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Background: Hand, foot, and mouth disease (HFMD) is a pediatric infectious
disease prevalent in the Asia-Pacific region, requiring accurate forecasting
for effective public health interventions. This study aims to compare the
performance of time series foundation models (TimesFM and Moirai) with
traditional methods (ARIMA and LSTM) in predicting HFMD outbreaks across
various datasets and forecasting horizons.

Methods: The study analyzed weekly HFMD incidence data from Korea
(2015-2024), Singapore (2012-2018), and Chongging, China (2015-2024).
Zero-shot versions of TimesFM (200M and 500 M) and Moirai models were
assessed against ARIMA and LSTM using forecasting horizons of 1 week, 5
weeks, and 10 weeks. Lookback windows of 50 and 100 weeks were used across
experiments. Performance was evaluated based on forecasting accuracy across
all datasets. Computational resource requirements were also analyzed.

Results: For 1-step predictions, ARIMA and Moirai delivered comparable results.
TimesFM-500M achieved the best performance for 5-step predictions with
100-week lookback windows across all datasets. For 10-step predictions,
TimesFM-200M performed well with 50-week lookback windows but
showed weaker results with longer historical data. Foundation models
demonstrated the potential for robust HFMD forecasting but required greater
computational resources.

Conclusion: Time series foundation models can effectively predict HFMD
outbreaks. While these models require more computational resources, their
zero-shot capabilities simplify the forecasting process by eliminating the need
for retraining.
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1 Introduction

Hand, foot, and mouth disease (HFMD) is a common infectious
disease that primarily affects children under 5 years of age and
is caused by human enterovirus infections (1). Typical symptoms
include fever, oral sores, and rashes on hands and feet. While most
patients present mild symptoms and recover naturally within a
week, some severe cases can lead to life-threatening complications
(2). Over the past two decades, HFMD has caused multiple
outbreaks worldwide, particularly in the Asia—Pacific region (3, 4).
Accurate forecasting models are critical for improving disease
surveillance, guiding medical resource allocation, and supporting
targeted prevention strategies to mitigate public health risks (5, 6).

Autoregressive integrated moving average (ARIMA) and long
short-term memory (LSTM) are traditional models widely used
in epidemiological forecasting, including HFMD prediction in
many countries and regions (7-10). However, ARIMA has
basic limitations in capturing complex non-linear dynamics and
long-term dependencies (11). LSTM networks overcome these
limitations through their gated architecture, selectively retaining or
forgetting information over long time sequences (12). This makes
them excel at handling long sequence data and capturing long-
term dependencies, and they have also shown good performance in
epidemiological applications (13, 14). Nevertheless, LSTM models
require extensive training data and computational resources for
training (15, 16).

Recently, researchers have developed multiple time series
foundation models (TSFMs) for time series analysis. These
models use large-scale cross-domain pretraining to extract
universal features for complex and heterogeneous prediction
problems. TSFMs function as foundational building blocks for
forecasting, classification, anomaly detection, and imputation.
They offer effective out-of-the-box performance with minimal data
requirements and can be fine-tuned for enhanced performance
(17). Among these models, the masked encoder-based universal
time series forecasting transformer (Moirai) from Salesforce and
the time series foundation model (TimesFM) from Google are two
representative models in terms of their architectural design, open-
source availability, and flexibility of use. Moirai, which is based on
a masked encoder architecture, learns universal time series features
through pretraining on the LOTSA dataset. Its training objective
is to reconstruct randomly masked segments of time series,
enabling it to capture both the global context and local temporal
patterns. The LOTSA dataset includes 27 billion observations
across nine domains, such as healthcare, meteorology, economics,
and transportation, including the COVID-19 time series. The
pretraining objective of Moirai is to reconstruct randomly masked
time series segments, enabling it to capture both global context
and local temporal features, which are particularly important
when dealing with heterogeneous and noisy data distributions
like HFMD outbreaks (18). TimesFM adopts an autoregressive
decoding structure with longer output patches, learning temporal
patterns and contextual relationships through future sequence
generation during pre-training. It supports dynamic prediction and
handles long sequence generation, particularly in zero-shot and
few-shot learning scenarios (19).
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However, these TSFMs have not been applied to HFMD
prediction. In this study, we evaluate the performance of these time
series foundation models in HFMD forecasting and compare them
with ARIMA and LSTM.

