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Background: China reports the highest number of mumps cases globally, 
with the disease demonstrating distinct spatial clustering and variability 
characteristics.

Methods: This study employed descriptive statistics and spatial autocorrelation 
analysis to examine the spatial distribution characteristic and patterns of mumps 
across 31 Chinese provinces in 2020. Furthermore, based on the principle of 
spatial stratified heterogeneity, the Geodetector method was systematically 
applied to assess the influence intensity and interaction effects of economic 
development, population structure, education level, environmental conditions, 
and healthcare resource allocation on mumps incidence rate.

Results: The findings revealed a distinct west-to-east decreasing trend of mumps 
incidence in China, demonstrating significant spatial autocorrelation primarily 
manifested as high-high clustering in western areas and low-low clustering 
in eastern regions. Among all influencing factors, the child dependency ratio 
showed the strongest association with mumps incidence, while healthcare 
resources exhibited relatively weaker effects. Notably, significant synergistic 
effects were observed among risk factors, with particularly prominent interaction 
between GDP per capita and illiteracy rate.

Conclusion: This study provides critical evidence for region-specific mumps 
prevention strategies, highlighting the need for integrated control measures 
that consider multifactorial interactions to effectively contain mumps in China.
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1 Introduction

Mumps, an acute respiratory infectious disease caused by the mumps virus, has 
experienced frequent outbreaks worldwide in recent years, even in countries with high 
vaccination coverage (1). China, reporting the highest number of mumps cases globally (2), 
faces a particularly severe epidemic situation. Epidemiological data indicated that the average 
annual incidence rate in mainland China from 2004 to 2018 was 21.44 per 100,000 population, 
with significant spatial clustering (3). High-risk areas were concentrated in southern provinces 
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such as Hunan, Hubei, Chongqing, Guizhou, Guangdong, and 
Guangxi (4). Despite the implementation of a two-dose mumps-
containing vaccination program in China, breakthrough infections 
among children and young adults continued to occur (5), suggesting 
that socioeconomic and environmental factors, in addition to 
immunological factors, may play a crucial role in disease transmission.

Existing research demonstrated that mumps incidence were 
influenced by multidimensional determinants. First, climatic factors 
such as temperature and relative humidity exhibited a significant 
positive correlation with mumps incidence (6). Beyond environmental 
drivers, socioeconomic indicators—including GDP per capita and 
disposable income—may shape disease control efficacy by modulating 
healthcare resource allocation (7). Consistent with this, studies indicated 
that public health funding was strategically directed toward high-
incidence regions to mitigate outbreaks (4). Additionally, urbanization 
influenced transmission patterns by altering population density (8), 
while education levels indirectly affected mumps risk by shaping 
vaccination decisions and health behaviors (9). Notably, elevated PM2.5 
concentrations had been linked to increased mumps incidence (4), and 
demographic factors such as household size and child dependency ratio 
showed significant associations with outbreak risks (9, 10).

However, current studies exhibit three major limitations: Firstly, 
most analyses have focused on individual provinces, lacking a 
comprehensive nationwide assessment of multifactorial interactions. 
Secondly, there has been insufficient attention to the allocation of 
community health services, including indicators such as the number 
of community health centers per 100,000 population and number of 
general practitioners per 10,000 population. Thirdly, conventional 
statistical approaches are limited in capturing nonlinear effects and 
spatial stratified heterogeneity across determinants. The Geodetector 
method offers an effective solution for quantifying both the 
explanatory power of individual factors and their interaction effects, 
making it particularly valuable for investigating the spatial 
differentiation mechanisms underlying health issues (11).

Therefore, this study employed the Geodetector method to 
systematically examine the influence intensity and interaction patterns 
of economic development, population structure, education level, 
environmental conditions, and healthcare resource on the spatial 
distribution of mumps incidence in China. The findings will provide 
scientific evidence for formulating region-specific prevention and 
control strategies.

2 Methods

2.1 Data

Based on existing literature and data availability, we selected 12 
indicators for the year 2020, with detailed information provided in 
Table 1. This study was conducted at the provincial level, encompassing 
31 administrative regions (excluding Hong Kong, Macao, and 
Taiwan). The mumps incidence data were obtained from the Public 
Health Science Data Center of the Chinese Center for Disease Control 
and Prevention.1 PM2.5 concentration data were extracted from 

1 https://www.phsciencedata.cn/Share/

provincial environmental status bulletins, healthcare resources data 
were derived from the China Health Statistical Yearbook, and all other 
socioeconomic data were collected from the China Statistical Yearbook.

