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Prediction of in-hospital death
among patients admitted to a
tertiary care hospital over the
first 10 years: a machine learning
approach
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SSECIHTI Secretaria de Ciencia, Humanidades, Tecnologia e Innovacién, Mexico City, Mexico

Purpose: To describe the pre- and post-admission characteristics of hospitalized
patients in a tertiary care hospital and to adjust machine learning models capable
of predicting and identifying the factors that are associated with and have a
greater prognostic value for in-hospital death.

Materials and methods: This was a retrospective study based on data from
patients who were discharged from a Mexican tertiary care hospital during
its first 10 years of operation (2007-2016). Preadmission characteristics were
analyzed using descriptive statistics. Comparison tests (Mann-Whitney U) and
association tests (chi-square) were applied according to the absence or presence
of in-hospital death. Multivariate models (logistic regression, random forest and
XGBoost) were fitted. Their ROC curves were compared using the DelLong test,
and performance metrics were evaluated.

Results: In total, 55,253 hospital discharges were considered, only 45,011
(0-101 years) had complete data, and the rate of in-hospital death was 4.17%.
In total, 70% of the data were used for training and 30% for testing. Two-to-two
comparisons between areas under the curve (AUCs) revealed that XGBoost (AUC
= 0.9162) outperformed logistic regression (AUC = 0.9036) and random forest
(AUC = 0.8978) (p-value < 0.001 in both cases). XGBoost had a sensitivity of
87%, specificity of 81.3% and balanced efficiency of 84.2%. The most relevant
predictive factors were medical service that performed the admission, number
of conditions, origin of the outpatient consultation of the hospital, and the
main condition diagnosed at admission according to the ICD-10, age, month
of admission, and day of the week of admission.

Conclusions: Owing to its ability to capture complex patterns, the XGBoost
model makes it possible to identify patients with a relatively high risk of
in-hospital death using the data available at hospital admission. This constitutes
a support tool for decision-making, helping to determine which patients require
closer monitoring and follow-up during their hospital stay to improve the quality
of medical care.
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1 Introduction

A hospital discharge occurs when a patients hospitalization
period ends and a hospital bed is vacated, either because of medical
discharge or death. Data on hospital discharge by death can be
valuable resources for hospital planning and management (1). In
Mexico, the General Directorate of Health Information (DGIS,
acronym in Spanish) is the operational body of the Ministry of
Health (SSA, acronym in Spanish) that is responsible for generating
statistics on health. Among the information subsystems that it
manages is the Automated Hospital Discharge System (SAEH,
acronym in Spanish) (2), which contains an accumulation of public
data of approximately three million records per year (with at
most 140 variables captured for each record) of patients who
are hospitalized in a hospital unit of the Ministry of Health of
Mexico (3, 4).

During the hospital stay of a patient, that is, from admission
to discharge from the hospital, various adverse events may occur,
among which death (also known as in-hospital death) stands out.
The importance of this adverse event has been reflected in the
international arena, where measures have been implemented for
monitoring and analysis. For example, since 1986, the Health
Care Financing Administration (HCFA) has incorporated the
percentage of hospital mortality as a quantitative indicator to
compare American hospitals (5). Hospital mortality is a widely used
indicator of the quality of medical care (6), and the quantification of
in-hospital deaths can be considered a measure of the effectiveness
of hospital intervention (7). A high percentage of in-hospital
deaths are associated with deficiencies in the quality of hospital
care (8, 9).

The number of hospital discharges, both in general and
with respect to those corresponding to deaths, varies according
to hospital conditions and procedures. From the perspective of
the analysis of data on hospital discharge, in Mexico, there are
descriptive reports on hospital discharge at the national level (2)
or at the regional level (10) that provide details on discharges
due to deaths; these reports are similar to those described in the
international literature (11-14). It is estimated that between 2%
and 3% of hospital discharges result in death (3, 6). Identifying the
factors that affect the likelihood of in-hospital death is essential for
the construction of predictive models. There is evidence of factors
that can increase the risk of in-hospital death, such as hospital
admission during weekends (15, 16), increases in the number of
hospitalized patients (17, 18) and increases in the volume of surgical
patients (19, 20).

With respect to the prediction of the likelihood of in-hospital
death during hospitalization, multivariate logistic regression
models that are validated by an analysis of the area under
the receiver operating characteristic (ROC) curve, are typically
constructed (21). Then, a confusion matrix is created to evaluate
the performance of the model by calculating various efficiency
metrics, such as sensitivity, specificity, balanced efficiency, positive
predictive value, negative predictive value, precision, recall and
F1 score. The implementation of multivariate logistic regression
models (22) to predict in-hospital death has allowed the
identification of predictive factors such as the age of the patient (23—
25), the sex of the patient (25, 26), whether the patient is a clinical or
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surgical patient (24), the patient’s diagnosis (26), the type of disease
(25, 26) and the presence of hypotension (27).

Today, the prediction of the in-hospital death of patients can
be approached as a machine learning problem. This approach is
considered an indispensable tool for revealing answers to complex
questions in medicine (28). This is especially the case through the
use of supervised machine learning, which is based on data labeled
as the presence or absence of in-hospital death. With the current
computing power, it is possible to implement prediction techniques
using complex algorithms, whose predictive capacity has been
shown to be superior to that resulting from logistic regression.
These predictive algorithms include decision trees (29), random
forest (30), neural networks (31), naive Bayes (32), vector support
machines (33), and XGBoost (34).

At a global level, various machine learning-based risk
prediction models have been developed and compared to predict
in-hospital death across diverse populations and clinical settings,
including the United States (35), Europe (36), Asia (37), Oceania
(38), and Africa (39). These studies highlight the widespread
adoption and effectiveness of supervised algorithms for early risk
stratification at hospital admission, while also illustrating the
variability of performance across healthcare systems and patient
populations. In contrast, there is little to no evidence of similar
models being applied or systematically evaluated in Latin American
healthcare systems.

While previous studies have used machine learning to
predict in-hospital mortality, few have specifically focused on
the Mexican or Latin American healthcare context; strictly based
on administrative and preliminary diagnostic data available at
the point of admission, which is crucial for early, low-cost risk
stratification; and systematically compared a range of advanced
models, including XGBoost, on such a large, decade-long cohort.

The aim of this study was to describe the pre- and post-
admission characteristics of hospitalized patients in a tertiary care
hospital and to develop a risk prediction model for in-hospital
death based on machine learning. By systematically comparing
algorithms such as logistic regression, random forest, and XGBoost,
the study identified the best-performing model and proposed it as a
robust risk index tailored to the Mexican healthcare context, which
provides a foundation for future integration into clinical workflows
as a decision-support tool.

