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Background: Body Mass Index (BMI) assessment remains a critical challenge in 
university health monitoring, where traditional methods fail to capture dynamic 
relationships between physical fitness indicators and body composition. This 
study develops a novel predictive framework to address this gap through 
advanced machine learning techniques applied to longitudinal fitness data from 
Chinese university students. 
Methods: We analyzed 6,698 male students’ fitness records (2018–2022) 
using a hybrid CNN1D-Attention-LightGBM architecture. The model integrates 
temporal pattern recognition via sliding windows, multi-kernel convolutional 
operations for physiological coupling analysis, and dynamic attention weighting. 
Performance was validated through 10-fold cross-validation against SVM and 
XGBoost benchmarks. 
Results: The model achieved 94.5% accuracy (F1 = 0.93), significantly 
outperforming conventional methods (XGBoost: 90.1%). Cardiorespiratory 
endurance (3000 m run, r = 0.2009) and upper-body strength (pull-ups, r = 
−0.2786) emerged as primary BMI determinants. The framework successfully 
classified four BMI categories (normal weight: 4,991; obese: 82) . 
Conclusion: This study establishes the first unified solution for fitness-informed 
BMI prediction, though limited by male-only sampling. Implementation should 
prioritize integration with campus health systems and expansion to diverse 
populations. Future work should incorporate psychosocial factors and multi-
regional validation. 

KEYWORDS 

physical fitness, BMI classification, machine learning, attention mechanism, LightGBM, 
CNN1D hybrid model, university student health monitoring 

1 Introduction 

In contemporary society, the health status of university students has garnered 
increasing attention, as physical wellbeing serves as a cornerstone for both academic 
success and long-term quality of life. Although physical fitness may indirectly influence 
academic performance through interactions with various factors such as cognitive 
abilities, mental health, and socioeconomic background, it remains a critical determinant 
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of a healthy lifestyle. Physical fitness, which encompasses 
components such as cardiorespiratory function, muscular strength, 
power, and endurance, is closely linked to overall health and can 
be enhanced through targeted training methods (1–4). Experts in 
education and public health consistently advocate strengthening 
students’ physical fitness to improve their overall health levels. To 
comprehensively evaluate students’ performance across key fitness 
domains, this study selected four representative assessments: the 
3,000-meter run, 30×2 shuttle run, pull-ups, and sit-ups. 

Body Mass Index (BMI), a widely used metric for assessing 
health status, reflects the relationship between body mass 
and height, though it does not comprehensively capture body 
composition or overall health. This study transcends simple BMI 
calculation by establishing a predictive-prescriptive paradigm 
grounded in the established association between BMI and athletic 
performance. This paradigm enables large-scale predictive 
management through projecting BMI trends under target 
fitness scenarios. It facilitates goal-driven optimization to infer 
BMI categories where direct measurement is impractical and 
supports resource prioritization by identifying students exhibiting 
diverging fitness-BMI trajectories for targeted interventions. 
Critically, research demonstrates that the relationship between 
BMI and performance exhibits a distance-dependent pattern 
(5). While higher BMI correlates with enhanced performance 
in certain athletic disciplines, endurance events distinctly 
require optimization toward lower BMI values for peak 
outcomes. This pattern of distance-specific BMI optimization 
confirms the necessity of tailored predictive models within the 
proposed framework. 

Recent studies have increasingly applied machine learning 
and deep learning models–such as decision trees, support 
vector machines, gradient boosting, and convolutional neural 
networks (CNNs)—to classify BMI based on fitness indicators 
(6–10). Innovations such as attention mechanisms have further 
improved predictive performance by emphasizing relevant 
features (11, 12). Hybrid architectures, including CNNs 
combined with wavelet transforms or other deep models, 
have demonstrated strong capabilities for modeling complex 
health data (13–15), while LightGBM has been widely adopted 
for efficient classification in fitness-related tasks (16–18). Class 
imbalance–a common issue in real-world health data–has been 
addressed using techniques such as SMOTE or cost-sensitive 
learning (19, 20). The model incorporates a weighted cross-
entropy loss function to enforce balanced learning for all BMI 
categories. 

