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Background: Since the establishment of medical alliances, a key issue regarding 
their ability to better address the imbalance in China’s medical resources lies in 
the changes in operational efficiency before and after their formation. This study 
focuses on urban medical groups, a reform model of medical alliances, and 
systematically analyzes the changes in operational efficiency before and after 
the group-based reform, aiming to provide empirical evidence for improving 
the group-based management model.

Methods: This study employs a dual-method framework combining three-stage 
DEA for static efficiency evaluation and Malmquist index analysis for dynamic 
assessment. Data from 14 medical institutions inform the analysis, utilizing three 
carefully selected input and three output variables to comprehensively evaluate 
resource allocation patterns within the medical consortium.

Results: The first-stage DEA evaluation of Qiqihar’s 14 medical institutions 
reveals baseline efficiency scores with comprehensive efficiency at 0.839, 
pure technical efficiency at 0.950, and scale efficiency at 0.882. SFA regression 
identifies regional GDP as positively influencing operational performance while 
population density and fiscal appropriations demonstrate negative effects. After 
adjusting for environmental variables and random disturbances in the third-
stage analysis, the recalculated efficiency metrics show significant changes. The 
adjusted comprehensive efficiency declines to 0.774, reflecting more accurate 
performance measurement after accounting for external factors. Meanwhile, 
pure technical efficiency improves to 0.971, suggesting strong managerial 
performance when isolated from environmental constraints. Scale efficiency 
decreases to 0.800, indicating suboptimal operational size remains a persistent 
challenge.

Conclusion: Medical institution planning must carefully consider local healthcare 
resource distribution, economic conditions, population characteristics, and 
varying medical needs to determine appropriate operational scales and 
infrastructure development. Health authorities should enhance coordination 
among medical groups by breaking institutional barriers and promoting resource 
sharing to create synergistic collaborations that improve overall service quality 
and efficiency. Continuous infrastructure improvements remain essential for 
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meeting evolving public healthcare demands while maintaining optimal service 
delivery standards.
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1 Introduction

China has long been confronted with the polarization effect of 
medical and health resources. The unbalanced development problem 
of “the big getting bigger and the small getting smaller” severely 
restricts the overall effectiveness of the medical service system (1, 2). 
To address this predicament, China has established the Medical 
Consortium system (also known as “medical alliances”) (3). Through 
cross-level and cross-regional resource integration, efforts are made 
to improve service quality and cost-control capabilities. Among the 
four major medical consortium models currently formed, the urban 
medical group, as an integrated medical service organization with the 
most distinctive Chinese characteristics, its grid-based layout and 
system-remodeling practice have important exemplary significance 
for optimizing regional resource allocation (4).

The establishment of urban medical groups takes full account of 
the distribution characteristics of urban medical resources. Through 
a three-level collaborative network of tertiary hospitals, secondary 
hospitals, and community health service institutions, efforts are made 
to promote the formation of a new pattern of hierarchical diagnosis 
and treatment (5). According to differences in the degree of 
collaboration, they can be divided into four types: compact, semi-
compact, loose, and composite (6). This diversified organizational 
form not only adapts to the economic development levels and resource 
allocation situations in different regions but also provides an 
institutional foundation for the generation of synergy effects.

By systematically reviewing the application of Data Envelopment 
Analysis (DEA) in medical efficiency research, existing achievements 
present a multi-dimensional and multi-level analytical framework. At 
the international macro-level, DEA is widely used in the efficiency 
evaluation and comparative study of medical systems among countries 
(7). For example, Top M applies DEA to a cross-national comparative 
study of the healthcare systems of 36 African countries, revealing 
significant differences in the efficiency of medical resource allocation 
among different countries (8). At the regional meso-level, the research 
focus shifts to the analysis of spatial heterogeneity within a single 
country (9). For example, Ngobeni’s empirical study on the nine 
provinces of South Africa shows that the DEA model can effectively 
identify the gradient differences in the technical efficiency of 
provincial medical systems (10). At the micro-level, research focuses 
on the heterogeneous characteristics of medical and health 
institutions. For example, Pirani’s DEA analysis of general hospitals, 
specialized hospitals, and multi-specialized hospitals in southwestern 
Iran reveals the differential performance of the operational efficiency 
of different types of medical institutions (11). Nunes AM applies a 
network data envelopment analysis approach to conduct a comparative 
study on the operational efficiency of Portuguese public hospitals 
before and after the COVID-19 pandemic, systematically evaluating 
the changing characteristics of resource allocation efficiency and 
service outputs in medical institutions amid the pandemic impact 
from an input–output perspective (12). The research team led by 

Ferreira DC uses data envelopment analysis techniques to carry out 
efficiency measurement studies on public healthcare institutions 
within Portugal’s National Health Service. From an input–output 
perspective, the research systematically explores the relative technical 
efficiency levels of hospital operations (13).