2.2 Descriptive analyses

The geographical distribution characteristics of mumps cases 
among the 31 districts were visually represented through thematic 
mapping techniques.

2.3 Spatial autocorrelation analysis

Spatial autocorrelation analysis is a fundamental method in 
geospatial statistics, primarily involving three core metrics: the Global 
Moran’s I index, Local Moran’s I index, and Getis-Ord Gi* statistic.

2.3.1 Global Moran’s I
The Global Moran’s I  index measures the overall spatial 

autocorrelation across the study area. Its mathematical formulation is 
as follows (Equation 1) (12):
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The Global Moran’s I  index ranges from −1 to 1, where n 
represents the sample size, Wij denotes the elements of the spatial 

TABLE 1 Key factors selected for analysis.

Categories Factors Variable symbol

Economic Development

GDP per capita X1

Disposable income per 

capita
X2

Urbanization rate X3

Population Structure
Average household size X4

Child dependency ratio X5

Environment condition PM2.5 X6

Education level
Illiteracy rate X7

Years of schooling X8

Healthcare Resources

Total health expenditure 

per capita
X9

Number of licensed 

physicians per 1,000 

population

x10

Number of community 

health centers per 

100,000 population

X11

Number of general 

practitioners per 10,000 

population

X12
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weight matrix, xi and xj are the observed values, and X  is the mean 
value. Values between 0 and 1 indicate significant positive spatial 
autocorrelation (clustering of similar values), values between −1 and 
0 demonstrate significant negative spatial autocorrelation (clustering 
of dissimilar values), while a value of 0 suggests a random spatial 
distribution, with statistical significance determined by the 
standardized Z-score (13) (Equation 2).
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Here, E(I) indicates Moran’s coefficient’s expected value and var.
(I) denotes its variance. Spatial aggregation of mumps incidence is 
indicated when, at the 0.05 significance level, Z > 1.96 (i.e., when 
Moran’s coefficient has a p-value <0.05).

2.3.2 Local indicators of spatial association
LISA was employed to identify local spatial heterogeneity patterns, 

calculated as (Equation 3):
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Using the same variable definitions as Global Moran’s I, LISA 
identifies four spatial patterns: high-high clusters (HH), low-low 
clusters (LL), high-low outliers (HL), and low-high outliers (LH) (14). 
These statistically significant patterns are visualized through LISA 
cluster maps (15).

2.3.3 Getis-Ord Gi* hotspot analysis
To further identify statistically significant hotspots and coldspots 

of mumps incidence, we performed Getis-Ord Gi* analysis. This 
method calculates a Z-score for each spatial unit by comparing its 
value with neighboring units defined by the same spatial weight 
matrix used in Moran’s I analysis. Areas with Z > 1.96 (p < 0.05) were 
classified as significant hotspots (high-value clustering), while 
Z < −1.96 (p < 0.05) indicated coldspots (low-value clustering). The 
results were visualized in Gi* cluster maps, complementing the LISA 
analysis by emphasizing the intensity of spatial 
concentration patterns.

2.4 Geodetector

The Geodetector is a statistical analysis method based on the 
principle of spatial stratified heterogeneity, specifically designed to 
identify spatial differentiation characteristics and driving mechanisms 
of geographical phenomena. This method systematically explains 
spatial differentiation by quantifying the explanatory power 
(PD-value) of various influencing factors on spatial variation and 
analyzing interactions between multiple factors (16). The Geodetector 
comprises four components: factor detector, risk detector, ecological 
detector, and interaction detector (17–19).

2.4.1 Factor detector
The factor detector serves as the core analytical module in the 

Geodetector method. Based on the spatial stratified heterogeneity 
theory, this method calculates the PD statistic (also called q-value) to 
quantify the independent explanatory power of each influencing 
factor (Equation 4) (20):
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The statistical parameters include Nh (sample size of stratum h), 
σh

2 (variance of stratum h), N (total sample size), and σ2 (total 
variance), with the PD value ranging between 0 and 1, where higher 
values indicate greater explanatory power of the factor for 
spatial differentiation.

