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Background: Recent literature shows melanoma prevalence is steadily 
increasing, mainly due to UV radiation exposure, especially in Caucasians. Skin 
cancer causes $8.9 billion in direct annual cost and unmeasured indirect costs, 
but can be prevented by avoiding sun exposure, using protective creams, and 
regular dermatologists visits for suspicious nevi.

Methods: Using CDC data on non-Hispanic Caucasians, we  conducted an 
Analysis of Variance (ANOVA) to examine the differences in age-adjusted 
melanoma incidence rates per 100,000. Quadratic Poisson, Ordinary Least 
Square (OLS) and Two-Stage Least Squares (TSLS) regressions were employed, 
with UV index and education levels—measured by the percentage of the 
population holding at least a bachelor’s degree—as key explanatory variables.

Conclusion: From a public policy standpoint, raising awareness about sun 
exposure protection and encouraging regular examinations by professional 
dermatologists, especially in sparsely populated areas with high UV radiation—
could be crucial in reducing the remarkable costs associated with melanoma 
morbidity and treatment.
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Highlights

 • Projected new melanoma cases have doubled over a 23-year period.
 • Projected new melanoma cases drop from 800–835 to 340–380 as population rises, 

despite higher UV radiation levels in larger states like California.
 • The protective effect of education against melanoma is supported empirically:
 • A 12–16% increase in education level offsets the 23-year melanoma growth rate.
 • A 25–30% increase in education level offsets a 1% rise in UV exposure.
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1 Introduction

Melanoma is a skin cancer, which usually develops on sun-exposed 
skin, such as the arms, back, face, and legs, but can also occur in the 
eyes or rarely in internal areas like the nose or throat. Most cases are 
linked to ultraviolet (UV) light from sunlight or tanning beds. In the 
U.S., sunburn prevalence is high, with 37.1% of adults and 55.8% of 
youth reporting at least one sunburn in the past year (1). Limiting UV 
exposure can help reduce the risk of melanoma (1–3).

Skin cancer also incurs remarkable direct and indirect costs of 
$8.9 billion annually (in addition to unmeasurable indirect costs). 
According to the CDC report on skin cancer in the United States, 
nearly 6 million people are treated for skin cancer each year (4, 5).

This study investigates the social and environmental factors 
contributing to melanoma incidence in the United  States. Our 
research question is whether education can mitigate UV-related 
melanoma risk. The analysis explores how melanoma rates are 
influenced by medical literacy—proxied by population size and 
education levels—along with UV radiation and temporal trends. 
Using CDC data on non-Hispanic Caucasian males and females, 
the study applies quadratic Poisson regression and Two-Stage Least 
Squares (TSLS) over a 23-year period. The initial model uses the 
count of new melanoma cases as the dependent variable, with 
population size, state fixed effects (as proxies for UV exposure), 
and time as independent variables. To address overdispersion, 
extended models substitute the dependent variable with 
age-adjusted annual melanoma cases per 100,000 people and 
replace state dummies with direct UV index values and the share 
of the educated population. Building on prior research linking 
population size to knowledge spillovers and stronger health 
systems, the study finds that higher education levels—representing 
human capital—can mitigate environmental health risks like 
UV-related melanoma.

Results corroborate a strong connection between state dummies 
and UV radiation levels, showing that after accounting for these levels, 
projected new melanoma cases have doubled over the past 23 years. 
However, higher population and education levels are linked to fewer 
cases, even in high-UV states. Robustness tests reveal that the Poisson 
model may not be adequate due to overdispersion. Extended models 
confirm that a 12–16% rise in the educated population offsets long-
term melanoma growth, and a 25–30% increase counters a 1% rise in 
UV exposure. These findings highlight the role of education in 
reducing melanoma risk.

2 Description of data

The data for this study were generated, among other sources, from 
the CDC website and focus exclusively on non-Hispanic White males 
and females in the United States, as this demographic is the most 
susceptible to melanoma skin cancer. In 2022, the total population of 
non-Hispanic Whites in the United States was 197,639,521.

More specifically, the data were drawn from the following sources:

 1) CDC: United  States Cancer Statistics: Data Visualizations: 
Trends. Available at: https://gis.cdc.gov/Cancer/USCS/#/
Trends/ (6)

 2) World Population Review UV Index by State. Available at: 
https://worldpopulationreview.com/state-rankings/uv-index-
by-state (7).

 3) US Bureau of Census. Data available at: https://www.census.
gov/data.html (8).

The datasets and script for replications of the outcomes obtained 
are given in the following link: https://github.com/YuvalArbel1234/
Frontiers_Melanoma_Human_Capital/releases

The combined dataset consists of 2,325 observations, each 
representing statewide-level data for a specific year, spanning from 
1999 to 2022 (a total of 23 years). It is clear that the sample includes 
data from all 51 U.S. states. In 47 states, the sample contains 46 
observations per state (one for Caucasian females and one for 
Caucasian males over 23 years). Two states have 42 observations each 
(spanning 21 years), one state (the District of Columbia) has 41 
observations (covering 20–21 years), and one state (Mississippi) has 
38 observations (covering 19 years). The total is 
calculated as × + × + + =47 46 2 42 41 38 2,325.

Table 1A reports the descriptive statistics of variables that are 
latter incorporated in the empirical model. Table  1B gives the 
covariance matrix between the variables. The average number of new 
melanoma cases per state is 631 per annum and the standard deviation 
is 702 (CaseCount). The 99% confidence interval is [594, 669]. The 
average population per state is 1,969,797 persons and the standard 
deviation is 1,737,117 persons (Population).

Referring to the correlation matrix, there is a strong positive 
Pearson correlation of 0.86 between the Case Count and Population 
variables. This indicates that the Population variable explains 86% of 
the standard deviation in the Case Count variable. Since the null 
hypothesis of zero correlation between Case Count and ( )−1999Year  
cannot be rejected, there is also a positive time trend in the number of 
new melanoma cases. Lastly, as expected, there is a high Pearson 
correlation of 0.94 between the Population and Population 
squared variables.