It is worth noting that Chinese scholars make good progress in the 
localization innovation and multi-level application of the DEA 
method. At the national governance level, Gong introduces the 
network DEA model and uses the network DEA method to evaluate 
the overall efficiency and the efficiency of two sub-stages of the 
medical systems in various provinces of China after the 
implementation of the medical reform (14). At the regional 
coordination level, Du utilizes the DEA model to deeply explore the 
correlation between quality and efficiency at the national overall level 
and in the eastern, central, and western regional groups (15). At the 
institutional operation level, Jing, by using the MaxDEA analysis tool, 
conducts a comparative analysis of the efficiency differences between 
public and private hospitals in Beijing, China (16). However, the 
existing literature has not fully focused on the impact mechanism of 
medical group reform on operational efficiency. Especially in the 
construction of close-knit urban medical groups, there is a lack of 
systematic efficiency assessment research on whether their efficiency 
has improved or deteriorated compared to before the formation. This 
theoretical gap restricts the deepening and advancement of medical 
group reform.

Current DEA applications in healthcare efficiency research exhibit 
spatial limitations, particularly in assessing urban medical groups—
the core of medical consortium reforms. Existing evaluation systems 
remain constrained to traditional organizational forms, failing to 
capture the dynamic resource-sharing networks within medical 
groups. This methodological gap creates two deficiencies: (1) inability 
to measure internal resource interaction efficiency, and (2) lack of 
quantitative evidence for policy evaluation.

Qiqihar City’s 2023 national pilot of compact urban medical 
groups demonstrates progress through grid-based management and 
regional medical center coordination. This study analyzes pre/post-
reform efficiency changes among member institutions, identifying 
drivers of performance variation. The findings offer empirical support 
for optimizing resource allocation and improving consortium 
management, with direct implications for public hospital reform and 
hierarchical diagnosis-treatment systems.

2 Materials and methods

2.1 Data and variables

2.1.1 Data sources
This study examines three representative compact urban medical 

groups in Qiqihar City (First Hospital, Traditional Chinese Medicine 
Hospital, and First Affiliated Hospital of Medical College) employing 
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a “1 + N + N” collaborative model. This framework integrates core 
hospitals with secondary and community healthcare institutions 
through vertical resource integration, establishing a three-tiered grid-
based service network.

In April 2024, structured questionnaires are administered to 
stakeholders (health administrators, core hospitals, and member 
institutions) to collect objective operational data on organizational 
structure, mechanisms, and resource allocation. Given that the 
aforementioned research subjects completed the establishment of 
medical groups in 2023, data from different years before and after 
their formation were collected to further enhance the scientific rigor 
and comprehensiveness of the comparative analysis. The structured 
questionnaire adopts a “dual-channel verification” approach, 
synchronously collecting institutional annual reports and statistical 
ledgers from health commissions to ensure data consistency. The 
design of the questionnaire has been reviewed by multiple healthcare 
management experts, with its content covering core indicators of 
input, output, and environmental variables, thus guaranteeing data 
quality. The survey focuses exclusively on institutional characteristics, 
avoiding personal data requiring ethical review. This approach 
provides empirical insights into medical consortium development 
while maintaining research rigor.

2.1.2 Selection of input and output indicators
The Donabedian model focuses on three progressive dimensions 

of healthcare service quality: structure, process, and outcome, 
providing a theoretical basis for the “input–output-environmental 
variables” framework in three-stage Data Envelopment Analysis. The 
structural dimension, as the “input foundation” of healthcare services, 
can be defined as the input variables in DEA. The process dimension, 
acting as the “intermediate transformation link,” can be identified as 
the environmental variables influencing efficiency. The outcome 
dimension, serving as the “ultimate goal” of services, is directly 
defined as the output variables in DEA. This study employs a rigorous 
three-input/three-output DEA model following completeness, 
comparability, and data availability principles (17). Input variables 
encompass: (1) the number of health workers (human resources) 
(18–20), (2) the number of opening beds (hardware capacity) (21, 22), 

and (3) the medical business expenditure (financial investment) (23, 
24). Output variables include: (1) the number of outpatient cases (18, 
22, 23) (2) the number of inpatient cases (service volume) (25–27) and 
(3) medical business income (economic sustainability) (17, 28, 29).

Pearson correlation analysis (SPSS 26.0) confirmed statistically 
significant input–output relationships (p < 0.01), validating variable 
selection. This framework enables precise efficiency measurement 
while capturing medical groups’ multidimensional performance, 
balancing service delivery with financial viability. The methodology 
provides robust empirical foundations for identifying operational 
efficiency determinants in healthcare consortia (Table 1).

2.1.3 Selection of environment variables
This study selects three environmental variables for SFA regression 

based on Simar and Wilson’s separation hypothesis (30, 31): (1) 
regional GDP (economic scale effects), (2) population density 
(agglomeration effects), and (3) fiscal appropriation income 
(government intervention impact) (22, 32–34). These exogenous 
factors, while beyond managerial control, influence the input–output 
efficiency frontier. The SFA analysis isolates environmental influences, 
enabling precise assessment of managerial efficiency and technical 
gaps in decision-making units.