2.4.2 Risk detector
The Risk Detector is primarily employed to identify and evaluate 

differences in risk levels across various stratified influencing factors. 
This method quantifies mean differences between strata using 
independent samples t-tests (Equation 5) (17).
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Where hY  represents the average incidence rate of layer h, hn  is 
samples, Var  represents sample variance, t follows the Student’s-t-
test distribution.

The null hypothesis as follows Equation 6:

 = ==0 1 2: h hH Y Y  (6)

If the null hypothesis is rejected at significance level α, we conclude 
that there is a significant difference in the average mumps incidence 
rate between the two regions.

2.4.3 Ecological detector
The ecological detector is an ANOVA-based statistical method 

designed to assess significant differences in explanatory power 
between distinct influencing factors on spatial differentiation patterns 
of geographical phenomena. This method operates on the principle of 
F-statistic calculation to evaluate the significance of within-strata 
variance differences for two influencing factors (Equations 7–9).
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Where nx1 and nx2 represent the samples of two factors x1 and 
x2, respectively. SSWX1  and SSWX2 represent the sum of the 
within-strata variance of x1 and x2, respectively; L1 and L2 represent 
the number of layers of x1 and x2, respectively.

The null hypothesis states that both factors equally explain the 
spatial variation. If the calculated F-value exceeds the critical 
threshold, we  reject the null hypothesis, indicating statistically 
significant differences in explanatory power between the factors.

2.4.4 Interaction detector
The Interaction Detector quantitatively assesses interaction 

types between paired influencing factors and their synergistic 
effects on spatial differentiation of dependent variables. By 
comparing single-factor PD-value with interaction PD-value, this 
module systematically identifies five characteristic interaction 
patterns (Table  2) (21): nonlinear-weakening, univariate-
weakening, bivariate enhancement, independent, and nonlinear-
enhancement effects.

2.4.5 Categorization methods for independent 
variables

Continuous variables in Geodetector analysis require 
discretization. Table 3 summarizes the five evaluated methods with 
their mathematical properties and applications.

The optimal method was selected by systematically 
comparing all approaches across 3–8 classification levels, 
choosing the combination maximizing the PD value (22). This 
data-driven strategy ensures objective identification of the most 
effective discretization for each variable.

2.5 Software implementation

The spatial analysis workflow was implemented using the 
following tools and resources: Data preprocessing (including 
variable discretization) and spatial autocorrelation analysis were 
performed using ArcGIS 10.2 (ESRI, Redlands, CA). Geodetector 
modeling was conducted using the Excel-based software available 
at http://Geodetector.cn/Download.html. Base maps were 

obtained from the National Geographic Information Public 
Service Platform (approval number: GS[2024]0650). Statistical 
analyses employed two-tailed tests with a significance threshold 
of α = 0.05.

3 Results

3.1 Spatial distribution characteristic and 
aggregation characteristics of mumps 
incidence

In 2020, China demonstrated pronounced spatial heterogeneity 
in mumps incidence rates across provinces, exhibiting a distinct west-
to-east decreasing gradient (Figure 1). Qinghai province recorded the 
highest incidence rate (22.65 per 100,000 population), whereas 
Heilongjiang province showed the lowest rate (2.79 per 100,000 
population). This geographical distribution pattern likely reflected 
regional variations in socioeconomic development, vaccination 
coverage, and population density.

Global spatial autocorrelation analysis revealed a significant 
Moran’s I  index of 0.399 (p < 0.001), confirming strong spatial 
dependence of mumps transmission. The LISA cluster map (Figure 2) 
further identified two predominant spatial aggregation patterns: 
high-high clusters were primarily concentrated in western China 
(Qinghai, Tibet, Yunnan, and Guangxi), that may be associated with 
local environmental conditions, socioeconomic factors, and 
population behaviors; in contrast, low-low clusters were 
predominantly distributed in northeastern China (particularly Jilin 
province), exhibiting substantially lower incidence rates that 
potentially indicate successful disease control measures or the 
influence of unidentified protective factors.