3 Methodology

Consider the following empirical model:

Model A: Basic Poisson Regression

 ( )
α α
α α β µ

= +

+ + − + +

2
1 2

3 4

 
1999 T

A

Case Count Population Population
Year A

 (1)

In this specification, Case Count is the dependent variable. 
 Case Count  is the dependent variable, The independent variables 

include: _Population sq  (population squared), Population , and 
( )−1999Year , The parameters α α α α1 2 3 4, , ,  are are to be estimated. A 
denotes a matrix of U.S. state dummy variables (with Alabama serving 

Abbreviations: ANOVA, Analysis of Variance; CDC, Center for Disease Control 

and Prevention; OLS, Ordinary Least Squares; TSLS, Two-Stage Least Squares; UV, 

Ultraviolet; VIF, Variance Inflation Factor.
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as the base category), and βT  is the corresponding column vector of 
coefficients, and µ1 is the random disturbance term.

Poisson regression is employed to model the counts of an event’s 
occurrences [e.g., (9), pp.  595–600]. Applications of the Poisson 
distribution include diverse events such as the pattern of hits by buzz 
bombs launched on London during World War II (10), the number of 
soldiers killed by horse kicks in the Prussian army (11), and telephone 
calls resulting in a wrong number (12). It has also been used to model 
disease incidence, most commonly over time but sometimes in 
spatial contexts.

According to Chiang and Wainwright (13), the general form of a 
quadratic function is = + +2y ax bx c , where ( )≠ 0a , and its second 
derivative is 2a . Since this second derivative always has the same sign 
as the coefficient a, the function forms a U-shaped curve with a global 
minimum at (−

2
b
a

,− +2 4
4

b ac
a

) when a > 0, and an inverted U-shaped 

curve with a global maximum at the same point when a < 0.
In this study, y represents the number of annual new melanoma 

cases in the state. (  Case Count ) in Equation 1; 2x corresponds to 
_Population sq , and x  represents Population, with coefficients α= 1a

; α= 2b  and α= 3c  (Equation 1). Compared to the linear model, the 
quadratic model offers flexibility by not assuming a strictly monotonic 
relationship between population and the number of annual new 
melanoma cases.

One limitation of the quadratic model is the high collinearity 
between 2Population  and Population, with a Pearson correlation 
coefficient of 0.9439 (see Table 1B). As noted by Arbel et al. (14), such 
high collinearity can distort estimation results and lead to misleading 
conclusions. This issue can be  addressed by excluding either 
Population or Population sq, leading to the following 
alternative specifications:

Model A1: Basic Poisson Regression (Partial Quadratic Model)

 ( )α α α β µ= + + − + +2
1 3 4 1 1999 T

ACase Count Population Year A  (1a)

Model A2: Basic Poisson Regression (Linear Model)

 ( )α α α β µ= + + − + +2 3 4 2 1999 T
ACase Count Population Year A  (1b)

Finally, note that the variable ( )− = 1999 0,1,2, ,22Year  in 
Equations 1, 1a, and 1b captures the linear time trend. To relax the 
linearity assumption and permit non-linear relationships, an alternative 
version of the empirical models replaces ( )−1999Year  with dummy 
variables _ 1999, _ 2000; ; _ 2023DUM Year DUM Year DUM Year  
where each dummy variable equals 1 if ( )− = 1999 0,1,2, ,22Year
and zero otherwise.

4 Results

Table 2 reports the regression outcomes of the model defined by 
Equations 1a and 1b with and without linear time trend. Columns (1) 
and (2) give the structural coefficients and Columns (3) and (4)—the 
exponent of the structural coefficients. It may be readily verified that 

( ) −exp 1·  yields the percentage of growth [e.g., (15)]. For example, a 
coefficient of 0.0317 results in ( ) − =exp 0.0317 1 3.2% representing the 
percentage of growth.

The results show a clear time trend in melanoma cases. Over the 
23-year period, the number of new melanoma cases in the 
United States is projected to double ( )=231.032 2.0636 . However, as 
shown in Figure  1, projected new melanoma cases decrease as 
population size increases. For instance, there are around 800–835 

TABLE 1 Description of data.

A. Descriptive statistics (N = 2,325)

Variable Description Mean Std. Dev. Min Max

Case Count Number of annual new melanoma cases in the state. 631 702 16 5,397

Population Population of non-Hispanic Caucasians in the state. 1,969,797 1,735,117 79,874 8,288,635

( )−1999Year 0,1,2, ,22 for = 1999,2000,2001, ,2021Year 11 7 0 22

B. Covariance matrix (N = 2,325)

Case Count 2Population
Population ( )−1999Year

Case Count 1.0000

2Population
0.8548*** 1.0000

(<0.01)

Population 0.8613*** 0.9439*** 1.0000

(<0.01) (<0.01)

( )−1999Year 0.1847*** −0.0056 0.0000 1.0000

(<0.01) (0.7879) (0.9991)

The population consists solely of non-Hispanic Caucasians, who are the group most vulnerable to melanoma skin cancer. In 2022, the population of non-Hispanic Caucasians in the 
United States totaled 197,639,521 individuals. The numbers in parentheses represent the p-values for testing the null hypothesis of no Pearson correlation. ***p < 0.01.
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TABLE 2 Poisson regressions.