2.2 DEA methods

Developed by Charnes and Cooper, data envelopment analysis 
(DEA) is a non-parametric method that evaluates the relative 
efficiency of decision-making units (DMUs) with multiple inputs and 
outputs (35, 36). By constructing a production frontier, DEA measures 
efficiency through the distance between observed values and this 
frontier, enabling comparative assessment of organizational 
performance (37).

The DEA system comprises two fundamental models (38, 39). The 
CCR model assumes constant returns to scale (CRS), measuring 
overall technical and scale efficiency (40). The BCC model 
incorporates variable returns to scale (VRS), decomposing efficiency 
into pure technical efficiency (reflecting production technology) and 

TABLE 1  Pearson correlation test for input and output variables.

Variables Number of 
health 

workers

Number of 
opening beds

Medical business 
expenditure

Number of 
outpatient 

cases

Number of 
inpatient 

cases

Medical 
business 
income

Number of health 

workers

1 – – – – –

Number of opening 

beds

0.992** 1 – – – –

Medical business 

expenditure

0.976** 0.976** 1 – – –

Number of 

outpatient cases

0.990** 0.973** 0.940** 1 – –

Number of inpatient 

cases

0.996** 0.993** 0.989** 0.979** 1 –

Medical business 

income

0.976** 0.975** 1.000** 0.940** 0.989** 1

** indicates p < 0.01.
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scale efficiency (assessing input–output proportionality) (41, 42). A 
scale efficiency value of 1 indicates CRS with optimal proportionality, 
while values below 1 suggest either increasing or decreasing returns 
to scale, signaling potential for improvement through scale 
adjustment (43).

DEA models may be input-oriented (minimizing inputs for given 
outputs) or output-oriented (maximizing outputs from fixed inputs) 
(44, 45). This methodological flexibility allows tailored efficiency 
analysis across different healthcare contexts, making DEA particularly 
valuable for evaluating complex systems like medical consortia where 
traditional metrics may be inadequate.

2.2.1 A three-stage DEA model
The three-stage DEA model (Fried et al.) enhances traditional 

DEA by incorporating stochastic frontier analysis (SFA) (46). This 
approach first calculates initial efficiency, then uses SFA regression to 
decompose environmental effects, managerial inefficiency, and 
random noise while adjusting input–output data, before finally 
reassessing efficiency with purified data to isolate true managerial 
performance (1, 47, 48).

The Figure  1 shows the schematic diagram of the three-stage 
DEA model.

2.2.1.1 Stage 1: traditional DEA model
Considering that the allocation of medical and health resources 

features dynamic adjustment and the input variables, as basic decision-
making parameters, are highly controllable, and also taking into 
account the public-welfare social responsibilities of medical 
institutions, this study selects the input-oriented BCC model to 
calculate the initial efficiency.

Suppose there are n DMUs. Each DMUj has m input factors 
( = 1,2, ,i m) and k output factors ( = 1,2, ,r k). Then the model is:
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θ j is the technical efficiency value of the j-th DMU. −ijs  and +rjs  are 
the input and output slack variables respectively, and ε  is the 
non-Archimedean infinitesimal. ijx  and rjy  are the input factors and 
output factors respectively, and λ j  represents the weight.

The comprehensive technical efficiency (TE) measured by the 
BCC model can be decomposed into the product of pure technical 
efficiency (PTE) and scale efficiency (SE), that is, TE = PTE * SE (42, 
49, 50).

2.2.1.2 Stage 2: SFA model
Developed by Aigner, SFA is a parametric method that estimates 

production frontiers while accounting for random disturbances (51). 
Its key innovation lies in decomposing deviations into: (1) random 

FIGURE 1

The three-stage DEA model.
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statistical noise and (2) managerial inefficiency (52). This separation 
enables more accurate efficiency evaluation of decision-making units 
by isolating true performance from stochastic variability.

To eliminate the influence of environmental factors and random 
interference on efficiency, the SFA model is used to decompose the 
input slack variable −ijs . The SFA model is as follows:

	 ( )β ν− = + +;ij i j i ij ijs f Z u 	 (3)

jZ  is the environmental variable, βi is its coefficient, ijv  is the 
random interference term, and ijv ~ ( )σ 20, viN ; iju  is the management 
noise, that is, management inefficiency, which follows a truncated 
normal distribution +~iju N ( σ 2,i uiu ); ijv  and iju  are independent 
and uncorrelated.

Separate the random interference term and management 
inefficiency, and use the adjustment formula to adjust all DMUs to the 
same external environment. The adjustment formula is:

	 ( )( ) ( ) ( )β β ν ν∗    = + − − −   
ˆ ˆmax ; ; maxij ij j i j i ij ijx x f Z f Z

	
(4)

∗
ijx  represents the input value of the i-th input factor of the j-th 

decision-making unit after adjustment; ijx  is the input amount of the 

decision-making unit before adjustment; ( )( ) ( )β β −  
max ; ;ˆ ˆ

j i j if Z f Z  
represents the input amount adjusted when the DMU is adjusted to 
the same external environment; ( ) − max ij ijv v  represents the input 
amount adjusted when the DMU is adjusted to the same random 
error term.