Although previous research has demonstrated the utility 
of individual machine learning techniques, most approaches 
rely on static or handcrafted features, overlooking two critical 
data structures inherent in longitudinal fitness assessments: 
temporal structure, referring to time-dependent patterns in 
sequential measurements, and interrelated structure, representing 
physiological couplings between metrics. Our CNN1D-Attention-
LightGBM framework directly addresses these gaps by employing 
sliding window segmentation to capture temporal patterns 
and utilizing multi-kernel convolution to model complex 
feature interactions. 

This hybrid design enables the first unified solution for fitness-
BMI dynamics prediction, shifting from passive measurement to 
proactive health planning. 

2 Materials and methods 

2.1 Physical fitness test protocol 

This study received ethical exemption for retrospective analysis 
of pre-existing anonymized data, as certified by the Human 
Research Ethics Committee of Changsha Aeronautical Vocational 
and Technical College (hereafter “the Ethics Committee”). The 
exemption complied with China’s Regulations on Ethical Review of 
Life Sciences and Medicine Involving Humans through: 

Minimal-risk data sourcing: Anonymized routine fitness 
records (2018-2022) requiring no participant contact, physiological 
intervention, or privacy-compromising processes; 

Institutional data legitimacy: Exclusively institutional 
physical test archives acquired per educational administration 
protocols without disrupting teaching activities; 

Retrospective design adherence: Historical data analysis 
excluding prospective collection or behavioral interventions. 

Consequently, informed consent was waived under ethical 
exemption standards. A two-stage anonymization protocol was 
implemented: (i) Removing direct identifiers (names/student 
IDs) during collection; (ii) Applying numerical perturbation 
to anthropometrics (±0.5 cm height; ±1 kg weight) to 
prevent re-identification. 

This study employed four key fitness tests to assess the physical 
fitness of university students, focusing on cardiorespiratory 
endurance, muscular strength, core endurance, speed, and agility. 
These tests included the 3,000-meter run, pull-ups, sit-ups, and the 
30-meter x2 shuttle run. The following is a detailed description of 
each test. 

2.1.1 3,000-meter run 
The 3,000-meter run is primarily used to assess students 

cardiorespiratory endurance, which reflects the ability of the 
cardiovascular and respiratory systems to support physical activity 
over extended periods. 

Test method: Participants are required to run 3,000 meters (7.5 
laps) on a standard 400-meter track. The test is usually conducted 
in groups, and students are instructed to complete the run as 
quickly as possible, with their time recorded. Students are advised 
to maintain a steady pace to avoid excessive fatigue or stopping 
mid-race. 

Evaluation criteria: The time required to complete the 3,000 
meters is the key indicator of cardiorespiratory endurance. The 
passing standard for male university students is typically 13 
minutes and 30 seconds. Students exceeding this time may exhibit 
weaker cardiorespiratory endurance. 

2.1.2 Pull-ups 
Pull-ups are an important test of upper body muscular strength 

and endurance, particularly targeting the latissimus dorsi, biceps, 
and deltoid muscles. 

Test method: Participants perform as many valid pull-ups 
as possible on a horizontal bar. The test begins in a full-hang 
position, with students required to pull their body up until their 
chin surpasses the bar, then return to the hanging position. This 
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is repeated until they can no longer perform a standard pull-up or 
choose to stop. 

Evaluation criteria: The number of standard pull-ups 
completed is recorded. Students with stronger upper body strength 
typically perform more pull-ups, with 10 repetitions generally 
considered the passing standard. Those unable to meet this 
standard may demonstrate insufficient upper body strength. 