(1) (2) (3) (4)

Coefficient Structural Structural Exp(Structural) Exp(Structural)

Variables Case Count Case Count Case Count Case Count

2Population −1.17 × 10−14*** −1.37 × 10−14*** 1*** 1***

(4.85 × 10−16) (4.97 × 10−16) (4.85 × 10−16) (4.97 × 10−16)

( )−1999Year 0.0317*** - 1.032*** -

(0.0001281) - (0.0001323) -

Constant 5.872*** 5.770*** 355.0*** 320.4***

(0.0069542) (0.0084109) (2.468997) (2.69516)

States fixed effects

  Alaska −2.576*** −2.581*** 0.0761*** 0.0757***

(0.0245089) (0.0245106) (0.0018647) (0.0018555)

  Arizona 0.372*** 0.374*** 1.451*** 1.454***

(0.0086053) (0.0086058) (0.0124876) (0.0125092)

  Arkansas −0.657*** −0.660*** 0.518*** 0.517***

(0.0112552) (0.0112563) (0.0058351) (0.0058193)

  California 2.610*** 2.722*** 13.60*** 15.22***

(0.0286444) (0.0293484) (0.3896329) (0.4465665)

  Colorado 0.0820*** 0.0833*** 1.085*** 1.087***

(0.0091738) (0.0091742) (0.0099574) (0.0099716)

  Connecticut −0.176*** −0.178*** 0.838*** 0.837***

(0.0097552) (0.0097558) (0.0081775) (0.008162)

  Delaware −1.378*** −1.383*** 0.252*** 0.251***

(0.0145902) (0.0145929) (0.0036771) (0.0036596)

  District of Columbia −3.086*** −3.091*** 0.0457*** 0.0455***

(0.032643) (0.0326449) (0 0.0014911) (0.001484)

  Florida 1.998*** 2.054*** 7.374*** 7.799***

(0.0156659) (0.0159839) (0 0.115526) (0.1246563)

  Georgia 0.819*** 0.829*** 2.268*** 2.290***

(0.0083362) (0.0083544) (0 0.0189089) (0.0191322)

  Hawaii −1.308*** −1.313*** 0.270*** 0.269***

(0.0141932) (0.0141961) (0 0.0038374) (0.0038187)

  Idaho −0.884*** −0.889*** 0.413*** 0.411***

(0.0121459) (0.0121483) (0 0.0050157) (0.0049955)

  Illinois 0.998*** 1.025*** 2.712*** 2.788***

(0.0104466) (0.0105663) (0 0.0283292) (0.0294559)

  Indiana 0.299*** 0.294*** 1.349*** 1.342***

(0.0093159) (0.0093284) (0 0.0125646) (0.0125152)

  Iowa −0.236*** −0.238*** 0.790*** 0.789***

(0.0099181) (0.0099185) (0 0.0078332) (0.0078216)

  Kansas −0.461*** −0.463*** 0.631*** 0.629***

(0.0105815) (0.0105826) (0 0.0066752) (0.0066582)

  Kentucky 0.139*** 0.141*** 1.149*** 1.151***

(Continued)
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TABLE 2 (Continued)

(1) (2) (3) (4)

Coefficient Structural Structural Exp(Structural) Exp(Structural)

Variables Case Count Case Count Case Count Case Count

(0.0090604) (0.0090611) (0 0.0104126) (0.0104325)

  Louisiana −0.369*** −0.371*** 0.691*** 0.690***

(0.0103044) (0.0103047) (0 0.0071235) (0.0071138)

  Maine −1.009*** −1.013*** 0.365*** 0.363***

(0.012694) (0.0126964) (0 0.0046284) (0.0046092)

  Maryland 0.275*** 0.275*** 1.317*** 1.316***

(0.0087544) (0.0087544) (0.0115256) (0.0115247)

  Massachusetts 0.407*** 0.414*** 1.502*** 1.513***

(0.0088068) (0.0088177) (0.0132252) (0.0133432)

  Michigan 0.854*** 0.878*** 2.348*** 2.405***

(0.0100132) (0.0101051) (0.0235131) (0.0243024)

  Minnesota 0.460*** 0.465*** 1.584*** 1.591***

(0.0085552) (0.0085594) (0.01355) (0.01362)

  Mississippi −0.705*** −0.715*** 0.494*** 0.489***

(0.0119588) (0.0119632) (0.005911) (0.0058516)

  Missouri 0.143*** 0.149*** 1.153*** 1.161***

(0.0092421) (0.0092496) (0.0106577) (0.0107359)

  Montana −1.403*** −1.408*** 0.246*** 0.245***

(0.0147386) (0.0147411) (0.0036225) (0.003606)

  Nebraska −0.914*** −0.918*** 0.401*** 0.400***

(0.0122715) (0.0122736) (0.0049222) (0.0049033)

  Nevada −0.785*** −0.789*** 0.456*** 0.454***

(0.0117385) (0.0117407) (0.0053544) (0.0053338)

  New Hampshire −0.899*** −0.904*** 0.407*** 0.405***

(0.0122086) (0.0122111) (0.0049671) (0.0049463)

  New Jersey 0.730*** 0.738*** 2.075*** 2.093***

(0.0083781) (0.0083922) (0.0173843) (0.017563)

  New Mexico −1.133*** −1.137*** 0.322*** 0.321***

(0.0132803) (0.0132831) (0.0042787) (0.0042591)

  New York 1.569*** 1.628*** 4.803*** 5.096***

(0.0165267) (0.0168691) (0.0793718) (0.0859686)

  North Carolina 0.906*** 0.920*** 2.473*** 2.509***

(0.0086667) (0.0087046) (0.0214364) (0.0218384)

  North Dakota −1.939*** −1.944*** 0.144*** 0.143***

(0.0184126) (0.0184147) (0.0026491) (0.0026363)

  Ohio 1.154*** 1.193*** 3.172*** 3.296***

(0.0123322) (0.0125257) (0.039113) (0.0412842)

  Oklahoma −0.429*** −0.431*** 0.651*** 0.650***

(0.0104885) (0.0104889) (0.0068265) (0.0068155)

  Oregon 0.0619*** 0.0615*** 1.064*** 1.063***

(0.009188) (0.009188) (0.009775) (0.0097708)

  Pennsylvania 1.299*** 1.344*** 3.665*** 3.834***

(Continued)
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TABLE 2 (Continued)

(1) (2) (3) (4)

Coefficient Structural Structural Exp(Structural) Exp(Structural)

Variables Case Count Case Count Case Count Case Count

(0.0135686) (0.01381) (0.0497328) (0.0529504)

  Rhode Island −1.374*** −1.379*** 0.253*** 0.252***

(0.0145696) (0.0145722) (0.0036865) (0.0036694)

  South Carolina 0.0954*** 0.0948*** 1.100*** 1.099***

(0.0091126) (0.0091126) (0.0100252) (0.0100187)

  South Dakota −1.688*** −1.698*** 0.185*** 0.183***

(0.0169924) (0.0169959) (0.0031409) (0.0031104)