2.2.1.3 Stage 3: adjusted BCC model
This stage removes environmental and stochastic influences 

through standardized input adjustments (based on second-stage SFA 
results) while maintaining original outputs. Recalculating efficiency 
using the adjusted inputs in the BCC model isolates true managerial 
performance, yielding robust operational efficiency measures for 
evidence-based decision-making.

2.2.2 Malmquist index model
The Malmquist index, developed from Malmquist’s work, extends 

DEA methodology to assess total factor productivity changes over 
time (53). Unlike static three-stage DEA, it constructs intertemporal 
frontiers enabling longitudinal efficiency comparisons (54). This study 
innovatively applies this model to analyze pre/post-reform operational 
efficiency changes in urban medical groups, systematically evaluating 
reform impacts through dynamic productivity decomposition 
(technical efficiency change and technological progress components).
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t
ix  and t

ry  represent the i-th input factor and the r -th output factor 
in period t  respectively. ( ),t t t

vj i rD x y  denotes the distance function of 
DMUj in period t  under the condition of variable returns to scale, and 

( ),t t t
cj i rD x y  represents the distance function of DMUj in period t  under 

the condition of constant returns to scale. TFPch is the total factor 
productivity change index, which can be  decomposed into the 
technical efficiency change index (Effch) and the technological 
progress index (Techch). The technical efficiency change index can 
be further decomposed into the pure technical efficiency change index 
(Pech) and the scale efficiency change index (Sech).

2.3 DEA statistical software

This study employs Pearson correlation tests on input–output 
variables using SPSS 26.0, followed by three-stage DEA (DEAP 2.1) 
and Malmquist index (Frontier 4.1) analyses to assess both static and 
dynamic operational efficiency of DMUs, providing robust 
quantitative evidence for healthcare reform evaluation.

3 Results

3.1 Descriptive analysis

A survey of 14 medical institutions revealed average operational 
metrics per facility: 518 healthcare workers, 545 opening beds, and 
256 million yuan in medical expenditures. Service outputs remained 
stable with 206,300 outpatient cases and 18,928 inpatient cases, while 
generating 680,000 yuan in medical business income (Table 2). These 
findings demonstrate balanced development across resource 
allocation, service delivery, and operational efficiency within the 
medical group system.

3.2 Static measurement of operational 
efficiency of medical groups in compact 
cities

3.2.1 Results of first-stage SFA model
The 2023 DEA evaluation of three compact urban medical groups 

in Qiqihar revealed an average comprehensive efficiency of 0.839 
across 14 institutions, with pure technical efficiency at 0.950 and scale 
efficiency at 0.882. Six institutions achieved optimal performance with 
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comprehensive efficiency scores of 1.0, operating on the efficiency 
frontier. The remaining institutions demonstrated inefficiencies, with 
either pure technical or scale efficiency below 1.0, indicating potential 
areas for improvement in resource allocation structures or operational 
scale optimization. These findings highlight both high-performing 
facilities and opportunities for system-wide enhancements in 
healthcare delivery efficiency (Table 3).

3.2.2 Results of second-stage adjusted DEA-BCC 
analysis

This study employed stochastic frontier analysis (SFA) to examine 
input slack variables against standardized environmental factors. All 
input variables demonstrated statistically significant LR statistics 
(α = 0.05) with γ  values approaching 1, confirming that operational 
efficiency variations primarily reflect management inefficiency rather 
than random noise. These findings validate the importance of 
environmental adjustments in healthcare efficiency evaluations.

Regression analysis revealed regional GDP negatively correlated 
with input slack, suggesting economic development enhances 
efficiency by reducing resource redundancy. Conversely, population 
density and fiscal appropriations showed positive associations, 
indicating population aggregation may worsen resource misallocation 
while increased subsidies potentially diminish allocation efficiency. 

These results demonstrate distinct regional economic and policy 
impacts on medical resource utilization (Table 4).

3.2.3 Results of THIRD-STAGE DEA analysis
The three-stage SFA-adjusted results reveal an average 

comprehensive efficiency of 0.774 for Qiqihar’s medical groups, 
representing a 0.065 decrease from unadjusted values. Six institutions 
(DMU3,4,6,9,11,13) show notable efficiency declines (0.021–0.329), 
demonstrating significant environmental influence. These findings 
confirm that traditional methods overestimate efficiency when failing 
to account for environmental factors, highlighting the importance of 
proper adjustment in healthcare performance evaluation.

Four institutions (DMU1-2 included) demonstrate significantly 
higher efficiency after environmental adjustment, revealing their 
operational capabilities are previously constrained by unfavorable 
conditions. This underscores the critical importance of environmental 
factor correction for objective performance evaluation in 
healthcare systems.