2 Materials and methods
2.1 Patients

We conducted a retrospective study of all the records of
patients (n = 55,253) who were discharged from a Mexican
tertiary care hospital (HRAEB) during its first 10 years of
operation (April 2007 to December 2016). The dataset constitutes
a secondary base and was obtained from the national registries
of the Automated Subsystem of Hospital Expenditures (SAEH,
acronym in Spanish) operated by the General Directorate of
Health Information of the Secretary of Health of Mexico (DGIS,
acronym in Spanish) (3). The SAEH is a system that compiles
data on hospital discharges from Mexican hospitals as a primary
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TABLE 1 Hospital discharges from all hospitals of the Ministry of Health of Mexico registered in the Automated Hospital Discharge System per year from

2007 to 2016.

Hospital discharges of

the Ministry of Health

In-hospital deaths of
the Ministry of Health

Hospital discharges of
the selected hospital

In-hospital deaths of
the selected hospital

of Mexico of Mexico
2007 2,311,826 51,047 623 29
2008 2,463,847 52,192 3,045 146
2009 2,598,366 55,147 5,063 292
2010 2,634,339 53,103 5,443 257
2011 2,775,101 57,957 5,464 244
2012 2,880,606 59,765 5,884 201
2013 2,879,313 62,571 6,361 206
2014 2,959,197 64,923 6,948 189
2015 2,970,812 66,093 7,867 240
2016 2,953,109 65,912 8,555 221
Total 27,426,516 588,710 55,253 2,025

source. The data included 16 preadmission characteristics of the
patients (age, sex, state of residence, municipality of residence, has
healthcare entitlement, day of the week of admission, month of
admission, first hospitalization, origin of outpatient consultation
of the Hospital, presence of injury, initial preadmission reference
diagnoses according to the ICD-10, medical service that performed
the admission, main condition diagnosed at admission according
to the ICD-10, initial preadmission reference diagnoses equal to
the main condition diagnosed at admission, the ICD-10 group of
initial preadmission reference diagnoses equal to the ICD-10 group
of the main condition diagnosed at admission, and number of
comorbidities) that were collected.

In addition, data on 12 post-admission characteristics of the
patients (number of diagnostic, surgical or therapeutic procedures
performed, number of procedures under general anesthesia, length
of stay (days), length of stay > 48 h, length of stay >7 days, length of
stay >14 days, nosocomial infection, day of the week of discharge,
month of discharge, medical service that performed the discharge,
discharge service equal to admission service, and in-hospital death)
were collected.

For the analysis, only the dataset of patients with complete
records (n = 45,011) was considered, among whom 4.17%
(1,879/45,011) experienced in-hospital death. The dataset was
divided into two parts by using the train_test_split function of the
R statistical package “rsample: General Resampling Infrastructure”
(40). With 70% of the records (n = 31,507), a set was formed for
the construction of models (training dataset), and with 30% of the
records (n = 13,504), a set was formed to evaluate the models
(test dataset).

2.2 Statistical analysis
All the data were analyzed using the R programming language

(version 4.3.3, R Core Team, Vienna, Austria) (41). Initially,
hospital discharges were counted in general and by reason of
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in-hospital death per year. Next, considering the dataset of
the patients with complete records, descriptive statistics of the
preadmission and post-admission characteristics of the patients in
general were calculated and grouped by the absence or presence
of in-hospital death. These characteristics were subjected to a
comparison or association search via Mann-Whitney U tests (42)
or chi-square tests (43), depending on the type of variable being
analyzed. To predict in-hospital death and through the use of the
training dataset, multivariate models were fitted [logistic regression
(22), random forest (30) and XGBoost (44)] considering the
preadmission characteristics of the patients as predictive variables,
and the importance of the variables for each model was determined.
All this was accomplished with the statistical packages R “caret:
Classification and Regression Training” (45), “RandomForest:
Classification
Gradient

Random Forests for
“xgboost:

Breiman and Cutler’s
and Regression” (46), and Extreme
Boosting” (47).

For each case, the fit of the model was evaluated using the
Hosmer-Lemeshow test (48). The coeflicient of determination
[Nagelkerkes R2 (49)] or the analysis of the area under the
ROC curve (21) and optimal cutoff points were estimated, as
were efficiency metrics (specificity, sensitivity, balanced accuracy,
negative predictive value, positive predictive value, precision, recall
and F1 score) on the basis of the confusion matrices generated with
each model for both the training and test datasets. The optimal
cutoff point in each case was calculated as the minimum value of the
square root of [(1-sensitivity)2 + (1-specificity)2], which reflects
a better accuracy due to a smaller distance to the point (0, 1) of
the respective ROC curve in each case (50). The ROC curves of
each multivariate model that resulted when the test dataset was
considered were compared two by two through the implementation
of DeLong tests (51). In all cases, 95% confidence intervals were
constructed, and a level of significance of alpha = 0.05 was used in
all tests. This study is consistent with “the Transparent Reporting
of Multivariate Predictive Models for Individual Prognosis or

Diagnosis (TRIPOD): TRIPOD statement” (52).
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TABLE 2 Preadmission characteristics of hospitalized patients in the selected hospital from 2007 to 2016.

Variable Overall In-hospital In-hospital Intergroup

(n = 45,011) death (-) death (+) comparison
(n =43,132) (n=1,879)

Age, years 33.72 (24.64) 33.33 (24.51) 42.62 (25.95) p < 0.001%

Age group

<1 year, n (%) 1,948 (4.33%) 1,776 (4.12%) 172 (9.15%)

1-4 years, n (%) 5,291 (11.75%) 5,181 (12.01%) 110 (5.85%)

5-14 years, n (%) 6,286 (13.97%) 6,190 (14.35%) 96 (5.11%)

15-44 years, n (%) 14,552 (32.33%) 14,074 (32.63%) 478 (25.44%)

45-64 years, n (%) 11,076 (24.61%) 10,486 (24.31%) 590 (31.40%)

65 years and more, 1 (%) 5,858 (13.01%) 5,425 (12.58%) 433 (23.04%)

Sex p=0.187°

Female, n (%) 21,580 (47.94%) 20,651 (47.88%) 929 (49.44%)

Male, 1 (%) 23,431 (52.06%) 22,481 (52.12%) 950 (50.56%)

Resides in the state where the hospital is located, n (%) 42,846 (95.19%) 41,101 (95.29%) 1,745 (92.87%) p< 0.001%*

Resides in the municipality where the hospital is located, n (%) 12,825 (28.49%) 12,423 (28.80%) 402 (21.39%) p < 0.001°

Has healthcare entitlement, n (%) 44,219 (98.24%) 42,413 (98.33%) 1,806 (96.11%) p < 0.001°

Day of the week of admission p < 0.001%

Monday, 7 (%) 11,196 (24.87%) 10,884 (25.23%) 312 (16.60%)