  Tennessee 0.288*** 0.294*** 1.334*** 1.342***

(0.0089531) (0.0089607) (0.0119394) (0.0120276)

  Texas 1.473*** 1.534*** 4.361*** 4.638***

(0.0170791) (0.0174332) (0.0744756) (0.0808475)

  Utah −0.294*** −0.296*** 0.746*** 0.744***

(0.0100755) (0.0100765) (0.0075117) (0.0074934)

  Vermont −1.483*** −1.488*** 0.227*** 0.226***

(0.0152134) (0.015216) (0.003452) (0.0034355)

  Virginia 0.519*** 0.528*** 1.681*** 1.695***

(0.0086737) (0.0086876) (0.0145779) (0.0147258)

  Washington 0.589*** 0.596*** 1.802*** 1.815***

(0.0084975) (0.0085078) (0.0153094) (0.0154415)

  West Virginia −0.830*** −0.833*** 0.436*** 0.435***

(0.0119205) (0.0119224) (0.0051993) (0.0051809)

  Wisconsin 0.254*** 0.260*** 1.290*** 1.297***

(0.0089887) (0.0089953) (0.011593) (0.0116714)

  Wyoming −2.061*** −2.066*** 0.127*** 0.127***

(0.0194199) (0.019422) (0.0024725) (0.0024604)

Years fixed effects

  2000 – 0.0830*** – 1.087***

– (0.0070171) – (0.0076248)

–

  2001 – 0.152*** – 1.164***

– (0.0069004) – (0.0080312)

  2002 – 0.185*** – 1.204***

– (0.0068471) – (0.0082424)

  2003 – 0.191*** – 1.210***

– (0.0068267) – (0.0082603)

  2004 – 0.263*** – 1.301***

– (0.0067189) – (0.008739)

  2005 – 0.347*** – 1.415***

– (0.0065987) – (0.009337)

  2006 – 0.350*** – 1.419***

– (0.0065933) – (0.0093563)

  2007 – 0.390*** – 1.477***

(Continued)
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projected new cases when the Caucasian population is 80,000 (the 
smallest state, the District of Columbia), compared to about 340–380 
projected new cases when the population reaches approximately 8 
million Caucasian people (the largest populated state—California). 
Given California’s sunny climate and high UV radiation, this outcome 
is particularly noteworthy. In fact, the UV index in the District of 
Columbia (7)—with 800–835 projected new cases per annum—is 
lower than that of California (10)—with only 350–370 new cases 
per annum.

The implication of this analysis is that the generic dummy 
variables for states capture variations in UV radiation levels, while 
population size reflects differences in medical literacy [for insights on 
population size and knowledge spillover effects, see, for example, 
O'Sullivan (16), pp. 61–62]. According to O’Sullivan: “The essential 
feature of knowledge spillover is that physical proximity facilitates the 
exchange of knowledge between people, leading to new ideas.” (p. 61).

In this context, Carlino and Hunt (17) examine, among other 
factors, the relationship between patent intensity and: (1) total 

TABLE 2 (Continued)

(1) (2) (3) (4)

Coefficient Structural Structural Exp(Structural) Exp(Structural)

Variables Case Count Case Count Case Count Case Count

– (0.0065394) – (0.0096592)

  2008 – 0.422*** – 1.525***

– (0.0064973) – (0.0099116)

  2009 – 0.460*** – 1.584***

– (0.0064499) – (0.0102136)

  2010 – 0.458*** – 1.581***

– (0.0064521) – (0.0102022)

  2011 – 0.499*** – 1.648***

– (0.0064016) – (0.0105483)

  2012 – 0.528*** – 1.695***

– (0.0063683) – (0.010793)

  2013 – 0.576*** – 1.778***

– (0.0063132) – (0.0112277)

  2014 – 0.632*** – 1.881***

– (0.006252) – (0.011757)

  2015 – 0.678*** – 1.970***

– (0.006203) – (0.0122211)

  2016 – 0.694*** – 2.002***

– (0.0061867) – (0.0123849)

  2017 – 0.724*** – 2.063***

– (0.0061564) – (0.0127021)

  2018 – 0.714*** – 2.042***

– (0.0061674) – (0.0125927)

  2019 – 0.760*** – 2.139***

– (0.0061238) – (0.0130962)

  2020 – 0.624*** – 1.866***

– (0.0062883) – (0.011737)

  2021 – 0.732*** – 2.079***

– (0.006188) – (0.0128667)

Observations = 2,325n = 2,325n = 2,325n = 2,325n

Pseudo R-Square 0.932 0.935 0.932 0.935

LR-Chi2 1.246 × 106 1.250 × 106 1.246 × 106 1.250 × 106

d.f. 51 72 51 72

The table displays the outcomes of the Poisson regressions based on Equation 1a with and without linear time trend. Columns (1) and (2) give the structural coefficients and Columns (3) and 
(4)—the exponent of the structural coefficients. Standard errors are presented in parentheses. **p < 0.05, ***p < 0.01.
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employment, and (2) employment density (jobs per square mile). 
Their findings indicate that a 10% increase in total employment and 
employment density leads to an increase in patent intensity by 5.2% 
and 2.2%, respectively. Similarly, based on existing evidence, one 
could argue that a larger population contributes to knowledge 
spillover effects, which in turn foster medical literacy.

Moreover, densely populated areas are typically characterized by 
better health and education systems [e.g., (18)]. This, in turn, may 
facilitate knowledge spillover effects [e.g., (19)] and help reduce costs 
by utilizing the services of more skilled dermatologists and diagnosing 
problems at an earlier stage.

The relationship between UV radiation and the state dummy 
variables is illustrated in Figures 2, 3, which are based on the Poisson 
regression results from Table 2. While California ranks as the state 
with the highest projected number of new melanoma cases when 
controlling for population size (13.60 to 15.22 times higher than the 
prevalence in the base category, Alabama), Alaska ranks lowest in 
terms of projected new melanoma cases when population size is 
controlled (0.0761 times less than the prevalence in Alabama). These 
figures also correspond to the UV radiation index (see Appendix A), 
where California ranks at the top (UV radiation index = 10) and 
Alaska ranks at the bottom (UV radiation index = 1).