After adjustment, average pure technical efficiency improves from 
0.950 to 0.971, with 12 institutions reaching optimal levels. However, 
DMU2’s score of 0.971 remains below average, indicating persistent 
technical deficiencies in core medical capabilities despite 
environmental adjustments.

Post-adjustment analysis reveals a significant decline in average 
scale efficiency from 0.882 to 0.800, with only four institutions 
maintaining optimal performance versus six previously. Six 
institutions including DMU3 and DMU4 score below average, 
confirming scale efficiency as the primary constraint on operational 
improvement in urban medical groups, aligning with Kirigia’s findings 
on healthcare system performance limitations (49). However, Pirani’s 
research reveals that hospitals demonstrate favorable performance in 
terms of scale efficiency, which is not a key impediment to enhancing 

TABLE 2  Descriptive statistics for inputs, outputs, and environment 
variables.

Variables Max Min Mean SD

Input variables

Number of 

health workers

3,272 21 518 997.590

Number of 

opening beds

3,366 11 544.786 990.810

Medical business 

expenditure 

(10,000 RMB)

216222.4 114 25629.784 60484.338

Output variables

Number of 

outpatient cases

1,162,866 3,300 206300.214 387710.835

Number of 

inpatient cases

133,522 1 18927.786 39376.528

Medical business 

income (10,000 

RMB)

229863.53 68.54 27031.743 64391.332

Environment variable

Regional GDP 

(billion RMB)

13.796 3.467 9.344 3.579

Population 

density 

(persons/km2)

2658.2 75.85 1219.989 1066.212

Fiscal 

appropriation 

income (10,000 

RMB)

9,449 80.26 1772.992 2832.367

TABLE 3  Operational efficiency of Qiqihar compact urban medical group 
in 2023.

DMU Stage 1 Stage 3

TE PTE SE TE PTE SE

1 0.872 1.000 0.872 drs 0.873 1.000 0.873 drs

2 0.570 0.616 0.926 irs 0.572 0.623 0.918 irs

3 0.580 0.983 0.591 irs 0.419 0.977 0.429 irs

4 1.000 1.000 1.000 – 0.706 1.000 0.706 irs

5 1.000 1.000 1.000 – 1.000 1.000 1.000 –

6 0.639 1.000 0.639 irs 0.618 1.000 0.618 irs

7 0.990 1.000 0.990 drs 0.993 1.000 0.993 drs

8 0.836 1.000 0.836 irs 0.837 1.000 0.837 irs

9 0.540 0.698 0.774 irs 0.503 1.000 0.503 irs

10 1.000 1.000 1.000 – 1.000 1.000 1.000 –

11 0.722 1.000 0.722 irs 0.650 1.000 0.650 irs

12 1.000 1.000 1.000 – 1.000 1.000 1.000 –

13 1.000 1.000 1.000 – 0.671 1.000 0.671 irs

14 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Mean 0.839 0.950 0.882 0.774 0.971 0.800

drs indicates decreasing returns to scale, irs indicates increasing returns to scale, and – 
indicates that returns to scale remain unchanged.
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hospital efficiency (11). These findings collectively highlight the 
complexity of improving healthcare system efficiency, as reflected in 
the coexistence of systemic performance limitations and advantages 
in scale efficiency, which provides important theoretical references 
and directional guidance for subsequent related research.

Post-adjustment analysis reveals distinct returns-to-scale patterns: 
eight institutions (including DMU2,3) show increasing returns, 
suggesting potential benefits from additional resource inputs; DMU1 
and DMU7 demonstrate decreasing returns, indicating suboptimal 
resource utilization requiring reallocation; while four institutions 
(DMU5,10) maintain constant returns, reflecting ideal input–output 
proportionality. These findings highlight the need for differentiated 
resource allocation strategies across medical institutions based on 
their scale efficiency characteristics, with increasing-return 
institutions benefiting most from marginal investments and 
decreasing-return units requiring operational optimization to 
improve productivity.

3.2.4 Bootstrap-DEA robustness analysis
To address potential sampling variability in small-sample DEA 

applications, this study employs the Bootstrap-DEA methodology. 
The resampling technique generates pseudo-samples to establish bias-
corrected efficiency estimates with corresponding 95% confidence 
intervals for each DMU, thereby validating the statistical robustness 
of efficiency measurements.

Computational results demonstrate that all 14 DMUs’ original 
efficiency estimates, including TE, PTE, and SE, fall within their 
respective bootstrap confidence intervals. The interval widths reveal 
distinct robustness patterns: PTE > TE > SE, with scale efficiency 
exhibiting greater variability due to inter-DMU heterogeneity.

These findings not only substantiate the hypothesis that scale 
inefficiency constitutes the primary constraint on overall performance 
improvement, but more importantly, confirm the statistical reliability 
of bootstrap-corrected efficiency estimates in small-sample contexts. 
The methodological approach provides an effective solution for DEA 
applications with limited observations, particularly in healthcare 

system evaluations where sample size constraints are common 
(Table 5).

