for 5-step predictions with 100-week lookback windows across all datasets. For 10-step predictions, TimesFM-200 M performed well with 50-week lookback windows but showed weaker results with longer historical data. Foundation models demonstrated the potential for robust HFMD forecasting but required greater computational resources.

Conclusion: Time series foundation models can effectively predict HFMD outbreaks. While these models require more computational resources, their zero-shot capabilities simplify the forecasting process by eliminating the need for retraining.
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1 Introduction

Hand, foot, and mouth disease (HFMD) is a common infectious disease that primarily affects children under 5 years of age and is caused by human enterovirus infections (1). Typical symptoms include fever, oral sores, and rashes on hands and feet. While most patients present mild symptoms and recover naturally within a week, some severe cases can lead to life-threatening complications (2). Over the past two decades, HFMD has caused multiple outbreaks worldwide, particularly in the Asia–Pacific region (3, 4). Accurate forecasting models are critical for improving disease surveillance, guiding medical resource allocation, and supporting targeted prevention strategies to mitigate public health risks (5, 6).

Autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM) are traditional models widely used in epidemiological forecasting, including HFMD prediction in many countries and regions (7–10). However, ARIMA has basic limitations in capturing complex non-linear dynamics and long-term dependencies (11). LSTM networks overcome these limitations through their gated architecture, selectively retaining or forgetting information over long time sequences (12). This makes them excel at handling long sequence data and capturing long-term dependencies, and they have also shown good performance in epidemiological applications (13, 14). Nevertheless, LSTM models require extensive training data and computational resources for training (15, 16).

Recently, researchers have developed multiple time series foundation models (TSFMs) for time series analysis. These models use large-scale cross-domain pretraining to extract universal features for complex and heterogeneous prediction problems. TSFMs function as foundational building blocks for forecasting, classification, anomaly detection, and imputation. They offer effective out-of-the-box performance with minimal data requirements and can be fine-tuned for enhanced performance (17). Among these models, the masked encoder-based universal time series forecasting transformer (Moirai) from Salesforce and the time series foundation model (TimesFM) from Google are two representative models in terms of their architectural design, open-source availability, and flexibility of use. Moirai, which is based on a masked encoder architecture, learns universal time series features through pretraining on the LOTSA dataset. Its training objective is to reconstruct randomly masked segments of time series, enabling it to capture both the global context and local temporal patterns. The LOTSA dataset includes 27 billion observations across nine domains, such as healthcare, meteorology, economics, and transportation, including the COVID-19 time series. The pretraining objective of Moirai is to reconstruct randomly masked time series segments, enabling it to capture both global context and local temporal features, which are particularly important when dealing with heterogeneous and noisy data distributions like HFMD outbreaks (18). TimesFM adopts an autoregressive decoding structure with longer output patches, learning temporal patterns and contextual relationships through future sequence generation during pre-training. It supports dynamic prediction and handles long sequence generation, particularly in zero-shot and few-shot learning scenarios (19).

However, these TSFMs have not been applied to HFMD prediction. In this study, we evaluate the performance of these time series foundation models in HFMD forecasting and compare them with ARIMA and LSTM.



2 Methods


2.1 Data collection and study design

This study analyzes HFMD data collected from three regions in Asia. Data from Korea were obtained from the Korea Disease Control and Prevention Agency (KDCA) as publicly available weekly case counts (20). These data were collected by the KDCA through a well-established national reporting system in collaboration with designated surveillance institutions. Singaporean data were obtained from weekly reports published on the Singapore government's open data platform and were collected through healthcare reports, laboratory confirmations, and community-based monitoring programs. We excluded Singapore data after December 2018 because negligible HFMD cases were reported between January 2019 and December 2022 (21). For China, we obtained data from the Children's Hospital of Chongqing Medical University, covering the period from January 2015 to December 2024 (22). These data were collected following standardized hospital reporting protocols, and the original daily case counts from the hospital were aggregated into weekly totals for analysis. All datasets, accessed on January 10, 2025, consisted exclusively of aggregate case counts without any demographic or personally identifiable information.

The last 100 time points of each dataset were designated the test set to evaluate model performance. Comparative experiments were conducted across forecasting horizons of 1, 5, and 10 steps. For the LSTM, TimesFM, and Moirai models, performance comparisons were made under different lookback window lengths of 50 and 100.



2.2 ARIMA

In the ARIMA (p, d, q) model, parameter p denotes the order of autoregression, d represents the degree of differencing, and q indicates the order of the moving average. The appropriate (p, d, q) parameters are determined via the Akaike information criterion (AIC). For multistep forecasting, the model employs an iterative approach where single-step predictions are recursively fed as inputs until they reach the target forecast horizons. For all tested horizons (1-step, 5-step, and 10-step), the identified ARIMA parameters are 5,0,0 for the Korean dataset 5,0,2 for the Singapore dataset, and 1,1,0 for the CHCMU dataset.