The Gi* cluster map revealed distinct spatial patterns of 
mumps incidence. Significant hotspots (high-incidence clusters) 
were observed in western area, showing 90–99% confidence 
levels. Conversely, coldspots (low-incidence clusters) were 
concentrated in Northeastern region with similar confidence 
levels (Figure 3).

TABLE 2 Interaction types between variables.

Description Interaction

( ) ( ) ( )( )∩ < in ,1 2 1 2PD X X M PD X PD X
Weaken, nonlinear

( ) ( )( ) ( )
( )( ) ( )

in , 

ax , )

1 2 1 2

1 2

M PD X PD X PD X X

M PD X PD X

< ∩

<

Weaken, univariate

( ) ( ) ( )( )∩ > ax , 1 2 1 2PD X X M PD X PD X Enhanced, bivariate

( ) ( ) ( )∩ = +1 2 1 2PD X X PD X PD X Independent

( ) ( ) ( )∩ > +1 2 1 2PD X X PD X PD X Enhance, nonlinear

TABLE 3 Discretization methods for Geodetector analysis.

Methods Mathematical 
principle

Optimal 
data 

distribution

Advantage

Natural breaks
Maximizes inter-class 

variance
Any distribution

Adapts to data 

clusters

Quantile
Equal sample size per 

category
Non-uniform

Robust to 

outliers

Equal interval
Fixed value range 

intervals
Uniform

Simple 

interpretation

Geometric 

interval

Geometric 

progression 

boundaries

Exponential
Handles skewed 

data

Standard 

deviation

Multiples of standard 

deviation from mean
Normal

Statistical 

significance 

framing
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3.2 Results of Geodetector analysis

3.2.1 Variable discretization
The 12 independent variables were categorized using five 

distinct classification methods (equal interval, natural breaks, 
quantile, geometric interval, and standard deviation) with 

category numbers ranging from 3 to 8. For each variable, 
we  calculated the Power of Determinant (PD) values through 
factor detector analysis, where PD quantifies the strength of 
association between an independent variable and mumps 
incidence (with values ranging from 0 to 1, higher values 
indicating stronger explanatory power). The optimal classification 

FIGURE 1

Spatial distribution of Mumps incidence rate.

FIGURE 2

Lisa cluster map of Mumps incidence rate in China in 2020.
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scheme for each variable was selected based on the maximum PD 
value, as detailed in Table 4.

3.2.2 Factor detector results
Two healthcare resource factors—total health expenditure per 

capita and number of licensed physicians per 1,000 population—
demonstrated p-values greater than 0.05, indicating no statistically 
significant association with mumps incidence.

As shown in Table 4, the PD values ranged from 0.31 to 0.54. 
The child dependency ratio (defined as the ratio of population 
aged 0–14 to the working-age population 15–64) showed the 
strongest association with mumps incidence (PD = 0.54). This 

suggests that regions with higher proportions of children relative 
to working-age adults may experience elevated mumps 
transmission risks, likely due to increased contact rates among 
school-aged populations. In comparison, healthcare accessibility 
factors such as the number of community health centers per 
100,000 population and general practitioners per 10,000 
population exhibited weaker associations (PD = 0.31 and 0.32, 
respectively).

3.2.3 Risk detector results
The risk detector analysis revealed the average incidence rate 

of mumps across different stratification levels of each factor, along 

TABLE 4 Results of factor detection and variable classification.

Factors PD p Classification method Classification interval

GDP per capita 0.47 0.014 Quantile 5

Disposable income per capita 0.42 0.020 Quantile 5

Urbanization rate 0.39 0.037 Quantile 5

Average household size 0.45 0.002 Natural Breaks 3

Child dependency ratio 0.54 0.031 Quantile 7

PM2.5 0.36 0.011 Geometrical interval 3

Illiteracy rate 0.49 0.027 Quantile 6

Years of schooling 0.48 0.007 Quantile 5

Total health expenditure per capita 0.29 0.667 Natural Breaks 8

Number of licensed physicians per 1,000 population 0.34 0.064 Geometrical interval 5

Number of community health centers per 100,000 population 0.31 0.044 Quantile 4

Number of general practitioners per 10,000 population 0.32 0.030 Geometrical interval 4

FIGURE 3

Gi* cluster map of Mumps incidence rate in China in 2020.
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with an assessment of statistically significant differences between 
these strata. In this study, we take GDP per capita as an illustrative 
example. As illustrated in Figure 4, the relationship between GDP 
per capita and mumps incidence demonstrates a non-linear 
pattern. The lowest mumps incidence rate (5.88) was observed 
when GDP per capita ranged between ¥88,210.05 and ¥164,889.47, 
while the peak incidence (16.99) occurred in the ¥50,799.76–
¥55,130.94 GDP per capita range. Notably, the minimum GDP per 
capita did not correspond to the highest mumps incidence, 
indicating a complex, non-monotonic relationship between 
economic development and disease prevalence.