3.3 Dynamic measurement of operational 
efficiency of medical groups in compact 
cities

The Malmquist index analysis demonstrates a 1.160 average total 
factor productivity improvement in Qiqihar’s compact urban medical 
groups. Scale efficiency growth (1.068) and technological progress 
(1.091) drive this enhancement, while pure technical efficiency (0.995) 
shows minimal negative impact. These findings indicate substantial 
operational efficiency gains following the groups’ establishment.

The analysis reveals performance disparities among the 14 
institutions, with 42.9% (6) showing technical efficiency declines. This 
includes 14.3% (2) with reduced pure technical efficiency and 35.7% 
(5) demonstrating scale efficiency deficiencies. While technological 
progress meets benchmarks in 92.9% of cases (13), 28.6% (4) 
underperform in total factor productivity, indicating persistent 
challenges in resource allocation and technology adoption that require 
targeted interventions (Table 6).

4 Discussion

This study develops a two-dimensional assessment framework 
combining three-stage DEA and Malmquist index methods. The 
approach objectively evaluates 2023 operational efficiency in Qiqihar’s 
medical groups by eliminating environmental biases, while 
dynamically tracking productivity trends through decomposition of 
technical efficiency and technological progress drivers. The integrated 
methodology provides comprehensive static and dynamic 
efficiency insights.

The analysis reveals an average adjusted comprehensive technical 
efficiency of 0.774 across Qiqihar’s urban medical groups, indicating 
substantial operational inefficiencies. Management shortcomings and 
suboptimal resource utilization lead to significant input–output 
conversion losses, with resources failing to achieve full optimization 
potential. Notable inter-institutional variations in efficiency scores 
highlight critical disparities in three key operational dimensions: (1) 
resource allocation patterns, (2) personnel deployment strategies, and 
(3) equipment utilization rates. These structural differences directly 
contribute to the observed efficiency gaps, suggesting that 
standardized optimization protocols could yield measurable 
improvements. The findings identify specific areas requiring 
intervention to enhance overall system performance while 
maintaining necessary service quality standards.

The improved efficiency scores after environmental adjustment 
demonstrate significant environmental and stochastic influences on 
medical institution performance, consistent with Liu’s findings (55). 
Regions with stronger economic development particularly benefit 
from greater medical service demand, which systematically enhances 
operational efficiency through improved resource utilization and 
service delivery mechanisms.

The adjusted average pure technical efficiency of 0.971 
demonstrates effective resource utilization across most institutions, 
reflecting successful knowledge transfer from core hospitals. However, 

TABLE 4  SFA model regression results.

Variables Number of 
health 

workers 
slack

Number of 
opening 

beds slack

Number of 
medical 
business 

expenditure 
slack

Constant −10.449** −6.214** 83.505

Regional GDP −480.862** −670.100** −3355.476

Population 

density

310.867** 380.471** 595.936

Fiscal 

appropriation 

income

31.579** 37.455** 352.130

σ2
2294.656** 3704.629** 97126.213**

γ 1.000** 1.000** 1.000**

LR test of the 

one-sided error

8.752* 8.977* 10.679**

* indicates p < 0.05, ** indicates p < 0.01.
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one institution’s lower score suggests inadequate or misaligned 
support, requiring targeted interventions including enhanced needs 
assessment, improved internal resource management, and 
strengthened collaborative mechanisms with core hospitals to address 
specific technical deficiencies.

The adjusted average scale efficiency of 0.800 reveals significant 
optimization challenges across the medical consortium. Eight 
institutions demonstrate increasing returns to scale, where additional 
resource investments yield proportionally greater outputs, suggesting 
underutilized capacity. Conversely, two institutions show decreasing 

returns, indicating resource saturation where expanded inputs fail to 
proportionally increase outputs, necessitating strategic downsizing. 
Four institutions maintain optimal constant returns, achieving perfect 
input–output proportionality. These findings highlight the critical 
need for differentiated resource allocation strategies - expansion for 
increasing-return institutions, optimization for constant-return 
facilities, and rationalization for decreasing-return units to maximize 
system-wide efficiency.

Post-establishment analysis reveals significant technical efficiency 
gains across the medical consortium, with an average improvement of 
1.063 despite 42.9% of institutions showing temporary declines. The 
net positive trend reflects successful implementation of three key 
collaborative mechanisms: (1) enhanced resource-sharing platforms, 
(2) systematic technology-exchange programs, and (3) standardized 
staff training protocols. These structural interventions enable more 
effective utilization of existing technologies, translating to measurable 
service output increases. The findings indicate that during the 
transition phase, despite the potential fluctuating characteristics of the 
performance level of individual institutions, the medical consortium 
model, relying on inter-institutional learning mechanisms, has 
significantly achieved efficiency improvement in the short term 
through resource sharing and technical collaboration.

Technological progress analysis shows only one institution scoring 
below benchmark, confirming successful integration of medical 
resources through the consortium model. The group’s operational 
framework effectively disseminates advanced medical technologies 
across member institutions, driving system-wide technological 
upgrades that enhance service quality and clinical capabilities.