Tuesday, 7 (%) 8,663 (19.25%) 8,306 (19.26%) 357 (19.00%)

Wednesday, 1 (%) 8,432 (18.73%) 8,102 (18.78%) 330 (17.56%)

Thursday, 7 (%) 7,067 (15.70%) 6,756 (15.66%) 311 (16.55%)

Friday, n (%) 3,588 (7.97%) 3,320 (7.70%) 268 (14.26%)

Saturday, n (%) 1,522 (3.38%) 1,378 (3.19%) 144 (7.66%)

Sunday, 1 (%) 4,543 (10.09%) 4,386 (10.17%) 157 (8.36%)

Month of admission p =0.024>

January, n (%) 3,407 (7.57%) 3,244 (7.52%) 163 (8.67%)

February, n (%) 3,485 (7.74%) 3,333 (7.73%) 152 (8.09%)

March, n (%) 3,730 (8.29%) 3,584 (8.31%) 146 (7.77%)

April, n (%) 3,420 (7.60%) 3,268 (7.58%) 152 (8.09%)

May, n (%) 3,700 (8.22%) 3,560 (8.25%) 140 (7.45%)

June, n (%) 3,902 (8.67%) 3,726 (8.64%) 176 (9.37%)

July, n (%) 4,013 (8.92%) 3,864 (8.96%) 149 (7.93%)

August, 7 (%) 4,109 (9.13%) 3,959 (9.18%) 150 (7.98%)

September, 1 (%) 3,889 (8.64%) 3,755 (8.71%) 134 (7.13%)

October, 1 (%) 4,289 (9.53%) 4,101 (9.51%) 188 (10.01%)

November, # (%) 3,722 (8.27%) 3,551 (8.23%) 171 (9.10%)

December, 1 (%) 3,345 (7.43%) 3,187 (7.39%) 158 (8.41%)

First hospitalization, n (%) 32,374 (71.92%) 31,065 (72.02%) 1,309 (69.66%) p=0.027"x

Origin of outpatient consultation of the Hospital, 1 (%) 40,964 (91.01%) 40,271 (93.37%) 693 (36.88%) p < 0.001°

External cause (only in case of injury), n (%) 2,107 (4.68%) 2,057 (4.77%) 50 (2.66%) p< 0.001%*

Unless otherwise indicated, data are presented as the mean (standard deviation).
#Mann-Whitney U test.

bChi-square test.

*Significant p-value.
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TABLE 3 Initial preadmission reference diagnoses according to the ICD-10 group of patients hospitalized in the selected hospital from 2007 to 2016.

Variable Overall In-hospital
death (-)

(n=43,132)

In-hospital
death (+)
(n=1,879)

Intergroup
comparison

(n =45,011)

Initial preadmission reference diagnoses according to the ICD-10 group p < 0.001%

I.- A00-B99 Certain infectious and parasitic diseases, 7 (%) 489 (1.09%) 461 (1.07%) 28 (1.49%)

II.- C00-D48 Neoplasms, 7 (%) 14,245 (31.65%) 13,514 (31.33%) 731 (38.90%)

III.- D50-D89 Diseases of the blood and hematopoietic organs 723 (1.61%) 697 (1.62%) 26 (1.38%)

and other disorders that affect the mechanism of immunity, n (%)

IV.- E00-E90 Endocrine nutritional and metabolic diseases, n (%) 1,031 (2.29%) 1,010 (2.34%) 21 (1.12%)
V.- F00-F99 Mental and behavioral disorders, n (%) 144 (0.32%) 139 (0.32%) 5(0.27%)
VI.- G00-G99 Diseases of the nervous system, 1 (%) 1,472 (3.27%) 1,434 (3.32%) 38 (2.02%)
VII.- H00-H59 Diseases of the eye and its annexes, 7 (%) 109 (0.24%) 109 (0.25%) 0 (0.00%)
VIIIL.- H60-H95 Diseases of the ear and mastoid process, 1 (%) 328 (0.73%) 327 (0.76%) 1 (0.05%)
IX.- 100-199 Diseases of the circulatory system, # (%) 3,265 (7.25%) 2,985 (6.92%) 280 (14.90%)
X.- J00-J99 Diseases of the respiratory system, n (%) 1,221 (2.71%) 1,126 (2.61%) 95 (5.06%)

XI.- K00-K93 Diseases of the digestive system, n (%) 2,431 (5.40%) 2,315 (5.37%) 116 (6.17%)

XIIL.- L00-L99 Diseases of the skin and subcutaneous tissue, # (%) 153 (0.34%) 146 (0.34%) 7 (0.37%)

XIIIL.- M00-M99 Diseases of the musculoskeletal system and
connective tissue, 7 (%)

2,398 (5.33%) 2,371 (5.50%) 27 (1.44%)

XIV.- N00-N99 Diseases of the genitourinary system, 7 (%) 4,182 (9.29%) 4,123 (9.56%) 59 (3.14%)

XV.- 000-099 Pregnancy, childbirth and puerperium, n (%) 1 (0.00%) 1 (0.00%) 0 (0.00%)
XVI.- P00-P96 Certain conditions originating in the perinatal 60 (0.13%) 59 (0.14%) 1 (0.05%)
period, n (%)

XVIL- Q00-Q99 Congenital malformations, deformities and 4,475 (9.94%) 4,318 (10.01%) 157 (8.36%)
chromosomal abnormalities, 1 (%)

XVIIL- R00-R99 Symptoms, signs and abnormal clinical findings 5,549 (12.33%) 5,297 (12.28%) 252 (13.41%)

and Laboratory, not elsewhere classified, n (%)

XIX.- S00-T98 Trauma, poisoning and some other consequences 1,555 (3.45%) 1,530 (3.55%) 25 (1.33%)

of external cause, 1 (%)

XX.- V01-Y98 Extreme causes of morbidity and mortality, n (%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
XXI.- Z00-799 Factors that influence the state of health and 1,180 (2.62%) 1,170 (2.71%) 10 (0.53%)
contact with health services, 1 (%)

XXIL- U00-U99 Codes for special situations, n (%) 0(0.00%) 0 (0.00%) 0 (0.00%)

2Chi-square test.
*Significant p-value.