2 Methods

2.1 Data collection and study design

This study analyzes HFMD data collected from three regions
in Asia. Data from Korea were obtained from the Korea
Disease Control and Prevention Agency (KDCA) as publicly
available weekly case counts (20). These data were collected
by the KDCA through a well-established national reporting
system in collaboration with designated surveillance institutions.
Singaporean data were obtained from weekly reports published
on the Singapore government’s open data platform and were
collected through healthcare reports, laboratory confirmations, and
community-based monitoring programs. We excluded Singapore
data after December 2018 because negligible HFMD cases were
reported between January 2019 and December 2022 (21). For
China, we obtained data from the Children’s Hospital of Chongqing
Medical University, covering the period from January 2015
to December 2024 (22). These data were collected following
standardized hospital reporting protocols, and the original daily
case counts from the hospital were aggregated into weekly totals
for analysis. All datasets, accessed on January 10, 2025, consisted
exclusively of aggregate case counts without any demographic or
personally identifiable information.

The last 100 time points of each dataset were designated the test
set to evaluate model performance. Comparative experiments were
conducted across forecasting horizons of 1, 5, and 10 steps. For the
LSTM, TimesFM, and Moirai models, performance comparisons
were made under different lookback window lengths of 50 and 100.

2.2 ARIMA

In the ARIMA (p, d, q) model, parameter p denotes the order
of autoregression, d represents the degree of differencing, and q
indicates the order of the moving average. The appropriate (p, d,
q) parameters are determined via the Akaike information criterion
(AIC). For multistep forecasting, the model employs an iterative
approach where single-step predictions are recursively fed as inputs
until they reach the target forecast horizons. For all tested horizons
(1-step, 5-step, and 10-step), the identified ARIMA parameters are
5,0,0 for the Korean dataset 5,0,2 for the Singapore dataset, and
1,1,0 for the CHCMU dataset.

2.3LSTM

The LSTM model constructed in this study adopts a two-
layer hidden layer structure, with each layer configured with 100-
dimensional hidden units, and uses the GELU as the activation
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Weekly HFMD cases in Korea, Singapore, and the CHCMU.
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function. In terms of the training configuration, the model’s
batch size is 32, and the Adam optimizer with a learning rate
of 0.001 is used. Unlike ARIMA models, which require iterative
prediction, this LSTM architecture can directly output prediction
sequences for multiple time steps (h=>5 and h=10) through a single
forward computation.
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2.4 TimesFM and Moirai

This study used two sizes of TimesFM (TimesFM-1.0-200 M
and TimesFM-2.0-500 M) (19) and three sizes of Moirai (Moirai-
Small, Moirai-Base, and Moirai-Large with 14 M, 91 M, and 311 M
parameters, respectively) (18). The input sequences were processed
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TABLE 1 Comparison of model performance in HFMD forecasting across Korea, Singapore, and CHCMU (1 week step).

50 weeks' lookback

100 weeks' lookback

MAE RMSE MAE RMSE
Korea ARIMA 4.286 6.193 4.286 6.193
LSTM 5.385 7.366 6.084 8.429
TimesFM-200M 4.619 6.910 4.440 6.866
TimesFM-500M 4.415 6.620 4.305 5.980
Moirai-14M 4.386 6.338 4.433 6.282
Moirai-91M 4.303 6.302 4.266 6.181
Moirai-311M 4.375 6.413 4.328 5.992
Singapore ARIMA 79.298 99.901 79.298 99.901
LSTM 104.736 132.397 115.750 151.468
TimesFM-200M 84.714 107.631 80.768 101.666
TimesFM-500M 83.991 105.630 81.314 101.735
Moirai-14M 78.475 101.293 80.466 101.168
Moirai-91M 84.506 104.254 87.144 107.038
Moirai-311M 83.027 103.882 83.884 104.380
CHCMU ARIMA 50.068 124.427 50.068 124.427
LSTM 53.217 145.046 55.106 155.126
TimesFM-200M 76.496 202.875 65.939 160.085
TimesFM-500M 59.811 156.116 47.866 132.966
Moirai-14M 78.216 231.271 80.254 228.189
Moirai-91M 48.763 129.987 50.105 128.121
Moirai-311M 56.170 168.349 61.582 171.215

The ARIMA model is evaluated only once per dataset, as its performance is not dependent on varying lookback periods due to its inherent model structure.

by sliding windows of 50 and 100 weeks. All the models were
operated in zero-shot mode without additional fine-tuning on
our datasets.

2.5 Evaluation of model performance

To assess the model’s performance thoroughly, this study uses
the root mean square error (RMSE) and mean absolute error
(MAE). These metrics evaluate the model’s performance from
different perspectives. The formulas for calculating these metrics
are provided.

where y; is the actual value at the i-th time point, ; is the predicted
value at the i-th time point, and y; is the mean value of the
actual values.
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2.6 Model training setups

The training hardware configuration includes an NVIDIA
RTX 4090 GPU and 24 GB of memory, with all the models
trained on the same server environment. The software environment
includes Python 3.10, which uses main libraries such as Sklearn,
Statsmodels for ARIMA, and PyTorch for the LSTM, TimesFM and
Moirai models.