Within the scope covered by existing data, the compact medical 
group model, through the collaborative interaction between core 
hospitals and member institutions, demonstrates a certain positive 
role in terms of technical efficiency and scale efficiency, with 12 
institutions achieving optimal pure technical efficiency and 9 reaching 
scale efficiency targets. This demonstrates effective group-wide 

TABLE 5  Bootstrap-DEA robustness analysis results.

DMU TE BTE 95% CIs PTE BPTE 95% CIs SE BSE 95% CIs

1 0.873 0.862 [0.845, 0.896] 1.000 0.997 [0.990, 1.000] 0.873 0.865 [0.832, 0.905]

2 0.572 0.565 [0.541, 0.598] 0.623 0.619 [0.595, 0.648] 0.918 0.912 [0.885, 0.946]

3 0.419 0.410 [0.390, 0.445] 0.977 0.973 [0.958, 0.992] 0.429 0.421 [0.395, 0.462]

4 0.706 0.696 [0.678, 0.732] 1.000 0.996 [0.989, 1.000] 0.706 0.699 [0.670, 0.745]

5 1.000 0.992 [0.982, 1.000] 1.000 0.998 [0.993, 1.000] 1.000 0.994 [0.980, 1.000]

6 0.618 0.608 [0.589, 0.645] 1.000 0.997 [0.991, 1.000] 0.618 0.610 [0.580, 0.652]

7 0.993 0.986 [0.975, 1.000] 1.000 0.999 [0.996, 1.000] 0.993 0.987 [0.968, 1.000]

8 0.837 0.827 [0.809, 0.859] 1.000 0.996 [0.988, 1.000] 0.837 0.830 [0.800, 0.869]

9 0.503 0.493 [0.475, 0.529] 1.000 0.995 [0.987, 1.000] 0.503 0.495 [0.465, 0.542]

10 1.000 0.990 [0.980, 1.000] 1.000 0.997 [0.992, 1.000] 1.000 0.993 [0.978, 1.000]

11 0.650 0.639 [0.619, 0.679] 1.000 0.996 [0.989, 1.000] 0.650 0.642 [0.608, 0.685]

12 1.000 0.993 [0.985, 1.000] 1.000 0.998 [0.995, 1.000] 1.000 0.995 [0.982, 1.000]

13 0.671 0.661 [0.639, 0.699] 1.000 0.997 [0.990, 1.000] 0.671 0.663 [0.627, 0.708]

14 1.000 0.991 [0.976, 1.000] 1.000 0.999 [0.997, 1.000] 1.000 0.992 [0.975, 1.000]

Mean 0.774 0.770 [0.751, 0.798] 0.971 0.968 [0.956, 0.985] 0.800 0.795 [0.732, 0.867]

BTE, BPTE, and BSE represent the bias-corrected efficiency estimates derived from the Bootstrap-DEA procedure.

TABLE 6  Changes and decomposition of total factor production 
efficiency of medical institutions.

DMU effch techch pech sech tfpch

1 0.985 1.014 1.000 0.985 0.999

2 0.993 1.341 0.987 1.006 1.332

3 3.139 1.031 1.104 2.842 3.235

4 1.000 0.781 1.000 1.000 0.781

5 1.000 1.364 1.000 1.000 1.364

6 0.802 1.112 1.000 0.802 0.892

7 0.990 1.066 1.000 0.990 1.055

8 0.872 1.105 1.000 0.872 0.963

9 1.061 1.130 0.854 1.242 1.200

10 1.000 1.180 1.000 1.000 1.180

11 0.933 1.108 1.000 0.933 1.034

12 1.000 1.095 1.000 1.000 1.095

13 1.116 1.041 1.000 1.116 1.162

14 1.000 1.033 1.000 1.000 1.033

Mean 1.063 1.091 0.995 1.068 1.160
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implementation of standardized management protocols, precise 
technology deployment, and optimized resource scaling that 
collectively minimize waste while maximizing 
operational performance.

The average total factor productivity reaches 1.160, with 71.4% of 
institutions exceeding benchmark performance. While 28.6% show 
suboptimal results, the combined effects of technical efficiency 
improvements (1.063) and technological progress (1.091) drive 
system-wide productivity growth, demonstrating the consortium’s 
success in enhancing operational performance.

SFA regression demonstrates GDP’s significant negative 
association with input slack, indicating high-GDP regions achieve 
superior resource utilization through three mechanisms: (1) greater 
baseline healthcare investments, (2) advanced equipment availability, 
and (3) preferential talent acquisition. These economic advantages 
create systemic efficiency gains that optimize service quality-
output ratios.

Medical institutions in high population density areas with 
substantial fiscal allocations face complex efficiency challenges despite 
their apparent resource advantages. While these hospitals demonstrate 
strong staffing levels and bed capacity, many engage in uncontrolled 
expansion and excessive resource investment without proper needs 
assessment. This unscientific growth leads to significant resource 
allocation imbalances, where additional inputs fail to generate 
proportional service improvements. The resulting inefficiencies 
reduce overall health resource productivity, creating substantial waste 
(56). These findings highlight how well-resourced environments can 
paradoxically encourage suboptimal investment decisions when 
expansion lacks evidence-based planning and rigorous outcome 
evaluation frameworks.