3 Results

3.1 Hospital discharges and in-hospital
deaths

From 2007 to 2016 in the Automated Hospital Discharge
System of Mexico, a total of 27,426,516 hospital discharges
were registered, and when all the hospitals of the Ministry of
Health were considered, the percentage of in-hospital deaths was
2.15% (588,710/27,426,516). Among all hospital discharges, only
55,253 were from the selected tertiary care hospital, where 3.66%
(2,025/55,253) were due to in-hospital death. Data on the total
number of hospital discharges and the number of discharges due
to in-hospital death at both the national and hospital selected levels
per year are shown in Table 1.
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Of the 55,253 hospital discharges, 10,242 (18.54%) were
excluded due to incomplete data in at least one of the 28
variables analyzed (16 pre-admission and 12 post-admission). Most
variables (23 of 28) were fully complete; the five with missing
data had completeness rates of 99.998% (55,252/55,253) for age,
99.982% (55,243/55,253) for sex, 99.929% (55,214/55253) for
first hospitalization, 87.069% (48,108/55,253) for medical service
that performed the admission, and 94.4% (52,170/55,253) for
nosocomial infection.

Among the 10,242 excluded records, 146 (1.43%) resulted in-
hospital dead, indicating that data loss was not concentrated
with No
pattern of missingness characteristics
illness

among patients adverse outcomes. systematic

related to patient

or severity was identified, minimizing potential

selection bias.
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TABLE 4 Medical services that performed the admission of patients in the selected hospital from 2007 to 2016.

Medical service that performed the admission

P < 0.001%*

Oncology, 1 (%) 8,107 (18.01%) 7,709 (17.87%) 398 (21.18%)
Urology, n (%) 2,729 (6.06%) 2,707 (6.28%) 22 (1.17%)
Neurosurgery, 1 (%) 2,605 (5.79%) 2,515 (5.83%) 90 (4.79%)
Pediatric oncology, n (%) 2,548 (5.66%) 2,507 (5.81%) 41 (2.18%)
Traumatology, n (%) 2,389 (5.31%) 2,381 (5.52%) 8 (0.43%)
Cardiology, n (%) 2,275 (5.05%) 2,189 (5.08%) 86 (4.58%)

Hematology, n (%) 1,899 (4.22%)

1,720 (3.99%) 179 (9.53%)

Pediatric cardiology, # (%) 1,465 (3.25%)

1,436 (3.33%) 29 (1.54%)

Pediatric urology, n (%) 1,387 (3.08%) 1,387 (3.22%) 0 (0.00%)
Internal medicine, n (%) 1,252 (2.78%) 1,079 (2.50%) 173 (9.21%)
Pediatric hematology, 1 (%) 1,223 (2.72%) 1,200 (2.78%) 23 (1.22%)

Pediatrics, n (%) 1,030 (2.29%)

978 (2.27%) 52 (2.77%)

Nephrology, n (%) 967 (2.15%)

954 (2.21%) 13 (0.69%)

General pediatric surgery, n (%) 874 (1.94%)

870 (2.02%) 4(0.21%)

Gastric surgery, n (%) 832 (1.85%)

819 (1.90%) 13 (0.69%)

Otolaryngology, n (%) 720 (1.60%)

719 (1.67%) 1(0.05%)

Orthopedics, n (%) 679 (1.51%)

678 (1.57%) 1 (0.05%)

Neurology, n (%) 668 (1.48%)

649 (1.50%) 19 (1.01%)

Pediatric nephrology, n (%) 649 (1.44%) 645 (1.50%) 4(0.21%)
Chest Surgery, n (%) 563 (1.25%) 546 (1.27%) 17 (0.9%)
Pediatric neurosurgery, n (%) 502 (1.12%) 496 (1.15%) 6 (0.32%)
Pediatric neurology, n (%) 449 (1.00%) 445 (1.03%) 4(0.21%)

Only those medical services that received at least 1% of total income are shown.
2Chi-square test.
*Significant p-value.

3.2 Preadmission characteristics

The final analysis included the data of 45,011 patients with
complete records, namely, 21,580 (47.94%) women and 23,431
(52.06%) men, hospitalized in the selected hospital during the
study period. The mean age (fstandard deviation) of all patients
at hospital admission was 33.72 + 24.64 years, with the ages
ranging from <1 to 101 years. In terms of hospitalization,
32,374/45,011 (71.92%) patients were first-time hospitalization
cases. In addition, 40,964/45,011 (91.01%) of the hospitalized
patients, originated from outpatient consultations at the hospital,
and 1,879/45,011 (4.17%) of the hospital discharges were
in-hospital deaths.

Data on the preadmission characteristics of the patients
hospitalized during the study period in general and grouped by the
absence or presence of in-hospital death are detailed in Table 2. An
intergroup comparison using the Mann-Whitney U test revealed
that the age of the patients who died was significantly higher than
that of those who were discharged alive (42.62 vs. 33.33 years,
p < 0.001). Additionally, after data analysis with the chi-square
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test, associations between the variable presence or absence of
in-hospital death and the following variables were identified: age
group, residence in the state where the hospital is located, residence
in the municipality where the hospital is located, has healthcare
entitlement, day of the week of admission, origin of outpatient
consultation of the Hospital, presence of injury (p < 0.001 in all
cases), month of admission (p = 0.024) and first hospitalization
(p = 0.027).

Table 3 shows the initial preadmission reference diagnoses
according to the ICD-10 group of patients hospitalized during the
study period in general and grouped by the absence or presence
of in-hospital death, highlighting that the four main preadmission
reference ICD-10 diagnosis groups in a descending order
(approximately 60% total) were as follows: [C00-D48] Neoplasms
14,245/45,011 (31.65%), [R00-R99] Symptoms, signs and abnormal
clinical findings and laboratory findings, not elsewhere classified
5,549/45,011 (12.33%), [Q00-Q99] Congenital malformations,
deformities and chromosomal abnormalities 4,475/45,011 (9.94%),
and [N00-N99] Diseases of the genitourinary tract 4,182/45,011
(9.29%). In addition, an association between the preadmission
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TABLE 5 Main conditions diagnosed at admission according to the ICD-10 group of patients hospitalized in the selected hospital from 2007 to 2016.

Variable Overall

(n = 45,011)

In-hospital death (=)
(n=43,132)

In-hospital
death (+)
(n=1,879)

Intergroup
comparison

Main condition diagnosed at admission according to ICD-10 group

p < 0.001%*

I.- A00-B99 Certain infectious and parasitic diseases, 7 (%) 443 (0.98%) 420 (0.97%) 23 (1.22%)
IL.- C00-D48 Neoplasms, 1 (%) 16,710 15,817 (36.67%) 893 (47.53%)
(37.12%)

IIL.- D50-D89 Diseases of the blood and hematopoietic organs 811 (1.80%)

and other disorders that affect the mechanism of immunity, # (%)

775 (1.80%) 36 (1.92%)