3 Results
3.1 The datasets

The Korean dataset contains 524 data points, with an incidence
of 12.41 &£ 23.71 cases per week. The Singapore dataset consists of
365 data points, with an incidence of 644.96 & 273.29 cases per
week. The Chinese CHCMU dataset includes 518 data points, with
an incidence of 282.43 £ 324.67 cases per week (Figure 1).

3.2 Single-step forecasting
For single-step prediction tasks, when the lookback window

is set to 50 weeks, both ARIMA and Moirai achieve excellent
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TABLE 2 Comparison of model performance in HFMD forecasting across Korea, Singapore, and the CHCMU (5-week step).

50 weeks' lookback

100 weeks' lookback

MAE RMSE MAE RMSE
Korea ARIMA 7.780 11.016 7.780 11.016
LSTM 7.029 9.806 7.675 10.858
TimesFM-200M 7.468 11.571 7.297 12.000
TimesFM-500M 7.201 11.500 6.252 8.898
Moirai-14M 7.278 12.292 7.478 12.225
Moirai-91M 7.455 12.842 7.140 12.075
Moirai-311M 7.234 12.233 7.578 12.300
Singapore ARIMA 122.199 166.696 122.199 166.696
LSTM 136.965 184.293 161.713 205.639
TimesFM-200M 134.964 177.035 123.382 164.551
TimesFM-500M 121.498 165.370 121.992 157.212
Moirai-14M 127.477 170.460 128.617 171.341
Moirai-91M 131.355 177.888 131.467 174.574
Moirai-311M 134.001 182.264 129.854 172.836
CHCMU ARIMA 174.606 411.755 174.606 411.755
LSTM 161.381 347.738 181.625 396.302
TimesFM-200M 121.026 349.123 159.234 415.901
TimesFM-500M 161.570 413.919 135.358 373.807
Moirai-14M 174.815 430.278 164.678 409.655
Moirai-91M 151.215 372.112 153.515 376.545
Moirai-311M 152.351 398.606 153.981 393.631

performance across all three datasets with comparable prediction
accuracies. Specifically, on the Korean dataset, the ARIMA model
achieves an MAE of 4.286 and an RMSE of 6.193, whereas Moirai-
Base shows similar performance, with an MAE of 4.303 and an
RMSE of 6.302. For the CHCMU dataset, Moirai-Base attains
an MAE of 48.763 and an RMSE of 129.987, approaching the
performance of the ARIMA model, with an MAE of 50.068 and an
RMSE of 124.427.

When the lookback window is extended to 100 weeks, for
the Korean dataset, Moirai-Base records the lowest MAE (4.266),
whereas TimesFM-500 M obtains the lowest RMSE (5.980). For
the Singapore dataset, ARIMA performs best, with both the
lowest MAE (79.298) and RMSE (99.901). For the CHCMU
dataset, TimesFM-500 M records the lowest MAE (47.866), whereas
ARIMA maintains the lowest RMSE (124.427). The prediction
capability of the TimesFM models tends to improve as the
lookback window length increases (Table 1). Visual comparisons of
performance across all prediction steps and models are plotted in
Supplementary Figure S1.

3.3 Five-step forecasting

For five-step prediction tasks, with a lookback window of 50
weeks, TimesFM-500 M achieves the best results on the Singapore
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dataset, with an MAE of 121.498 and an RMSE of 165.370, closely
followed by ARIMA, with an MAE of 122.199 and an RMSE
of 166.696. For the CHCMU dataset, TimesFM-200 M achieves
the best performance, with an MAE of 121.026 and an RMSE
of 349.123.

When the lookback window extends to 100 weeks, TimesFM-
500M shows significant improvement, achieving the highest
prediction accuracy across all three datasets. For the Korean
dataset, the MAE decreases from 7.201 to 6.252, a reduction of
13.18%, and the RMSE decreases from 67.01 to 60.53, a decrease of
9.69%. For the CHCMU dataset, the MAE decreases from 121.026
to 101.153, a decrease of 16.22%, whereas the RMSE improves from
349.123 to 269.97, a decrease of 22.62%. These results indicate that
the prediction capability of TimesFM-500 M substantially improves
with increasing lookback window length (Table 2).

3.4 Ten-step forecasting

For ten-step prediction tasks with a 50-week lookback window,
TimesFM-200 M achieves the best overall performance. For the
Korean dataset, it achieves an MAE of 7.344 and an RMSE of
11.503. For the CHCMU dataset, the lowest MAE of 154.640 is
recorded. For the Singapore dataset, TimesFM-200 M has an MAE
of 160.263 and an RMSE of 209.113, which are slightly higher than
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TABLE 3 Comparison of model performance in HFMD forecasting across Korea, Singapore, and the CHCMU (10-week step).