Optimal healthcare resource allocation requires balancing 
availability with utilization efficiency to prevent overinvestment waste. 
Evidence-based planning ensures resources effectively meet 
population needs while improving service quality and operational 
performance (57). This approach enables urban medical groups to 
achieve sustainable development through three key outcomes 
enhanced equity in service delivery, systematic allocation 
optimization, and measurable efficiency gains across the 
healthcare system.

5 Conclusion

Efficient resource allocation in compact urban medical groups 
significantly influences service quality and population health 
outcomes. Research demonstrates substantial input–output 
imbalances across institutions, with regional GDP, population density, 
and fiscal allocations directly impacting allocation efficiency. The 
observed inter-institutional variations confirm that healthcare 
resource distribution operates within a complex socioeconomic 
ecosystem rather than as an isolated system, requiring integrated 
planning approaches that account for these 
environmental determinants.

Resource imbalances across medical institutions create dual 
challenges of wasteful surpluses and critical shortages that compromise 
service accessibility and quality. These disparities necessitate tailored 
regional planning that carefully balances existing resources, economic 
conditions, population demographics, and healthcare demands to 

develop institution-specific strategies that maximize system-wide 
efficiency and service equity.

Compact urban medical groups may pursue a gradual transition 
from scale expansion to intensive development via three key 
improvements: standardized management systems, optimized service 
processes, and enhanced staff competencies. Implementing advanced 
management approaches and technologies while strengthening 
internal governance structures enables hospitals to simultaneously 
elevate operational efficiency, service quality, and technical capabilities 
without physical expansion. This paradigm shifts from quantity to 
quality focuses on maximizing existing resource utilization through 
systematic process refinements and continuous professional 
development initiatives.

Governments and health authorities may consider implementing 
five key strategies to help improve the performance of medical groups. 
First, data-driven resource allocation requires developing long-term 
plans based on demographic and economic analyses, prioritizing 
geriatrics and rehabilitation services in aging populations. Second, 
performance management systems should evaluate institutions using 
efficiency, quality, and satisfaction metrics, linking results to funding 
allocations to incentivize improvement. Third, workforce development 
necessitates targeted training programs through academic 
partnerships alongside attractive recruitment packages for specialty 
fields like pediatrics and psychiatry. Forth, digital transformation 
involves creating unified information platforms enabling data sharing, 
telemedicine, and appointment systems to streamline services and 
reduce patient wait times. Fifth, medical alliance integration demands 
clear institutional roles within networks, standardized referral 
protocols, and tiered service delivery where advanced hospitals 
support primary centers through training and technical assistance 
while community facilities manage routine care and follow-up. These 
interconnected approaches collectively address resource optimization 
through scientific planning, performance incentives, human capital 
investment, technological enablement, and collaborative care models. 
The strategy balances immediate operational improvements with 
sustainable capacity building, ensuring both efficiency gains and 
quality enhancement across the healthcare continuum. 
Implementation requires coordinated policy support, adequate 
funding mechanisms, and continuous monitoring systems to adapt to 
evolving population needs while maintaining service accessibility and 
clinical standards.

Optimizing health resource allocation and improving urban 
medical group efficiency are critical for advancing healthcare quality. 
Coordinated government guidance, management innovation, 
technological advancement, and resource sharing enable sustainable, 
high-quality service delivery. This study provides theoretical 
foundations for compact medical group development while offering 
practical insights for institutional efficiency evaluation and evidence-
based policymaking in healthcare systems.

6 Limitations

Efficiency assessment in urban medical groups requires carefully 
selected variables that align with institutional characteristics while 
ensuring data availability to measure core competencies. Although 
quantitative metrics like staffing, infrastructure, and funding reveal 
basic resource distribution patterns, they fail to capture the 
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multidimensional nature of true operational efficiency, presenting 
significant limitations in comprehensive performance evaluation.

Intangible elements significantly influence resource allocation 
effectiveness, with organizational culture shaping staff behaviors and 
patient satisfaction reflecting service quality. These qualitative 
factors, though difficult to quantify, fundamentally determine 
operational efficiency and resource utilization patterns in daily 
healthcare delivery.

Evaluation frameworks relying exclusively on quantitative metrics 
risk overlooking critical qualitative dimensions, potentially distorting 
assessment outcomes. Such approaches may produce misleading 
efficiency measurements that fail to capture the complete operational 
reality of urban medical groups, particularly regarding service quality 
and organizational dynamics.

In conclusion, a robust assessment system must integrate 
qualitative factors alongside quantitative metrics to provide 
comprehensive insights for optimizing urban medical groups. This 
balanced approach enables more accurate performance measurement 
and informed decision-making for sustainable healthcare development.
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