1V.- E00-E90 Endocrine nutritional and metabolic diseases, n (%) 1,021 (2.27%) 1,004 (2.33%) 17 (0.90%)
V.- F00-F99 Mental and behavioral disorders, n (%) 84 (0.19%) 84 (0.19%) 0 (0.00%)
VI.- G00-G99 Diseases of the nervous system, # (%) 1,670 (3.71%) 1,625 (3.77%) 45 (2.39%)
VII.- H00-H59 Diseases of the eye and its annexes, 1 (%) 111 (0.25%) 111 (0.26%) 0(0.00%)
VIIL- H60-H95 Diseases of the ear and mastoid process, 1 (%) 374 (0.83%) 373 (0.86%) 1 (0.05%)
IX.- 100-199 Diseases of the circulatory system, 1 (%) 3,625 (8.05%) 3,315 (7.69%) 310 (16.50%)
X.-J00-J99 Diseases of the respiratory system, n (%) 1,268 (2.82%) 1,192 (2.76%) 76 (4.04%)

XI.- K00-K93 Diseases of the digestive system, n (%) 2,764 (6.14%)

2,636 (6.11%) 128 (6.81%)

XII.- L00-L99 Diseases of the skin and subcutaneous tissue, 7 (%) 172 (0.38%)

165 (0.38%) 7(0.37%)

XIIIL.- M00-M99 Diseases of the musculoskeletal system and 2,729 (6.06%)

connective tissue, 1 (%)

2,695 (6.25%) 34 (1.81%)

period, n (%)

XIV.- N00-N99 Diseases of the genitourinary system, n (%) 4,773 (10.60%) 4,715 (10.93%) 58 (3.09%)
XV.- 000-099 Pregnancy, childbirth and puerperium, 7 (%) 1 (0.00%) 1 (0.00%) 0 (0.00%)
XVI.- P00-P96 Certain conditions originating in the perinatal 68 (0.15%) 66 (0.15%) 2 (0.11%)

XVIL- Q00-Q99 Congenital malformations, deformities and
chromosomal abnormalities, 17 (%)

5,125 (11.39%)

4,935 (11.44%) 190 (10.11%)

XVIIL- R00-R99 Symptoms, signs and abnormal clinical findings
and Laboratory, not elsewhere classified, n (%)

233 (0.52%)

211 (0.49%) 22 (1.17%)

XIX.- S00-T98 Trauma, poisoning and some other consequences 1,736 (3.86%) 1,710 (3.96%) 26 (1.38%)
of external cause, n (%)
XX.- V01-Y98 Extreme causes of morbidity and mortality, 1 (%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

XXIL.- Z00-Z99 Factors that influence the state of health and
contact with health services, n (%)

1,293 (2.87%)

1,282 (2.97%) 11 (0.59%)

0(0.00%)

XXII.- U00-U99 Codes for special situations, 1 (%)

0(0.00%) 0(0.00%)

2Chi-square test.
*Significant p-value.

reference ICD-10 diagnosis group and the absence or presence of
in-hospital death was identified (p < 0.001).

As shown in Table 4, the medical services that performed
the admission of patients in general are detailed and grouped
according to the absence or presence of in-hospital death,
highlighting that the services that contributed to at least
5.00% of the admissions were the following in a descending
order: oncology, 8,107/45,011 (18.01%); urology, 2,729/45,011
(6.06%);  neurosurgery, 2,605/45,011  (5.79%);  pediatric
oncology, 2,548/45,011 (5.66%); traumatology, 2,389/45,011
(5.31%); and cardiology, 2,275/45,011 (5.05%). In addition,
an association between the medical service that performed
the admission and the absence or presence of in-hospital
death was identified (p < 0.001). The five medical services
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that accounted for approximately half of the in-hospital
deaths  (926/1,879) were oncology, 398/1,879 (21.18%);
hematology, 179/1,879 (9.53%); internal medicine 173/1,879
(9.21%); neurosurgery 90/1,879  (4.79%); cardiology,
86/1,879 (4.58%).

The main conditions diagnosed at admission according to

and

the ICD-10 group of patients hospitalized during the study
period in general and grouped by the absence or presence of
in-hospital death are listed in Table 5. The results highlight that
the four main ICD-10 main conditions diagnosed at admission
groups (approximately 70% total) were, in descending order,
[C00-D48] neoplasms, 16,710/45,011 (37.12%); [100-199] diseases
of the circulatory system 3,625/45,011 (8.05%); [N00-N99]
diseases of the genitourinary system 4,773/45,011 (10.60%);
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TABLE 6 Characteristics of the conditions of hospitalized patients in the selected hospital from 2007 to 2016.

Variable Overall

(n =45,011)

In-hospital death (=)

In-hospital
death (+)
(n=1,879)

Intergroup

(n=43,132) comparison

Main condition diagnosed at admission equal to the initial 37,412 (83.12%) 35,957 (83.37%) 1,455 (77.43%) p< 0.001°*
preadmission reference diagnosis, 1 (%)

Equality between ICD-10 groups of the main condition 38,295 (85.08%) 36,774 (85.26%) 1,521 (80.95%) p< 0.001>*
diagnosed at admission and the initial preadmission

reference diagnosis, n (%)

Number of additional conditions (comorbidities) 0.36 (0.88) 0.33 (0.83) 1.07 (1.42) p < 0.001**
Additional conditions (comorbidities) grouped P < 0.001%
No additional conditions 35,753 (79.43%) 34,814 (80.72%) 939 (49.97%)

1 additional condition 5,367 (11.92%)

4,961 (11.5%) 406 (21.61%)

2 additional conditions 2,080 (4.62%)

1,843 (4.27%) 237 (12.61%)

3 additional conditions 983 (2.18%)

836 (1.94%) 147 (7.82%)

4 additional conditions 450 (1%) 367 (0.85%) 83 (4.42%)
5 additional conditions 239 (0.53%) 195 (0.45%) 44 (2.34%)
6 additional conditions 139 (0.31%) 116 (0.27%) 23 (1.22%)

Unless otherwise indicated, data are presented as the mean (standard deviation).
Mann-Whitney U test.

bChi-square test.

*Significant p-value.

and [Q00-Q99] congenital malformations, deformities and
chromosomal abnormalities 5,125/45,011 (11.39%). In addition, an
association between the group with the main condition diagnosed
at admission according to ICD-10 group and the absence or
presence of in-hospital death was identified (p < 0.001).

The characteristics of the conditions of the patients hospitalized
during the study period in general and grouped by the absence or
presence of in-hospital death are listed in Table 6. In all hospitalized
patients, the main condition diagnosed at admission was equal
to the initial preadmission reference diagnosis at 37,412/45,011
(83.12%). Similarly, there was equality in ICD-10 groups of the
main condition diagnosed at admission and the baseline diagnosis
at 38,295/45,011 (85.08%). A total of 35,753/45,011 (79.43%)
of patients did not present with comorbidities. An intergroup
comparison using the Mann-Whitney U test revealed that the
number of comorbidities (1.07 vs. 0.33; p < 0.001) was significantly
higher in patients who died than in those who did not. Additionally,
in the chi-square test, associations between the variable presence
or absence of in-hospital death and the following variables were
identified: equality in the main condition diagnosed at admission
and the initial reference diagnosis, in general and grouped by
ICD-10, as well as the presence of comorbidities (p < 0.001 in
all cases).