Figure 4 depicts the ratio of melanoma cases for each year in 
relation to the base year (1999). The data for this graph is taken from 
column 4  in Table 2 (the non-linear time trend). It illustrates the 
extent to which the number of melanoma cases in each year surpasses 
that of 1999 (the base category) by a factor greater than 1, while 
accounting for population size. This graph reinforces our earlier 
calculation, showing that the projected number of melanoma cases 
has more than doubled over the 23-year period.

As a robustness check, we include Appendix B, which presents key 
graphical features derived from various model specifications. The table 
displays features from the following three graphs: (1) the graph based 
on Model A1 (Equation 1a), which includes only the 2Population  term 
and is shown in Figure 1; (2) the graph based on Model A (Equation 1), 
the full quadratic model that includes both 2Population  and 
Population; and (3) the graph derived from Model A2 (Equation 1b), 
which includes only the Population term.

As shown in the table, all the derived graphs exhibit a decreasing 
trend with respect to the population variable. However, the graph in 
Figure  1 is concave—representing the decreasing segment of an 
inverted U-shaped curve—and ranges from approximately 800 
projected new cases at the lowest population level to about 375 at the 
highest. In contrast, the graphs based on Model A (Equation 1) and 
Model A1 (Equation 1a) are convex—representing the decreasing 
segment of a U-shaped curve—and range from approximately 1,650 
to 7,500 projected new cases at the lowest population level to around 
0 to 375 at the highest.

5 Robustness tests

One concern associated with the Poisson model is the problem of 
overdispersion. The Cameron and Trivedi (20) overdispersion test 
evaluates whether variance exceeds the mean in Poisson regression. 
Under the Poisson assumption: ( ) ( ) µ= =i i iVar y y  (the population 
mean of the dependent variable). They propose an alternative: 

( ) µ αµ= + 2
i i iVar y , where α  is the overdispersion parameter. 

Rejection of the null hypothesis α = 0, supports the presence of 
overdispersion; non-rejection suggests the Poisson model is adequate. 

FIGURE 1

Quadratic Poisson model. This graph is based on column (1) of Table 2, which corresponds to the empirical model A1 including a linear time trend and 
applied to = 2,325n  observations. A similar graph based on Column (2) of Table 2, representing the model without a linear time trend, is available upon 
request.
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FIGURE 3

Ranking of the top 26 states by melanoma prevalence. The graph is based on Column (4) in Table 2. It illustrates how many times the number of 
melanoma cases (horizontal axis) in each state (vertical axis) surpasses the number in Alabama (the base category) by a factor of more than 1 where the 
population size is controlled.

FIGURE 2

The ratio of states’ melanoma cases with respect to Alabama (the base category). The graph is based on Column (4) in Table 2. It illustrates how many 
times the number of melanoma cases (horizontal axis) in each state (vertical axis) surpasses the number in Alabama (the base category) where the 
population size of the state is controlled.
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The test is based on an auxiliary regression using squared Pearson 
residuals: ( )− −

=
2

2 ˆ ˆ
ˆ

i i i
i

i

Y u u
r

u

 regressed on ˆiu  (the residuals from 

estimating Model A1) excluding the constant term, If the coefficient 
on ˆiu  is statistically different from zero, this indicates overdispersion 
[e.g., (21)].

As indicated by the descriptive statistics for the Count Case variable 
in Table 1, the mean (631) is close to the variance (702). However, the 

formal Cameron–Trivedi test for overdispersion (Table 3) rejects the null 
hypothesis—that the mean of the random disturbance term is zero—at 
the 1% significance level [e.g., (20, 21)]. This result suggests that the 
Poisson model may be inappropriate for addressing the research question.

Additional concerns include the use of total state population as an 
indirect proxy for medical or health literacy, which may not effectively 
represent it. Furthermore, state dummy variables may not sufficiently 
capture differences in UV radiation across states. Lastly, age is a 
known factor that plays an important role in melanoma prevalence.

TABLE 3 Overdispersion test.

Model A1 with linear time variable

H0: equal 
dispersion

n = 2,325

Case Count Coef. Std. Err. t p [95% Conf. Interval]

α̂  (coefficient of ûi ) 0.0552094 0.0011299 48.86 <0.01 0.0529937 0.0574252

[99% Conf. Interval]

0.0522965 0.0581223

Model A1 with dummies for year

H0: equal 
dispersion

n = 2,325

Case Count Coef. Std. Err. t p [95% Conf. Interval]

α̂  (coefficient of ûi ) 0.0517818 0.0010887 47.56 <0.01 0.0496468 0.0539167

[99% Conf. Interval]

0.0489751 0.0545885

The Cameron and Trivedi (20) overdispersion test evaluates whether variance exceeds the mean in Poisson regression. Under the Poisson assumption: ( ) ( ) µ= =Var y yi i i  (the population 
mean of the dependent variable). They propose an alternative: ( ) µ αµ= +Var y 2

i i i , where α  is the overdispersion parameter. Rejection of the null hypothesis α = 0, supports the presence of 
overdispersion; non-rejection suggests the Poisson model is adequate. The test is based on an auxiliary regression using squared Pearson residuals: ( )− −

=
ˆY u u

u

ˆ
r

ˆ

2
i i i2

i i

 regressed on ûi (the  
 
residuals from estimating Model A1) excluding the constant term, If the coefficient on ûi is statistically different from zero, this indicates overdispersion [e.g., (21)].

FIGURE 4

The ratio of melanoma cases of each year with respect to the base year (1999). The graph is based on Column (4) in Table 2. It illustrates how many 
times the number of melanoma cases (the horizontal axis) in each year (the vertical axis) surpasses the number in 1999 (the base category) by a factor 
of more than 1 where the population size is controlled.
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To address these concerns, this section introduces an extended 
empirical model that replaces state dummy variables with a direct UV 
index measure from World Population. Additional control variables 
include a time indicator and the proportion of the population with a 
bachelor’s degree or higher, serving as a measure of educational 
attainment. The goal is to demonstrate that population size functions 
as a dependable proxy for medical literacy. Finally, to account for the 
influence of age on melanoma prevalence, the model replaces the 
count of melanoma cases with the annual incidence of age-adjusted 
melanoma prevalence.