2.3 LSTM

The LSTM model constructed in this study adopts a two-layer hidden layer structure, with each layer configured with 100-dimensional hidden units, and uses the GELU as the activation function. In terms of the training configuration, the model's batch size is 32, and the Adam optimizer with a learning rate of 0.001 is used. Unlike ARIMA models, which require iterative prediction, this LSTM architecture can directly output prediction sequences for multiple time steps (h=5 and h=10) through a single forward computation.



2.4 TimesFM and Moirai

This study used two sizes of TimesFM (TimesFM-1.0–200 M and TimesFM-2.0–500 M) (19) and three sizes of Moirai (Moirai-Small, Moirai-Base, and Moirai-Large with 14 M, 91 M, and 311 M parameters, respectively) (18). The input sequences were processed by sliding windows of 50 and 100 weeks. All the models were operated in zero-shot mode without additional fine-tuning on our datasets.



2.5 Evaluation of model performance

To assess the model's performance thoroughly, this study uses the root mean square error (RMSE) and mean absolute error (MAE). These metrics evaluate the model's performance from different perspectives. The formulas for calculating these metrics are provided.

RMSE=1n∑i=1n(y^i−yi)2          MAE=1n∑i=1n|y^i−yi|

where yi is the actual value at the i-th time point, ŷi is the predicted value at the i-th time point, and y^i is the mean value of the actual values.



2.6 Model training setups

The training hardware configuration includes an NVIDIA RTX 4090 GPU and 24 GB of memory, with all the models trained on the same server environment. The software environment includes Python 3.10, which uses main libraries such as Sklearn, Statsmodels for ARIMA, and PyTorch for the LSTM, TimesFM and Moirai models.




3 Results


3.1 The datasets

The Korean dataset contains 524 data points, with an incidence of 12.41 ± 23.71 cases per week. The Singapore dataset consists of 365 data points, with an incidence of 644.96 ± 273.29 cases per week. The Chinese CHCMU dataset includes 518 data points, with an incidence of 282.43 ± 324.67 cases per week (Figure 1).
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FIGURE 1
 Weekly HFMD cases in Korea, Singapore, and the CHCMU.




3.2 Single-step forecasting

For single-step prediction tasks, when the lookback window is set to 50 weeks, both ARIMA and Moirai achieve excellent performance across all three datasets with comparable prediction accuracies. Specifically, on the Korean dataset, the ARIMA model achieves an MAE of 4.286 and an RMSE of 6.193, whereas Moirai-Base shows similar performance, with an MAE of 4.303 and an RMSE of 6.302. For the CHCMU dataset, Moirai-Base attains an MAE of 48.763 and an RMSE of 129.987, approaching the performance of the ARIMA model, with an MAE of 50.068 and an RMSE of 124.427.

When the lookback window is extended to 100 weeks, for the Korean dataset, Moirai-Base records the lowest MAE (4.266), whereas TimesFM-500 M obtains the lowest RMSE (5.980). For the Singapore dataset, ARIMA performs best, with both the lowest MAE (79.298) and RMSE (99.901). For the CHCMU dataset, TimesFM-500 M records the lowest MAE (47.866), whereas ARIMA maintains the lowest RMSE (124.427). The prediction capability of the TimesFM models tends to improve as the lookback window length increases (Table 1). Visual comparisons of performance across all prediction steps and models are plotted in Supplementary Figure S1.

TABLE 1 Comparison of model performance in HFMD forecasting across Korea, Singapore, and CHCMU (1 week step).


	Data
	Model
	50 weeks' lookback
	100 weeks' lookback





	
	
	MAE
	RMSE
	MAE
	RMSE

 
	Korea
	ARIMA
	4.286
	6.193
	4.286
	6.193


 
	
	LSTM
	5.385
	7.366
	6.084
	8.429


 
	
	TimesFM-200M
	4.619
	6.910
	4.440
	6.866


 
	
	TimesFM-500M
	4.415
	6.620
	4.305
	5.980


 
	
	Moirai-14M
	4.386
	6.338
	4.433
	6.282


 
	
	Moirai-91M
	4.303
	6.302
	4.266
	6.181


 
	
	Moirai-311M
	4.375
	6.413
	4.328
	5.992

 
	Singapore
	ARIMA
	79.298
	99.901
	79.298
	99.901


 
	
	LSTM
	104.736
	132.397
	115.750
	151.468


 
	
	TimesFM-200M
	84.714
	107.631
	80.768
	101.666


 
	
	TimesFM-500M
	83.991
	105.630
	81.314
	101.735


 
	