3.3 Post-admission characteristics

In general, the patients underwent a mean (%standard
deviation) of 1.08 £ 0.65 procedures (diagnostic, surgical or
therapeutic). The mean + standard deviation of the number of
days of hospital stay was 6.25 = 10.8; 28,223/45,011 (62.70%)
had a stay of > 48h, 12,293/45,011 (27.31%) had a stay of
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>7 days, and 4,706/45,011 (10.46%) had a stay of >14 days.
Notably, 1,816/45,011 (4.03%) patients developed nosocomial
infections; 1,454/43,132 (3.37%) patients presented with infection
and did not die, and 362/1,879 (19.27%) patients presented with
infection and died. In addition, in 44,646/45,011 (99.19%) of
the patients, the medical service at discharge was equal to that
at admission.

The post-admission characteristics of the patients hospitalized
during the study period in general and grouped by the absence
or presence of in-hospital death are detailed in Table 7. On the
basis of the intergroup comparison by means of the Mann-Whitney
U test, the number of procedures (1.11 vs. 1.08; p < 0.001), the
number of procedures under general anesthesia (0.54 vs. 0.53; p
= 0.002) and the length of stay in days (11.74 vs. 6.01; p < 0.001)
were significantly higher in those patients who died. Additionally,
analysis with the chi-square test revealed an association between
the presence or absence of in-hospital death and the following
variables: stay >48h, stay >7 days, stay >14 days, presence of
nosocomial infection, day of the week of discharge (p < 0.001 in
all cases), month of discharge (p = 0.064), and equality between the
service of admission and that of discharge (p = 0.086).

3.4 Model fitting and performance
evaluation

3.4.1 Modeling approach

To fit the machine learning models, the dataset (n = 45,011;
1,879 in-hospital deaths) was randomly divided into a training set
(70% of the data, n = 31,507; 1,293 in-hospital deaths) and a test
set (30% of the data, n = 13,504; 586 in-hospital deaths). The
scheme for fitting the in-hospital death predictive models is shown
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TABLE 7 Post-admission characteristics of hospitalized patients in the selected hospital from 2007 to 2016.

Variable Overall (n = 11)

In-hospital death (-)

In-hospital death Intergroup

(n=43,132) (+) (n comparison
Number of procedures (diagnostic, surgical 1.08 (0.65) 1.08 (0.63) 1.11 (1.02) p< 0.001%"
or therapeutic)
Number of procedures under general 0.53 (0.70) 0.53 (0.69) 0.54 (0.85) p= 0.002%"
anesthesia
Days of stay 6.25 (10.8) 6.01 (10.59) 11.74 (13.77) p <0001+
Hospital stay> 48 h, n (%) 28,223 (62.70%) 26,810 (62.16%) 1,413 (75.20%) p=< 0.001"
Hospital stay >7 days, n (%) 12,293 (27.31%) 11,292 (26.18%) 1,001 (53.27%) p < 0.001%"
Hospital stay >14 days, 1 (%) 4,706 (10.46%) 4,144 (9.61%) 562 (29.91%) p< 0.001%"
Nosocomial infection, 7 (%) 1,816 (4.03%) 1,454 (3.37%) 362 (19.27%) p < 0.001%
Day of the week of discharge P < 0.001%
Monday, n (%) 6,249 (13.88%) 5,963 (13.83%) 286 (15.22%)
Tuesday, 1 (%) 6,975 (15.50%) 6,682 (15.49%) 293 (15.59%)
Wednesday, 7 (%) 7,970 (17.71%) 7,721 (17.90%) 249 (13.25%)
Thursday, n (%) 7,723 (17.16%) 7,417 (17.20%) 306 (16.29%)
Friday, n (%) 10,673 (23.71%) 10,397 (24.11%) 276 (14.69%)
Saturday, n (%) 3,826 (8.50%) 3,605 (8.36%) 221 (11.76%)
Sunday, 1 (%) 1,595 (3.54%) 1,347 (3.12%) 248 (13.20%)
Month of discharge P =0.064
January, n (%) 3,100 (6.89%) 2,960 (6.86%) 140 (7.45%)
February, n (%) 3,353 (7.45%) 3,197 (7.41%) 156 (8.30%)
March, n (%) 3,794 (8.43%) 3,642 (8.44%) 152 (8.09%)
April, n (%) 3,463 (7.69%) 3,304 (7.66%) 159 (8.46%)
May, n (%) 3,666 (8.14%) 3,516 (8.15%) 150 (7.98%)
June, 1 (%) 3,796 (8.43%) 3,636 (8.43%) 160 (8.52%)
July, 7 (%) 4,082 (9.07%) 3,928 (9.11%) 154 (8.20%)
August, n (%) 4,052 (9.00%) 3,902 (9.05%) 150 (7.98%)
September, 1 (%) 3,900 (8.66%) 3,764 (8.73%) 136 (7.24%)
October, 1 (%) 4,295 (9.54%) 4,124 (9.56%) 171 (9.10%)
November, 1 (%) 3,753 (8.34%) 3,571 (8.28%) 182 (9.69%)
December, 1 (%) 3,757 (8.35%) 3,588 (8.32%) 169 (8.99%)
Medical service at discharge equal to 44,646 (99.19%) 42,789 (99.2%) 1,857 (98.83%) p=0.086"
admission, 7 (%)

Unless otherwise indicated, data are given as the mean (standard deviation).

#Mann-Whitney U test.
bChi-square test.
*Significant p-value.

in Figure 1. The training set was divided into five parts, with which
each model was cross-validated.

3.4.2 Model training

Based on the training set, the best fitted multivariate model
(higher AUC) of each type (logistic regression, random, forest
and XGBoost) that resulted from considering the 16 preadmission
characteristics of the patients as predictor variables are detailed
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below. For the case of logistic regression, the best model was the one
that included the 16 characteristics, which generated a Nagelkerke
R? = 0.443, a p = 0.447 associated with the Hosmer and Lemshov
test and an AUC = 0.9237 with a CI of 95% (0.9162-0.9312).
In the case of the random forest, the best model included the
16 characteristics and considered the following parameters: the
number of characteristics used to divide each node (mtry = 4)
and the number of trees (ntree = 1000), which generated an AUC
= 0.9892 with a 95% CI (0.9853-0.9931). For XGBoost, the best
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FIGURE 1
Workflow diagram for model development and evaluation.

model included the 16 characteristics and considered the following
parameters: number of iterations (nrounds = 1,000), maximum
depth per tree (max.depth = 6) and learning rate (eta = 0.01),
which generated an AUC = 0.9563 with a 95% CI (0.9512-0.9614).