Table 5 presents the significance test results for differences in 
average mumps incidence rates across different per capita GDP 
layers (Y indicates significant, N indicates non-significant). The 
fifth layer corresponds to the highest per capita GDP range 
(88,210.05 to 164,889.47 RMB) in Figure 3, while the first layer 
represents the lowest range (35994.81 to 50799.75 RMB). The 
results demonstrated statistically significant differences in mumps 
incidence rates between the second layer and all other layers.

Furthermore, the risk detector quantified the association 
between various factors and mumps incidence by identifying 

high-risk intervals for each determinant. The peak incidence of 
mumps corresponds to the high-risk intervals of each contributing 
factor (23). Therefore, Table 6 presents the identified high-risk 
intervals for all factors. The identification of these high-risk 
intervals enables public health authorities to implement more 
targeted surveillance systems and optimize intervention strategies. 

FIGURE 4

Regional Disparities in GDP per Capita and Associated Mumps Incidence Rates.

TABLE 5 Significance of differences in mean mumps incidence rates 
across GDP per capita strata.

Stratum 1 2 3 4 5

1

2 Y

3 N Y

4 N Y N

5 N Y Y N

TABLE 6 High-risk intervals of factors and their corresponding peak 
mumps incidence rates.

Factors High-risk 
interval

Maximum mumps 
incidence rate 

(1/100000)

GDP per capita (RMB) 50799.76–55130.94 16.99

Disposable income per 

capita (RMB)
20335.11–24562.35 16.00

Urbanization rate (%) 56.54–60.27 14.02

Average household size 2.76–3.19 14.86

Child dependency ratio 

(%)
28.53–29.52 17.15

PM2.5 (ug/m3) 10.00–26.26 14.66

Illiteracy rate (%) 5.57–28.09 16.36

Years of schooling 

(Years)
6.62–9.01 15.28

Number of community 

health centers per 

100,000 population

0.25–0.55 12.69

Number of general 

practitioners per 10,000 

population

2.60–3.26 13.93
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FIGURE 5

Distribution of main impact area of each factor.
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By focusing monitoring efforts when factors reach these critical 
ranges, health systems can enhance early detection and timely 
response to potential outbreaks. Furthermore, these thresholds 
serve as valuable reference points for evaluating intervention 
effectiveness and guiding resource allocation decisions in mumps 
prevention programs.

Epidemiologically, these high-incidence zones can be interpreted as 
primary impact area for each factor (21). These relationships have been 
visually represented in Figures 5A–J through geospatial visualization 
techniques. Figures  5A–J systematically illustrates the spatial 
characteristics of high-incidence zones for each determinant through 
geospatial visualization. The maps demonstrate the geographic extent of 
high-risk areas, providing visual context for the quantitative risk intervals 
identified in Table  6. These representations enable public health 
practitioners to correlate statistical risk thresholds with specific geographic 
settings, supporting the development of localized prevention strategies.

3.2.4 Ecological detector results
Our ecological detector analysis revealed important insights into 

the multifactorial nature of mumps transmission. The comparative 
analysis of potential differences (PD values) among key determinants 
(Table 7) showed no statistically significant differences between factor 
pairs (all p > 0.05, denoted by “N”), indicating no single factor 
demonstrated clear dominance in mumps incidence.

This finding carries three key implications: First, the ecological 
detector results demonstrate that mumps epidemiology is fundamentally 
shaped by interconnected networks of environmental, social and 
biological determinants, rather than any single dominant factor. Second, 
it underscores the need for integrated prevention strategies that 
simultaneously address environmental, social and biological 
determinants. Most significantly, this work establishes an urgent research 
priority: elucidating the precise mechanisms underlying these factor 
interactions will be  essential for designing context-specific control 
strategies that account for local variations in mumps incidence.

