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1 Introduction

Several urban physical activity infrastructure limitations can seriously impair the
opportunity of sustaining the daily newborn neurons in the human brain.

Neurogenesis persists in the human brain’s hippocampus until the tenth decade
of life (1-4). Approximately 700 new neurons are born daily in each hemisphere’s
hippocampus (5). Nurturing newborn neurons heavily relies on physical activity that
increases brain-derived neurotrophic factor (BDNF) (6), which is vital for cognition and
mood improvements, and mood regulation (7-10).

Urban infrastructure can increase BDNF through the affordances for physical activity
(e.g., walking, cycling) through planning and design (11). However, infrastructure
solutions must be aware of the confounding temperature peaks in winter and summer,
air pollution, and residential greenness and the tree placement strategy.

2 Urban infrastructure affordances for
high-intensity physical activity to increase BDNF

The degree to which an environment affords higher metabolic equivalents (>3 METs)
increases the likelihood of elevating BDNF in humans (11), where urban environments
that support physical activity (e.g., walking and cycling) are more likely to help BDNF in
their populations.

For cycling, Gibbons et al. (12) showed through their crossover study that 6 min of
vigorous-intensity cycling elevated BDNF in both serum and plasma 4- to 5-fold more than
90 min of light-intensity physical activity. Cycling has been shown to increase serum BDNF
and enhance the performance of a face-name-matching task that involves the hippocampus
and associated medial temporal lobe structures (13). Similarly, the impact of walking on
BDNF has been systematically reviewed (14), where 30 min of walking can be sufficient to
increase BDNF (15).

If the environment has walkable pathways and cycling lanes, the affordances for METs
increase, and if those lanes have steep slopes, METs can increase from 3 METs up to 16
METs (16), which increases the probability of elevating BDNF to a great extent.

To encourage urban walking and cycling to increase the likelihood of engaging in
moderate-to-vigorous physical activity that can increase BDNF. This can be achieved
through enhancing the urban infrastructure that encourages physical activity such as
through understanding the environmental attributes that promote higher urban physical
activity such as residential density, intersection density, public transport density, and
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number of parks (17), through

connectivity, safety and and the experience of walking and

improving  accessibility,
cycling (34).

However, the urban infrastructure affordance for physical
activity depends on temperature peaks, pollution, residential
greenness, and tree placement.

3 Seasonal BDNF differences and
urban infrastructure responsivity to
geographic temperature peak
variances

Urban infrastructure does not face the limitation of affordances
for METs alone, but solutions should be based on the geographic
dynamics of temperature differences. For instance, Goulet et al. (18)
showed that BDNF increased after 180 min of moderate-intensity
treadmill walking in a 32°C environment, but not in a 16°C
environment. This section discusses how BDNF rises in summer
with longer-day periods due to heat increase, but extreme heat
waves are likely to cause neuroinflammation that impairs the role
of BDNF in nurturing neurogenesis. Those variances urge urban
environments to be responsive to their seasonal dynamics.

Summertime is found to be significantly associated with higher
BDNF changes. In humans, Molendijk et al. (19) examined
seasonal fluctuations in serum concentrations of BDNF among
2,851 participants from the Netherlands Study of Depression
and Anxiety (NESDA). The authors demonstrated pronounced
elevations of serum BDNF concentrations during the spring and
summer months, contrasting markedly with lower concentrations
observed during the autumn and winter months. Monthly analyses
highlighted substantial variations, with effect sizes (Cohen’s d)
ranging from moderate to large (0.27-0.66), reinforcing the
biological relevance and magnitude of these seasonal differences.
Further exploratory analyses illuminated the positive correlations
between serum BDNF levels and sunlight exposure. Animal studies
support those findings, where Hernandez et al. (20) revealed that
hippocampal and hypothalamic BDNF protein peaks in the long-
day, euthermic summer and troughs in the short-day, hypothermic
winter. The seasonal effects on BDNE, however, could to a great
extent be explained by some of the factors discussed subsequently,
such as heat stress.

Daytime high temperatures, without severe heat stress, could
explain the increase of BDNF in long days during summer. In
humans, head-out immersion of males in hot water (42°C) for
20 min increased BDNF (21), and after daylong (9h) exposure to
hot ambient conditions (40°C) in younger and older adults, with
slight variation in concentrations between both groups (22). Kirby
et al. (23) studied the impact of 22°C (air-conditioned indoor
environment), 26°C (recommended indoor temperature limit for
health), 31°C, and 36°C (non-air-conditioned home). BDNF was
increased by ~ 28% in the latter group compared to the first.
They concluded that BDNF increases by 90 pg/mL per 1°C rise in
ambient temperature. Animal models support this by explaining
how neurogenesis increases in turn. Rats exposed to a 1-h heat
treatment (36°C) for 7 days had a 1.4-fold increase in neurogenesis
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in the hippocampal dentate gyrus compared to controls in a
normothermic environment (25°C) (24).

However, severe heat stress induces pathological alterations
that encompass oxidative damage and apoptosis of hippocampal
neurons and disrupts the BDNF-associated axis (25), which
suggests that environments with high temperatures, not leading to
severe heat stress, are more likely to increase BDNF.

Hence, the demands from urban infrastructure for physical
activity vary accordingly, suggesting that urban planning and
design should be geographically sensitive.

4 Urbanisation'’s air pollution inhibits
the increase of BDNF via urban
physical activity

Though the urban infrastructure can have the appropriate
affordance for physical activity (e.g., walking, cycling) that
corresponds to the context’s temperature dynamics, neurotoxicity
caused by air pollution can seriously impair BDNF increase via any
form of urban physical activity.

Cycling near a major traffic route did not increase BDNF
compared to a similar cycling activity in an air-filtered room
due to particulate matter (PM) (26). PM is very common in
urban environments (27), affecting brain structure (28-30). On the
contrary, indoor physical activity can enhance BDNF levels since
it reduces exposure to pollution (35), but household walking is
unlikely to reach a moderate-intensity level (16).

Air pollution is a major challenge for most urban environments,
making urban physical activity less effective than physical activity in
natural environments due to the limited opportunities for walking
or cycling, lack of slopes that enhance the effect of physical activity
on BDNE, the the predominance of traffic-caused air pollution that
is likely to inhibit any potential increase in BDNF via physical
activity, which can seriously impair neurogenesis in humans.

5 Urban residential greenness, BDNF
and tree placement strategies

Greening buildings can counteract the effect of pollution (31),
and urban greenness generally overcomes neurotoxicity caused by
air pollution as well (32).

Still, greening an urban environment is also geographically-
sensitive. There are context-specific greening solutions to harness
tree-based cooling in urban environments (33), where the authors
found that trees generally cool cities in hot and dry climates, and
less in hot and humid climates.

However, in light of the earlier discussion in this paper,
reducing peak monthly temperatures to below 26°C can provide a
cooling effect through which high-intensity urban physical activity
may be needed and not just moderate-intensity walking.

6 Conclusion

Supporting neurogenesis in humans via BDNF through
urban physical activity is very important. This paper brings
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FIGURE 1
Urban infrastructure for physical activity, neurogenesis, and BDNF.
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