Figure 5 shows the share of educated population within each 
U.S. State’s Total Population. This histogram shows the 
distribution of the _Pop BA-to-Population ratio, where _Pop BA 
denotes the number of individuals with a bachelor’s degree or 
higher, and Population  refers to the total state population. 
According to the descriptive statistics of this variable, the median 
proportion of educated population is 33.81% and the mean is 
34.86%. The minimum share of educated population is 24.12% 
(West Virginia) and the maximum is 63.05% (District 
of Columbia).

5.1 Empirical models and the two-stage 
least squares (TSLS) methodology

Figures  6, 7 illustrate the extended models estimated using 
Two-Stage Least Squares (TSLS). Each model includes a main 
structural equation and an auxiliary first-stage regression.

Model B: Extended TSLS Approach

 • Model B1 Extended TSLS Approach (quadratic transformations)

 ( )

β β
β β
β β µ

′ ′

′ ′

′ ′

= +

+ +

+ + − +

2
1 2

2
3 4

5 6 1

 
2020 2020

1999 B

Adjusted Percent Population Population
UV Jm UV Jm

Year
 (2)

 ( )γ γ= + − +∈1 2 115,618Population Pop BA  (3)

 • Model B2: Extended TSLS Approach (logarithmic transformations)

 

( ) ( )
( )

β β
β β µ

′′ ′′

′′ ′′
= +

+ + − +
2 4

5 6 2

 ln ln 2020
1999 B

Adjusted Percent Population UV Jm
Year

 (4)

 ( )γ γ= + − +∈1 2 115,618Population Pop BA  (5)

In both, the dependent variable is Adjusted Percent—new 
melanoma cases per 100,000 people, age-adjusted. Key regressors 
include Population, UV radiation in June 2020 (J/m2) (UV2020Jm), 
and Year. For robustness, alternate models replace Adjusted Percent 
with Percent, a non-age-adjusted metric.

Model B2 also tests the joint effect of β β′′ ′′+2 4 , using logs to 
interpret coefficients as elasticities—i.e., the percent change in 
melanoma incidence resulting from 1% increases in population and 
UV exposure.

FIGURE 5

Share of educated population within each U.S. state’s total population. This histogram shows the distribution of the _Pop BA-to-Population ratio, 
where _Pop BA denotes the number of individuals with a bachelor’s degree or higher, and Population refers to the total state population.
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The first-stage equation for both models instruments Population 
using educational attainment:

 ( )γ γ= + − +∈1 2 115,618Population Pop BA

With fitted values of:

 ( )= + −_ 476,688.2 2.7597 115,618Proj Pred Pop BA

Where = 52N  and =2 0.9839R
This result implies that the minimum proportion of the 

educated population is approximately =
115,618 24.25%

476,688.2
, which 

aligns with the observed minimum of 24.2% in the updated 

descriptive statistics and histogram. Furthermore, the coefficient 
on the ( )−115,618Pop BA  term indicates that for each additional 
educated individual, the total population increases by 
approximately 2.76 persons.

To address omitted variable bias from unobserved medical 
literacy, TSLS replaces the endogenous Population variable with 

_Proj Pred , ensuring consistent estimation [e.g., (9), pp. 506–536]. 
The second-stage equation becomes:

 ( )

β β
β β
β β µ

′ ′

′ ′

′ ′ ′

= +

+ +

+ + − +

2
1 2

2
3 4

5 6 1

 _ _
2020 2020

1999 B

Adjusted Percent Proj Pred Proj Pred
UV Jm UV Jm

Year
 (2′)

and

FIGURE 7

TSLS estimation of Model B2. *Education is proxied as the population holding at least a BA degree minus the minimum value (Pop BA—115,618).

FIGURE 6

TSLS estimation of Model B1.
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( ) ( )
( )

β β
β β µ

′′′ ′′

′′′ ′′′ ′
= +

+ + − +
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 ln _ ln 2020
1999 B

Adjusted Percent Proj Pred UV Jm
Year
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This approach clarifies the causal effect of population size and UV 
exposure on melanoma incidence, as schematically represented in 
Figures 6, 7.

5.2 Results

Table 4 presents the estimation results for Model B1. The variable 
2020UV Jm was excluded due to high collinearity with its squared 

term ( )22020UV Jm  [Average Variance Inflation Factor (VIF) = 38.10]. 
The exclusion of 2020UV Jm reduced the VIF to 4.05.

The VIF measures how much the variance of a regression 
coefficient is inflated due to multicollinearity. It is calculated as:

 
=

− 2
1

1
j

j
VIF

R

where 2
jR _is from regressing variable jX  on all other regressors. A 

VIF above 5 (or 10) typically indicates problematic multicollinearity.
Figures 8, 9 are based on Model B1 estimates using = 2,284n  

observations (Column 1 of Table 4); similar graphs based on Column 
2 are available upon request. As shown in the figures, the relationship 
with population size remains consistent with the Poisson model 
results. For the _Proj Pred  variable (projected educated population), 
adjusted melanoma cases drop from 28.2 to 26.0 per 100,000 as 
educated population increases from 0 to 100%. Regarding UV 
radiation, as expected, age-adjusted melanoma incidence rises from 
21 to 35 cases per 100,000 as UV exposure increases from 2,000 
to 5,000 2joules / m .

Finally, Table 5 presents the results from Model B2. The low VIF 
value (1.05) indicates an absence of multicollinearity. According to the 
statistical tests shown at the bottom of the table, offsetting the 
projected increase in melanoma cases over the 23-year period from 
1999 to 2021 requires a 12–16% rise in the educated population. 
Additionally, a 25–30% increase in the educated population is needed 
to offset a 1% increase in UV radiation.