50 weeks' lookback

100 weeks' lookback

MAE RMSE MAE RMSE

Korea ARIMA 8.967 12.132 8.967 12.132
LSTM 9.211 12.039 10.077 12.882

TimesFM-200M 7.344 11.503 9.164 13.933

TimesFM-500M 9.464 14.025 10.418 14.480

Moirai-14M 9.573 13.916 9.632 13.913

Moirai-91M 9.764 14.363 9.666 13.571

Moirai-311M 9.617 14.320 9.753 14.030

Singapore ARIMA 189.051 243.423 189.051 243.423
LSTM 156.755 200.940 156.007 196.084

TimesFM-200M 160.263 209.113 165.498 201.836

TimesFM-500M 164.485 222.534 182.598 226.180

Moirai-14M 173.156 231.400 186.730 236.480

Moirai-91M 171.767 239.127 185.645 245123

Moirai-311M 178.478 244.470 177.581 238.388

CHCMU ARIMA 190.854 391.950 190.854 391.950
LSTM 200.285 395.594 194.871 397.249

TimesFM-200M 154.640 398.468 234.949 517.419

TimesFM-500M 155.059 402.234 196.644 452.071

Moirai-14M 183.507 390.850 171.293 386.361

Moirai-91M 168.394 363.673 164.136 360.974

Moirai-311M 163.601 385.678 167.007 389.357

the performance of LSTM, with an MAE of 156.755 and an RMSE
of 200.940. Unlike single-step and five-step predictions, when the
lookback window increases to 100 weeks, all the TimesFM models
show a decline in performance (Table 3).

4 Discussion

This study presents the first evaluation of TSFMs for
predicting the incidence of HFMD, comparing the performance of
TimesFM and Moirai with that of traditional models (ARIMA and
LSTM). Using weekly incidence data from Korea, Singapore, and
Chongging, China, the comparison examines different temporal
scales for both prediction horizons and historical windows. The
findings reveal that for single-step prediction, ARIMA and Moirai
achieve comparable and excellent performance. For five-step
prediction with a 100-week lookback window, TimesFM-500 M
demonstrates superior performance across all three datasets. For
ten-step prediction, TimesFM-200 M performs well but does not
benefit from increased historical windows.

Foundation time series models outperform traditional
approaches across multiple prediction settings without task-specific
fine-tuning. This is attributed to their ability to leverage large-scale
pretraining on diverse datasets and advanced architectures, such

as Moirai’s multi-scale projection and TimesFM’s patch-based
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decoding, which enhance their capacity to model temporal patterns
and adapt to geographic variability (23-25). Emerging research
suggests that TSFM performance improves with increases in model
scale, data diversity, and computational resources, highlighting
these factors as key to their predictive success across varied
time-series scenarios (26). However, traditional models such as
ARIMA remain highly effective in specific use cases, indicating
that model selection should be context dependent.

While
computational resources for training and inference, they offer

time series foundation models require more
the advantage of zero-shot prediction, which eliminates the
need for retraining on new datasets and reduces long-term costs
(18). In contrast, traditional methods use less computational
power but need expertise to determine the best parameters
and architectures for each specific task and dataset. Thus,
in cases where computational resources are available and
quick deployment is needed, pre-trained models may be the
better choice.

The performance differences between TimesFM and Moirai
may be related to their architectural designs. TimesFM’s decoder-
only architecture appears to benefit long-term prediction tasks,
possibly because of its ability to generate predictions incrementally
and adjust them on the basis of previous predictions. This
characteristic in handling temporal dynamics might contribute

to improved long-term prediction accuracy (27), which matches
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our observations of relatively better performance in medium- to
long-term predictions.

This study has several limitations. The geographical focus is
narrow, and validation was limited to HFMD, which affects the
generalizability of the findings. Uncertainty quantification was not
explicitly addressed, and model performance under operational
constraints, such as limited computational resources, was not
tested. Further work should include fine-tuning for specific tasks
to optimize pre-trained model performance.

In summary, this study explores the potential of time series
foundation models in predicting the incidence of HFMD. The
demonstrated zero-shot prediction capabilities and relatively better
performance in certain settings offer new technical options
for HEMD warning systems, with implications for enhancing
disease surveillance and informing epidemic prevention strategies.
However, its applicability to other infectious diseases remains to
be validated. Future studies could improve prediction accuracy
and broaden applicability by refining model architecture, validating
against other diseases, and incorporating multisource data
alongside epidemiological data to better understand the dynamics
of disease transmission.
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