3.2.5 Interaction detector results
Our interaction analysis uncovered meaningful patterns in how 

various factors jointly influence mumps incidence, with significant 
implications for public health practice. The consistent enhancement 
effects observed (all interaction PD values >0.5 in Table 8), particularly 
the strongest interaction between per capita GDP and illiteracy rate 

(PD = 0.88), demonstrate that combined factors exert greater influence 
on disease incidence than their individual effects would affect.

The identified nonlinear enhancement effects among economic 
indicators and healthcare resources (interactions between x1 and x11, x1 
and x12) suggest a particularly important dynamic: investments in 
healthcare infrastructure become increasingly effective at reducing 
mumps incidence when implemented in conjunction with economic 
development initiatives. This nonlinear relationship implies that 
coordinated policy interventions addressing both economic conditions 
and healthcare access could yield disproportionately large public health 
benefits compared to isolated improvements in either domain alone.

Similarly, the bivariate enhancement effects observed among other 
factor pairs reveal synergistic relationships, where simultaneous 
improvements in two areas produce predictable combined benefits for 
disease control. These patterns collectively underscore that effective 
mumps prevention requires integrated public health strategies that 
account for how different determinants interact within specific contexts.

4 Discussion

Our findings revealed significant spatial heterogeneity in mumps 
incidence across China, with western regions exhibiting persistently 
higher rates compared to eastern provinces. This pattern may be attributed 
to multiple interacting factors: (1) disparities in healthcare infrastructure 
and vaccination program implementation between developed coastal 
areas and less-developed western regions; (2) variations in population 
density and contact patterns that facilitate disease transmission; and (3) 
potential environmental influences such as climate conditions affecting 
virus survival. The identification of stable high-risk clusters in western 
China through both LISA and Gi* analyses underscores the need for 
targeted surveillance and region-specific immunization strategies. These 
geographical disparities highlighted that uniform national control policies 
may be insufficient, and precision public health approaches accounting 
for local epidemiological contexts should be prioritized.

Our analysis of healthcare resource factors—including total health 
expenditure per capita and the number of practicing physicians per 
1,000 population—revealed no statistically significant association with 
mumps incidence. This finding aligns with the ongoing debate in the 
literature regarding the role of healthcare resource allocation in 
infectious disease control. For instance, prior studies suggested that in 
high-incidence regions, public health funding should prioritize direct 
interventions such as vaccination coverage rather than merely 
increasing physician availability or general health expenditures (4, 24).

Notably, the factor detector analysis indicated that the number of 
general practitioners per 10,000 people and community health centers per 
100,000 population had a relatively weak influence (PD values 0.31–0.32), 
significantly lower than the child dependency ratio (PD value 0.54). This 
suggested that mumps transmission was more directly affected by factors 
like population density (8), age structure (e.g., child clustering) (25), and 
climate conditions (26), whereas healthcare resources (e.g., physician 
availability) primarily played a role in case management rather than 
outbreak prevention. Additionally, even with high per capita health 
spending, limited effectiveness in mumps control may occur if funds are 
not specifically allocated to vaccination or primary prevention (e.g., health 
screenings). For example, in some Japanese regions where the mumps 
vaccine was not part of the national immunization program, targeted 
local government subsidies still significantly reduced incidence rates (27).

TABLE 7 Significance testing for PD value differences between factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X11 X12

X1

X2 N

X3 N N

X4 N N N

X5 N N N N

X6 N N N N N

X7 N N N N N N

X8 N N N N N N N

X11 N N N N N N N N

X12 N N N N N N N N N
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The child dependency ratio exhibited the strongest association 
with mumps incidence, likely due to increased transmission risks in 
densely populated pediatric settings, particularly schools and other 
group environments (10). Surveillance data from Jiangsu Province, 
China (2023) revealed that 81.75% of mumps cases occurred among 
students and kindergarten-aged children, with the highest incidence 
observed in vaccinated children aged 0–12 years (5, 28). Furthermore, 
children not cohabiting with grandparents demonstrated higher 
vaccination rates (9). This finding may indirectly influence the 
association between child dependency ratios and disease incidence, as 
multigenerational households are more prevalent in regions with 
higher child dependency ratios.