6 Discussion: supporting evidence for 
the education–melanoma link

The previous section presents robust empirical evidence 
supporting the claim that larger populations are associated with 
higher levels of medical knowledge. This is done via the following:

 1 Extension of the Empirical Model—We augment the model to 
include the percentage of the educated population (defined as 
individuals with at least a bachelor’s degree) in each state and 
apply the Two-Stage Least Squares (TSLS) methodology to 
address potential endogeneity concerns.

 2 Incorporation of Supporting Academic Literature on Education 
and Medical Literacy—Numerous studies have established a 
strong positive correlation between education level and health-
related knowledge. For example, Cutler and Lleras-Muney (22) 
provide compelling evidence that higher educational 
attainment significantly improves health outcomes through 
enhanced health behaviors and literacy.
Cutler and Lleras-Muney (22) report that, in 1990, a 25-year-
old male with a college degree could expect to live an additional 
54 years, while a high school dropout of the same age had a life 
expectancy 8 years shorter. This marked disparity in life 
expectancy by educational attainment is evident across all 
demographic groups and has remained persistent—and may 
even have widened—over time.

 3 Incorporation of Literature on Knowledge Spillover Effects—
Theoretical and empirical research supports the idea that 
knowledge can diffuse within populations, enhancing collective 
understanding. Glaeser et  al. (23) discuss urban knowledge 
spillovers, while Moretti (24) demonstrates that increases in the 
local share of educated individuals can lead to broader productivity 
and knowledge gains, even among less-educated residents.

TABLE 4 Model B1.

(1) (2) (3)

Second 
Stage

Second 
Stage

First 
Stage

Model B1 Model B1 Model B1

Variables  Adjusted Percent Percent _Pred Pop

_ 2Pred Pop
1.56 × 10−14*** 2.10 × 10−14*** –

(4.82 × 10−15) (6.40 × 10−15) –

_Pred Pop −4.00 × 10−7*** −4.44 × 10−7*** –

(1.11 × 10−7) (1.47 × 10−7) –

2020 2UV Jm
6.52 × 10−7*** 9.81 × 10−7*** –

(4.66 × 10−8) (6.20 × 10−8) –

Constant 13.29*** 8.707*** 476,688***

(0.806) (1.071) (114,498.1)

( )−1999Year 0.533*** 1.003*** –

(0.0315) (0.0418) –

=_ _ minPop BA – – 2.760***

( )−_ 115,618Pop BA – – (0.0499)

Observations = 2,284n = 2,284n = 52n

R-squared 0.182 0.276 0.984

F-value 127.1 216.8 3,056

d.f. Numerator 4 4 1

d.f. denominator 2,279 2,279 50

Average VIF 4.11 4.11 –

The variable 2020UV Jm  (= UV radiation in June 2020, joules/m2) was excluded from 
Model B1 due to high collinearity with 2020 2UV Jm  (Average VIF = 38.10). Standard 
errors are presented in parentheses. **p < 0.05, ***p < 0.01.

https://doi.org/10.3389/fpubh.2025.1636571
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Arbel et al. 10.3389/fpubh.2025.1636571

Frontiers in Public Health 14 frontiersin.org

Feldman and Audretsch (25) highlight a strong correlation 
between city size and innovation, noting that in 1860, the 35 
largest U.S. cities had over four times more patents per capita 
than the national average. Today, innovation remains 
concentrated in major metropolitan areas, with San Francisco 

(8.9), Boston (8.7), New  York (4.2), and Philadelphia (3.6) 
patents per 100,000 people.
Further evidence of knowledge spillovers is found in patent 
citation patterns. Citations are five times more likely to originate 
from the same metropolitan area as the original patent, suggesting 

FIGURE 8

Projected  Adjusted Percent vs. _Pred Pop .

FIGURE 9

Projected  Adjusted Percent vs. 2020UV Jm. Figures 8, 9 are based on the estimation results from Model B1, using n = 2,284 observations, as reported in 
Column (1) of Table 4. Similar graphs based on Column (2) of Table 4 are available upon request.
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localized knowledge transfer. O’Sullivan (16) notes two key 
features of this process: first, citations cluster in the region of origin 
shortly after the patent is filed but gradually diffuse geographically; 
second, citation frequency—or “patent fertility”—varies by 
institution, with research universities producing the most 
influential patents, followed by corporate and government entities.

 4 Incorporation of Supporting Academic Literature on the Costs 
Associated with higher Melanoma Prevalence—Based on the 

CDC report, the annual medical costs associated with treating 
skin cancer total $8.9 billion. Implementing proven 
interventions to prevent skin cancer, particularly melanoma, 
can save money and enhance quality of life.
Based on a sample of 56 respondents from a popular public 
beach at Galveston Island, of whom 38 suffer from sunburns, 
Warthan et al. (26) assess the cost of sunburn by 92,720 lost 
workdays per annum, where the lower bound cost for lost days 
and treatment is $ 10 million.
In sum, our study indicates that

 o A 12–16% increase in education level offsets the 23-year 
melanoma growth rate.

 o A 25–30% increase in education level offsets a 1% rise in 
UV exposure.

 5 Supporting Evidence for the Education–Melanoma Link—
Individuals with higher levels of education consistently 
demonstrate more effective behaviors for preventing 
melanoma, including more frequent sunscreen use, avoidance 
of sun exposure, and increased dermatological awareness. Falk 
and Anderson (27) identified education as a strong predictor 
of sun-safe practices among the general European population; 
individuals with greater educational attainment reported 
higher rates of sunscreen use, a preference for products with 
higher SPF, and a stronger willingness to enhance their sun 
protection habits. Similarly, Mueller et al. (28), in a study of 
high-risk individuals in Switzerland, found that those with 
higher education were more knowledgeable about melanoma 
risks and more likely to use sunscreen correctly—despite 
occasionally reporting greater sun exposure, possibly due to 
lifestyle factors or increased leisure time.
This pattern is further supported empirically by Durand et al. 
(29), who found that vacationers with higher levels of education 
were more likely to engage in sun-protective behaviors, such as 
seeking shade and wearing protective clothing. This 
relationship was partly explained by their increased knowledge 
and more cautious attitudes toward UV exposure. Among 
melanoma survivors, education continued to be an influential 
factor; Heckman et al. (30) reported that individuals with a 
university-level education demonstrated higher overall sun 
protection scores—reflected in behaviors such as wearing hats, 
using sunscreen, and avoiding direct sunlight—compared to 
those with lower levels of education.