3.4.3 Variable importance

The importance of each of the preadmission variables that
predict in-hospital death in descending order for each model is
shown in Figure 2. In the case of logistic regression, the most
important variables are the origin of the hospital outpatient
consultation and the medical service that performed the admission.
For the random forest model, the variables that are the most
important are the origin of the hospital outpatient consultation,
the medical service that performed the admission, the month of
admission and the day of the week of admission. In the XGBoost
model, the most important variables are the medical service that
performed the admission, the number of conditions, the origin
of the hospital outpatient consultation and the main condition
diagnosed upon admission according to the ICD-10.

3.4.4 Model comparison

The confusion matrices, as well as the areas under the curve
(AUCs), with their respective 95% confidence intervals for each of
the models fitted with preadmission variables for the prediction
of in-hospital death on the basis of the SAEH-HRAEB 2007-2016
data, both in the training set and in the test set is shown in Figure 3.
In all cases, a cutoff point equal to 0.5 was considered. Notably,
on the basis of the test set and when two-to-two comparisons
of the AUCs (using Delong tests) between the three models
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were performed, a higher AUC was detected in the model built
with XGBoost AUC = 0.9162 (0.9047-0.9277) than in those
constructed using logistic regression AUC = 0.9036 (0.8902-
0.9170) and random forest AUC = 0.8978 (0.8829-0.9126) (p-value
< 0.001 in both cases), which suggests that the performance of the
constructed model via XGBoost is better. In addition, the ROC
curves constructed based on the test set for each of the models
(logistic regression, random forest and XGBoost) are shown in
Figure 4.

3.4.5 Model performance metrics

Based on the test set, when exploring the optimal cutoff points
in the construction of ROC curves (criterion of the point closest to
[0,1] of the ROC curve), as shown in Table 8, these cutoff points
are detailed as follows as the efficiency metrics of the models to
predict in-hospital death considering 16 preadmission variables.
The logistic regression model generated an AUC = 0.904 (0.890-
0.917), a cutoff point equal to 0.040, a sensitivity of 80.5%, a
specificity of 87.2% and a balanced efficiency of 83.9%. The random
forest model generated an AUC = 0.898 (0.883-0.912), a cutoff
point equal to 0.037, a sensitivity of 85.3%, a specificity of 80.3%
and a balanced efficiency of 82.8%. The XGBoost model generated
an AUC = 0.916 (0.905-0.928), a cutoff point equal to 0.023, a
sensitivity of 87.0%, a specificity of 81.3% and a balanced efficiency
of 84.2%. The DeLong test revealed that the area under the curve of
the XGBoost model was greater than that of the logistic regression
and random forest models (p-value < 0.001 in both cases).

Finally, the confusion matrices for all models evaluated on
the test set, along with their respective optimal cut-off points, are
presented in Figure 5. Notably, for the best-performing model for
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FIGURE 2
Variable importance for predicting in-hospital death across modeling approaches. (A) Logistic regression. (B) Random forest. (C) XGBoost.

predicting in-hospital death was XGBoost. When evaluated on the
test set (n = 13,504; 586 in-hospital deaths), this model identified
10,502 true negatives, 76 false negatives, 2,416 false positives, and
510 true positives. This result in a ratio of 4.7 to 1 for patients
predicted to die in-hospital who ultimately survived, compared
those who actually died.

4 Discussion

Hospital mortality is a multidimensional indicator widely
used to evaluate the quality and effectiveness of medical care
(6, 7). Identifying the factors associated with in-hospital death
that facilitate the construction of robust predictive models is
essential. The current computing power allows the implementation
of complex algorithms that exceed the capabilities of traditional
logistic regression. Among these predictive models, approaches
such as random forest (30) and XGBoost (34), stand out, as they
are able to identify complex patterns between the data.

The identification of factors with high prognostic value for in-
hospital death is crucial in the hospital setting since it provides
the opportunity to carry out closer monitoring of patients at risk,
helping to reduce the frequency of adverse events and therefore
improving the quality of hospital care. This study seeks to adjust
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machine learning models to predict and identify the preadmission
factors with the highest prognostic value for in-hospital death.

4.1 In-hospital mortality and preadmission
characteristics

In our study, in which the hospital discharge records of 45,011
patients in a third-level Mexican hospital during its first 10 years
of operation were analyzed, an in-hospital mortality of 4.17% was
observed. This figure is similar to that reported by Le Guen and
Tobin (53), who reported a mortality of 3.62% in 44,297 patients
discharged from an Australian tertiary care hospital over a period
of 5 years. However, it is higher than the 2.15% registered nationally
in Mexican hospitals in the same 10-year period of our study (3).
This could be attributed to the greater complexity of the pathologies
treated in tertiary care hospitals.

Additionally, the mean age of the patients who died in the
hospital was significantly higher than that of patients who survived,
a finding that is consistent with that reported by Clark et al. (24)
in a multicenter study in which 10,743 hospital admissions were
considered and patients younger than 60 years were reported to
have a risk of in-hospital death that was up to three times lower
than that of patients older than 60 years. Likewise, a significant
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FIGURE 3
Confusion matrices of the fitted models for predicting in-hospital death for both training and test datasets. TN, true negative; FP, false positive; FN,
false negative; TP, true positive; AUC, area under curve; Cl, confidence interval.

association was found between in-hospital death and the day
of the week of admission, which is consistent with the findings
of Mohammed et al. (16) in a multicenter study that included
approximately 1.5 million hospital admissions, hospital admission
on the weekend was a risk factor for in-hospital death, and
the risk was more pronounced in elective admissions than in
emergency admissions.

On the other hand, the month of admission was also associated
with in-hospital death. This phenomenon could be explained
in terms of seasonal variability in mortality, as reported by
Achebak et al. (54), who, in their analysis of approximately 1.7
million hospital admissions, reported that although the number
of hospitalizations for respiratory diseases increases during cold
months, in-hospital mortality peaks during months of high
temperatures, probably because of the additional effect of heat on
the vulnerability of patients with chronic respiratory diseases.

Regarding other associated factors, the first hospitalization,
coming from the outpatient clinic, as well as the equality between
the main condition diagnosed at admission and the reference
diagnosis, was associated with lower in-hospital mortality. In
this sense, in 83.12% of the 45,011 hospital discharges, the
main condition diagnosed at admission coincided with the
reference diagnosis.