	Moirai-14M
	78.475
	101.293
	80.466
	101.168


 
	
	Moirai-91M
	84.506
	104.254
	87.144
	107.038


 
	
	Moirai-311M
	83.027
	103.882
	83.884
	104.380

 
	CHCMU
	ARIMA
	50.068
	124.427
	50.068
	124.427


 
	
	LSTM
	53.217
	145.046
	55.106
	155.126


 
	
	TimesFM-200M
	76.496
	202.875
	65.939
	160.085


 
	
	TimesFM-500M
	59.811
	156.116
	47.866
	132.966


 
	
	Moirai-14M
	78.216
	231.271
	80.254
	228.189


 
	
	Moirai-91M
	48.763
	129.987
	50.105
	128.121


 
	
	Moirai-311M
	56.170
	168.349
	61.582
	171.215





The ARIMA model is evaluated only once per dataset, as its performance is not dependent on varying lookback periods due to its inherent model structure.






3.3 Five-step forecasting

For five-step prediction tasks, with a lookback window of 50 weeks, TimesFM-500 M achieves the best results on the Singapore dataset, with an MAE of 121.498 and an RMSE of 165.370, closely followed by ARIMA, with an MAE of 122.199 and an RMSE of 166.696. For the CHCMU dataset, TimesFM-200 M achieves the best performance, with an MAE of 121.026 and an RMSE of 349.123.

When the lookback window extends to 100 weeks, TimesFM-500 M shows significant improvement, achieving the highest prediction accuracy across all three datasets. For the Korean dataset, the MAE decreases from 7.201 to 6.252, a reduction of 13.18%, and the RMSE decreases from 67.01 to 60.53, a decrease of 9.69%. For the CHCMU dataset, the MAE decreases from 121.026 to 101.153, a decrease of 16.22%, whereas the RMSE improves from 349.123 to 269.97, a decrease of 22.62%. These results indicate that the prediction capability of TimesFM-500 M substantially improves with increasing lookback window length (Table 2).

TABLE 2 Comparison of model performance in HFMD forecasting across Korea, Singapore, and the CHCMU (5-week step).


	Data
	Model
	50 weeks' lookback
	100 weeks' lookback





	
	
	MAE
	RMSE
	MAE
	RMSE

 
	Korea
	ARIMA
	7.780
	11.016
	7.780
	11.016


 
	
	LSTM
	7.029
	9.806
	7.675
	10.858


 
	
	TimesFM-200M
	7.468
	11.571
	7.297
	12.000


 
	
	TimesFM-500M
	7.201
	11.500
	6.252
	8.898


 
	
	Moirai-14M
	7.278
	12.292
	7.478
	12.225


 
	
	Moirai-91M
	7.455
	12.842
	7.140
	12.075


 
	
	Moirai-311M
	7.234
	12.233
	7.578
	12.300

 
	Singapore
	ARIMA
	122.199
	166.696
	122.199
	166.696


 
	
	LSTM
	136.965
	184.293
	161.713
	205.639


 
	
	TimesFM-200M
	134.964
	177.035
	123.382
	164.551


 
	
	TimesFM-500M
	121.498
	165.370
	121.992
	157.212


 
	
	Moirai-14M
	127.477
	170.460
	128.617
	171.341


 
	
	Moirai-91M
	131.355
	177.888
	131.467
	174.574


 
	
	Moirai-311M
	134.001
	182.264
	129.854
	172.836

 
	CHCMU
	ARIMA
	174.606
	411.755
	174.606
	411.755


 
	
	LSTM
	161.381
	347.738
	181.625
	396.302


 
	
	TimesFM-200M
	121.026
	349.123
	159.234
	415.901


 
	
	TimesFM-500M
	161.570
	413.919
	135.358
	373.807


 
	
	Moirai-14M
	174.815
	430.278
	164.678
	409.655


 
	
	Moirai-91M
	151.215
	372.112
	153.515
	376.545


 
	
	Moirai-311M
	152.351
	398.606
	153.981
	393.631








3.4 Ten-step forecasting

For ten-step prediction tasks with a 50-week lookback window, TimesFM-200 M achieves the best overall performance. For the Korean dataset, it achieves an MAE of 7.344 and an RMSE of 11.503. For the CHCMU dataset, the lowest MAE of 154.640 is recorded. For the Singapore dataset, TimesFM-200 M has an MAE of 160.263 and an RMSE of 209.113, which are slightly higher than the performance of LSTM, with an MAE of 156.755 and an RMSE of 200.940. Unlike single-step and five-step predictions, when the lookback window increases to 100 weeks, all the TimesFM models show a decline in performance (Table 3).