7 Summary and conclusions

Melanoma treatment costs have risen significantly, largely due to 
sun-induced skin damage. This study investigates how medical 
literacy—approximated by population size and education—affects 
melanoma incidence. Prior research links medical literacy, education, 
health systems, and population size (16–19).

Using CDC data on non-Hispanic white males and females—the 
most at-risk group—a quadratic Poisson regression was employed. 
The model incorporates annual melanoma case counts, squared 
population size, state dummy variables (for UV radiation), and a time 
trend. Results indicate a doubling of melanoma cases over the past 
23 years, closely tied to UV exposure.

To address overdispersion, the extended models replaced raw case 
counts with age-adjusted melanoma rates per 100,000 people and 

TABLE 5 Model B2.

(1) (2)

Model B3 Model B3

Variables  Adjusted Percent Percent

( )ln _pred pop β′′′2
−0.703*** −0.690**

(0.224) (0.300)

( )ln 2020UV Jm β′′′4
16.67*** 24.64***

(1.229) (1.641)

Constant β′′′5
−104.9*** −170.4***

(9.716) (12.97)

( )−1999Year β′′′6
0.533*** 1.003***

(0.0317) (0.0423)

Observations = 2,284n = 2,284n

R-squared 0.171 0.258

F-value 156.3 264.4

d.f. Numerator 3 3

d.f. denominator 2,280 2,280

Average VIF 1.05 1.05

Confidence Intervals

β β+′′′ ′′′
2 4 15.97 [13.64, 18.30] 23.95 [20.84, 27.06]

β β+′′′ ′′′15 2 4 6.12 [−0.26, 12.50] 14.30 [5.78, 22.82]

β β+′′′ ′′′20 2 4 2.60 [−5.86, 11.07] 10.85 [−0.46, 22.16]

β β+′′′ ′′′25 2 4 −0.91 [−11.54, 9.69] 7.40 [−6.75, 21.56]

β β+′′′ ′′′30 2 4 −4.43 [−17.19, 8.33] 3.96 [−13.08, 20.99]

β β+′′′ ′′′232 5 11.55 [10.05, 13.05] 22.37 [20.37, 24.37]

β β+′′′ ′′′10 232 5 5.22 [0.57, 9.86] 16.17 [9.97, 22.36]

β β+′′′ ′′′12 232 5 3.81 [−1.67, 9.29] 14.79 [7.47, 22.11]

β β+′′′ ′′′14 232 5 2.40 [−3.93, 8.74] 13.41 [4.95, 21.87]

β β+′′′ ′′′16 232 5 0.99 [−6.20, 8.19] 12.03 [2.42, 21.64]

The estimates are based on unweighted regressions from Model B2, where the TSLS (Two-
Stage Least Squares) methodology is applied. The specification is as follows: 

( ) ( ) ( )Adjusted Percent ln pred _ pop ln UV2020Jm Year 19992 4 5 6 B3β β β β µ= + + + − +′′′ ′′′ ′′′ ′′′

with _pred pop (= projected educated population holding at least a BA degree) replacing 
the original population variable. The dependent variable, Adjusted Percent, represents the 
number of new melanoma cases per 100,000 individuals, age adjusted. Percent is a simplified 
measure calculated as Case Count100,000

Population
· . 95% confidence intervals are given in  

 
square brackets. Standard errors are presented in parentheses. **p < 0.05, ***p < 0.01.
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substituted state-level dummy variables with direct measures of UV 
index and the proportion of the population with higher education. 
These improvements reveal that education—serving as a proxy for 
human capital—plays a significant role in reducing melanoma risk. 
Even in regions with high UV exposure, states with larger and more 
educated populations exhibit lower melanoma incidence rates.

The extended models indicate that a 12–16% increase in the 
proportion of educated individuals can offset long-term melanoma 
growth, while a 25–30% increase can counteract a 1% rise in UV 
exposure. An increase in BA-level education by 16–30 percentage 
points could prevent ~22,000 to ~41,000 melanoma cases in 20 years.1

Literature highlights disparities in early detection, especially 
among rural, minority, and high-risk groups, where delayed diagnoses 
worsen outcomes (31, 32). Access to dermatologic care remains 
uneven (33), and clinical training often overlooks melanoma in darker 
skin, particularly acral lentiginous melanoma, a subtype more 
common among non-white patients (34, 35). Addressing these gaps is 
essential for equitable outcomes.

Public policy should prioritize sun safety education and promote 
regular skin exams—especially in high-UV, underserved areas. 
Investing in health literacy today is far more cost-effective than 
treating preventable melanoma in the future.

7.1 Public policy recommendations for 
melanoma prevention

With global melanoma rates rising, prevention through education 
and early screening is vital. Health education in schools and 
communities can raise awareness of UV exposure, tanning, and 
sunscreen use. Greater health literacy promotes preventive behavior 
and early screening (36).

Policies should encourage routine skin checks through self-exams 
and clinical assessments, especially for high-risk individuals. 
Incentivizing providers and launching public campaigns increases 
screening rates (37). Regulatory measures—such as tanning 
restrictions and mandatory warning labels—can reduce adolescent 
risk (1).

7.2 Strengths and limitations

7.2.1 Strengths
Using 23 years of state-level data (2,325 observations), the study 

offers robust statistical power and wide geographic coverage. Fixed-
effects Poisson regression yields interpretable and credible results.

7.2.2 Limitations
Population is an indirect proxy for medical literacy. A two-stage 

least squares (2SLS) method refines this using education levels. 

1 These estimates are derived using the formula: 

( ) ( )× ×197,639,521    0.703 /100,000 ,education increase in percentage points where 

β′′′ = −2ˆ 0.703 is reported in Table 5 and the 197,639,521 figure is the non-Hispanic 

Caucasian population in the U.S. as of 2022

Overdispersion challenges the Poisson model’s assumptions but is 
addressed through improved modeling.
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