In contrast, factors such as the reference diagnosis, the
main condition diagnosed at admission, the medical service that
performed the admission, the presence of comorbidities and a
higher number of comorbidities were associated with higher in-
hospital mortality. Among the 45,011 hospital discharges, the main
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ICD-10 diagnostic groups at admission were neoplasms (37.12%),
(10.60%),
(11.39%) and diseases of the circulatory system (8.05%), accounting

genitourinary diseases congenital malformations
for approximately 70% of the total. In addition, approximately half
of the 1,879 in-hospital deaths were patients admitted by one of the
following five services: oncology (21.18%), hematology (9.53%),
internal medicine (9.21%), neurosurgery (4.79%) and cardiology
(4.58%). Notably, 79.43% of the 45,011 hospital discharges did not
present comorbidities.

Our findings suggest that patients with in-hospital death tend
to enter a worse clinical state and have less prior information
about their medical condition, either because of a late diagnosis or
the presence of a serious acute illness. In addition, those without
contact prior to outpatient care do not have a known clinical history
or a history of response to previous treatments, which makes their
management difficult. This clinical context limits the capacity for
therapeutic response and increases the risk of fatal outcomes. These
findings are consistent with those proposed by models such as
the HOMR (Hospital Patient One-year Mortality Risk), built on
the basis of 640,022 hospital admissions (55), which identifies the
admission diagnosis, the admission medical service and the number
of comorbidities as key predictors of hospital mortality (55).

4.2 Model performance and interpretability

To fit the three types of supervised machine learning models
(logistic, random forest and XGBoost) considered for predicting
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FIGURE 4

Receiver operating characteristic (ROC) curves for the fitted models evaluated on the test dataset. (A) Logistic regression. (B) Random forest. (C)
XGBoost. The diagonal line indicates the performance of a random classifier (reference line, AUC = 0.50).

in-hospital death on the basis of preadmission characteristics, our
45,011 hospital discharges were randomly divided into two subsets:
70% for training and 30% for testing. This proportion has been
used in studies such as the one by Wen et al. (56), in which eight
types of machine learning models were evaluated to predict 28-day
mortality in patients with sepsis. In other studies, such as that by
Cao et al. (57), an 80% ratio for training was used, and a 20% ratio
was used for testing when an XGBoost model was developed to
predict in-hospital mortality in a cohort of 545,388 patients with
severe traumatic brain injury. These variations reflect that the data
partition can be adapted to the sample size, but in all cases, a balance
between model fit and generalizability is sought.

In addition, the inclusion of multiple models allows us
to compare not only their precision but also their ability to
identify clinically relevant factors with prognostic value. In our
study, machine learning methods were shown to be effective in
predicting in-hospital mortality using only data available at the time
of admission.

Through the test set and the implementation of the DeLong
test, the XGBoost model outperformed logistic regression (AUC =
0.9036, 95% CI: 0.8902-0.9170) and random forest (AUC = 0.8978,
95% CI: 0.8829-0.9126), with a p-value < 0.001 in both cases.

Overfitting, which arises when a model fits the training data
too closely and loses generalizability (58), was evident in the
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Random Forest model, with near-perfect discrimination on the
training set (AUC = 0.989) but reduced discriminatory ability on
the test set (AUC = 0.898). In contrast, XGBoost showed only
a mild decrease in discrimination for training (AUC = 0.956) to
test data (AUC = 0.916), which can be attributed to the explicit
regularization mechanisms (e.g., learning rate and depth control)
that limit model complexity.

The XGBoost model reached an AUC = 0.916, 95% CI:
0.905-0.928, with an optimal cutoff point of 0.023 (according to
the criterion of the point closest to [0.1] on the ROC curve),
a sensitivity of 87.0%, a specificity of 81.3%, and a balanced
efficiency of 84.2%. These values indicate that the model has high
discrimination and an adequate balance between false positives and
negatives in real clinical conditions.

With respect to interpretability, the models identified variables
with greater predictive importance. In logistic regression, the origin
of the outpatient consultation of the hospital and the medical
service that performed the admission stood out. In the random
forest model, there was a coincidence with logistic regression, but
the month of admission and the day of the week of admission
were added. Finally, in XGBoost, the most relevant variables
were medical service that performed the admission, number of
conditions, origin of the outpatient consultation of the Hospital, the
main condition diagnosed at admission according to the ICD-10,
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Confusion matrices of the models for predicting in-hospital death, evaluated on the test dataset using the optimal cut-off points, defined by the
closest to [0,1] criterion on the ROC curve. TN, true negative; FP, false positive; FN, false negative; TP, true positive; AUC, area under curve; Cl,

p < 0.001

for the development of early warning systems for mortality in
high-complexity hospitals.

4.3 Limitations, strengths, and future
directions

Our study has certain limitations. First, since it is a cross-
sectional study, it does not allow us to infer causality. Second, the
results are based on a single-center study that uses data from a
secondary base, which may contain some inherent capture errors at
the source. Third, predictive models of in-hospital death were not
constructed on the basis of medical services at admission or specific
pathologies. Fourth, 18.54% of discharge records were excluded due
to incomplete data; although most variables were nearly complete
and missingness was not systematically associated with patient
characteristics or adverse outcomes, the excluded records included
only 146 in-hospital deaths (1.43%, 146/10,242), which may still
introduce potential selection bias and affect model performance
and variable importance. Finally, the lack of a preadmission
biochemical or imaging characterization of patients limits the
possibility of exploring potential associations and the predictive
capacity of various biomarkers that could generate more robust
models to predict in-hospital mortality.

Despite these limitations, our study has notable strengths,
such as the evaluation of preadmission characteristics in a large
sample (n = 45,011) of patients corresponding to a long period
of time and the first 10 years of operation at a third-level
care hospital. In addition, it was not restricted to the use of
logistic regression but rather incorporated advanced machine
learning techniques capable of identifying complex relationships
between the predictor variables. This allowed identification of the
factors that induce a greater propensity to present in-hospital
death, improving the predictive capacity and understanding of the
associated risks.

Finally, given the limitations identified, it is reccommended that
multicenter and longitudinal studies that include biochemical and
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imaging characteristics from hospital admission be carried out. In
addition, it would be useful to develop specific models for different
admission medical services, such as medical, surgical, and pediatric,
including high-risk services like oncology and hematology, as well
as specific pathologies. This approach would allow for greater
precision in the identification of patients at high risk of in-hospital
death, ideally externally validated and providing more context-
specific estimates.

5 Conclusion

The XGBoost model, owing to its ability to capture complex
patterns, makes it possible to identify patients with a higher
risk of in-hospital death from the data available at hospital
admission. This study provides a support tool for clinical
decision-making and helps in the early identification of
patients who require closer monitoring and follow-up during
their hospital stay. This approach not only helps prioritize
resources efficiently but also optimizes intervention strategies,
significantly contributing to reducing in-hospital mortality and
ultimately improving quality and comprehensive care in the
hospital setting.
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