TABLE 3 Comparison of model performance in HFMD forecasting across Korea, Singapore, and the CHCMU (10-week step).


	Data
	Model
	50 weeks' lookback
	100 weeks' lookback





	
	
	MAE
	RMSE
	MAE
	RMSE

 
	Korea
	ARIMA
	8.967
	12.132
	8.967
	12.132


 
	
	LSTM
	9.211
	12.039
	10.077
	12.882


 
	
	TimesFM-200M
	7.344
	11.503
	9.164
	13.933


 
	
	TimesFM-500M
	9.464
	14.025
	10.418
	14.480


 
	
	Moirai-14M
	9.573
	13.916
	9.632
	13.913


 
	
	Moirai-91M
	9.764
	14.363
	9.666
	13.571


 
	
	Moirai-311M
	9.617
	14.320
	9.753
	14.030

 
	Singapore
	ARIMA
	189.051
	243.423
	189.051
	243.423


 
	
	LSTM
	156.755
	200.940
	156.007
	196.084


 
	
	TimesFM-200M
	160.263
	209.113
	165.498
	201.836


 
	
	TimesFM-500M
	164.485
	222.534
	182.598
	226.180


 
	
	Moirai-14M
	173.156
	231.400
	186.730
	236.480


 
	
	Moirai-91M
	171.767
	239.127
	185.645
	245.123


 
	
	Moirai-311M
	178.478
	244.470
	177.581
	238.388

 
	CHCMU
	ARIMA
	190.854
	391.950
	190.854
	391.950


 
	
	LSTM
	200.285
	395.594
	194.871
	397.249


 
	
	TimesFM-200M
	154.640
	398.468
	234.949
	517.419


 
	
	TimesFM-500M
	155.059
	402.234
	196.644
	452.071


 
	
	Moirai-14M
	183.507
	390.850
	171.293
	386.361


 
	
	Moirai-91M
	168.394
	363.673
	164.136
	360.974


 
	
	Moirai-311M
	163.601
	385.678
	167.007
	389.357









4 Discussion

This study presents the first evaluation of TSFMs for predicting the incidence of HFMD, comparing the performance of TimesFM and Moirai with that of traditional models (ARIMA and LSTM). Using weekly incidence data from Korea, Singapore, and Chongqing, China, the comparison examines different temporal scales for both prediction horizons and historical windows. The findings reveal that for single-step prediction, ARIMA and Moirai achieve comparable and excellent performance. For five-step prediction with a 100-week lookback window, TimesFM-500 M demonstrates superior performance across all three datasets. For ten-step prediction, TimesFM-200 M performs well but does not benefit from increased historical windows.

Foundation time series models outperform traditional approaches across multiple prediction settings without task-specific fine-tuning. This is attributed to their ability to leverage large-scale pretraining on diverse datasets and advanced architectures, such as Moirai's multi-scale projection and TimesFM's patch-based decoding, which enhance their capacity to model temporal patterns and adapt to geographic variability (23–25). Emerging research suggests that TSFM performance improves with increases in model scale, data diversity, and computational resources, highlighting these factors as key to their predictive success across varied time-series scenarios (26). However, traditional models such as ARIMA remain highly effective in specific use cases, indicating that model selection should be context dependent.

While time series foundation models require more computational resources for training and inference, they offer the advantage of zero-shot prediction, which eliminates the need for retraining on new datasets and reduces long-term costs (18). In contrast, traditional methods use less computational power but need expertise to determine the best parameters and architectures for each specific task and dataset. Thus, in cases where computational resources are available and quick deployment is needed, pre-trained models may be the better choice.

The performance differences between TimesFM and Moirai may be related to their architectural designs. TimesFM's decoder-only architecture appears to benefit long-term prediction tasks, possibly because of its ability to generate predictions incrementally and adjust them on the basis of previous predictions. This characteristic in handling temporal dynamics might contribute to improved long-term prediction accuracy (27), which matches our observations of relatively better performance in medium- to long-term predictions.

This study has several limitations. The geographical focus is narrow, and validation was limited to HFMD, which affects the generalizability of the findings. Uncertainty quantification was not explicitly addressed, and model performance under operational constraints, such as limited computational resources, was not tested. Further work should include fine-tuning for specific tasks to optimize pre-trained model performance.

In summary, this study explores the potential of time series foundation models in predicting the incidence of HFMD. The demonstrated zero-shot prediction capabilities and relatively better performance in certain settings offer new technical options for HFMD warning systems, with implications for enhancing disease surveillance and informing epidemic prevention strategies. However, its applicability to other infectious diseases remains to be validated. Future studies could improve prediction accuracy and broaden applicability by refining model architecture, validating against other diseases, and incorporating multisource data alongside epidemiological data to better understand the dynamics of disease transmission.
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