Risk detector analysis revealed that the lowest per capita GDP 
stratum did not correspond to the highest mumps incidence. This 
counterintuitive finding suggests a complex relationship where economic 
deprivation alone does not predict disease burden. Rather, mid-low 
income regions appear most vulnerable, likely due to a combination of 
reduced access to health subsidies (compared to the poorest groups 
receiving targeted assistance) while still facing resource constraints in 
healthcare access. Additionally, these regions may experience optimal 
conditions for disease transmission, including higher population density 
and mobility patterns that facilitate virus spread, coupled with potentially 
lower vaccination coverage compared to wealthier areas.

This study quantitatively elucidated the relationships between risk 
factors and mumps incidence, with the identification of high-risk 
intervals providing precise intervention targets for disease prevention 
and control. The synergistic presentation of geospatial visualizations 
and quantitative data validated the analytical efficacy of the risk 
detector, establishing a methodological foundation for developing risk 
factor-based early warning systems.

The interaction detector analysis revealed significant synergistic 
amplification effects among risk factors, with all pairwise interaction 
PD values exceeding their independent effects (minimum >0.5). This 
confirmed that combined environmental and socioeconomic exposed 
exacerbate disease risk (29). Notably, the interaction between per 
capita GDP and illiteracy rate demonstrated the most pronounced 
effect (PD = 0.88), suggesting that regional economic disparities 
coupled with low education levels may collectively promote mumps 
transmission by exacerbating inequitable public health resource 
allocation and health literacy gaps (7, 9). These findings provide 
quantitative evidence for targeted regional prevention strategies, 
particularly recommending prioritized interventions in low-GDP/

low-education areas through environmental exposure reduction and 
health education campaigns (30).

To the best of our knowledge, this study represented the first 
comprehensive application of Geodetector technology to analyze 
potential influencing factors of mumps at the provincial level in China. 
The implementation of this innovative methodology not only quantified 
the individual contributions of various determinants but also, through 
interaction detector analysis, elucidated the complex synergistic effects 
among these factors on mumps epidemiology. This approach provided 
novel insights into the disease transmission mechanisms.

Several limitations should be acknowledged in this study. First, 
critical variables such as vaccination coverage rates, temperature and 
humidity were not included due to data availability constraints. Future 
research should incorporate immunization-related indicators to 
establish a more comprehensive analytical framework. Second, while 
our provincial-level analysis revealed important spatial patterns, 
higher-resolution investigations at municipal or county levels could 
uncover more detailed geographical heterogeneity in disease 
distribution and associated risk factors. Addressing these limitations 
in subsequent studies would enable the development of more precise 
and effective prevention strategies, ultimately contributing to reduced 
mumps incidence and transmission nationwide.

5 Conclusion

The epidemiological pattern of mumps incidence in China 
exhibited a distinct west-to-east decreasing gradient and significant 
spatial clustering. The child dependency ratio emerged as a key 
determinant of mumps incidence. Based on this finding, 
we recommend incorporating the child dependency ratio into regional 
epidemic early-warning systems and prioritizing enhanced 
vaccination interventions in high-ratio areas to improve disease 
control efficacy. Furthermore, interaction detector analysis revealed 
significant synergistic effects among risk factors, with the interaction 
between per capita GDP and illiteracy rate being particularly 
pronounced. This suggests that poor economic and educational 
conditions combined significantly increase mumps transmission risk. 
These insights provide a critical foundation for targeted public health 
strategies, underscoring the need for integrated interventions that 
account for multifactorial synergies to achieve effective mumps 
prevention and control.

TABLE 8 Interaction effects between risk factors on mumps incidence.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X11 X12

X1 0.47

X2 0.73 0.42

X3 0.81 0.57 0.39

X4 0.74 0.6 0.68 0.45

X5 0.86 0.84 0.74 0.84 0.54

X6 0.81 0.73 0.76 0.72 0.79 0.36

X7 0.88 0.7 0.74 0.72 0.87 0.72 0.49

X8 0.8 0.71 0.65 0.69 0.82 0.7 0.81 0.48

X11 0.83 0.75 0.69 0.69 0.79 0.64 0.76 0.65 0.31

X12 0.84 0.69 0.59 0.79 0.74 0.66 0.83 0.64 0.71 0.32
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