2.1.3 Sit-ups 
The sit-up test primarily evaluates core muscular endurance, 

particularly the strength and endurance of the abdominal muscles. 
Test method: Participants lie flat on a mat with knees bent and 

feet flat, which are held in place by an assistant. Arms are crossed 
over the chest. Within one minute, participants perform as many 
sit-ups as possible, ensuring that each movement raises the torso 
until elbows touch the knees, followed by a return to the fully lying 
position. 

Evaluation criteria: The number of standard sit-ups completed 
in one minute is recorded. Students with strong core endurance 
typically complete more repetitions, with 40 repetitions considered 
the passing standard. Those unable to meet this standard may 
exhibit insufficient core endurance. 

2.1.4 30-meter x2 shuttle run 
The 30-meter x2 shuttle run assesses speed, agility, 

and coordination, particularly focusing on rapid starts and 
directional changes. 

Test method: The test is conducted on a 30-m marked track. 
Students start at the baseline, sprint to the opposite marker, touch 
it, and return to the starting point, completing two round trips for a 
total of 60 m. The goal is to complete the run as quickly as possible, 
with the time recorded using a stopwatch. 

Evaluation criteria: The time to complete the 60-m shuttle 
run is the key measure. For male university students, the passing 
standard is generally under 10 s. Students failing to meet this time 
may show poor sprinting speed and agility. 

These four tests evaluate different aspects of physical fitness: 

• 3,000-Meter Run: Assesses cardiorespiratory endurance, 
helping to understand students performance in prolonged 
physical activity. 

• Pull-ups: Focuses on upper body strength and endurance, 
particularly shoulder and back muscles. 

• Sit-ups: Evaluates core endurance, crucial for maintaining 
proper posture and preventing injuries. 

• 30-m x2 shuttle run: Tests speed and agility, reflecting students 
explosive power and quick directional changes. 

The results of these tests provide a comprehensive assessment 
of students’ fitness levels and offer important reference points 
for health interventions and physical education. The assessment 
was conducted over four years, starting in September 2018 
and concluding in December 2022. The test protocol aimed to 
fully evaluate students’ cardiorespiratory endurance, muscular 
strength, speed and agility, flexibility, and coordination, covering 
key aspects of physical fitness and reflecting individual overall 
motor competence. 

To ensure the scientific validity and reliability of the results, 
all tests were administered by two professionally trained physical 
education coaches and one medical officer following standardized 
procedures. The medical officer was specifically responsible for 
real-time health monitoring and emergency response, while 
coaches executed test protocols. 

External conditions were carefully controlled to ensure data 
comparability: Indoor temperature was rigorously maintained 
at 20 ± 2 ◦C, while relative humidity levels were controlled 
below 60 percent using centralized HVAC systems. Environmental 
parameters were recorded at 10-minute intervals throughout 
testing sessions by HT-800 sensors (±0.5 ◦C accuracy for 
temperature; ±3% RH accuracy for humidity). 

Measurement instrumentation included: Electronic weight 
scales (Seca 874, ±0.1 kg accuracy) calibrated quarterly; Laser 
timing gates (Brower TC-System, ±0.01 s accuracy) for speed tests; 
Digitized tablets (iPad 9th Gen) running custom software for direct 
data entry into encrypted SQL databases. 

Participants were required to wear appropriate athletic clothing 
and footwear to perform the tests under optimal conditions. 
Each participant completed a five-minute warm-up before the 
formal test to activate body functions and maximize performance. 
If a participant experienced discomfort during any test, the 
test was immediately stopped to ensure their safety. An eight-
minute rest period was scheduled between tests to avoid fatigue 
affecting results. To ensure accuracy and repeatability, each test was 
conducted twice under the same conditions, with a three-month 
interval between tests. 

Anthropometric measurements, including height (cm) and 
weight (kg), were recorded with participants wearing suitable 
athletic shoes and lightweight clothing. The researchers then 
calculated each participant body mass index (BMI), a commonly 
used metric for assessing obesity. 

This large-scale, systematic physical fitness assessment targets 
gaining a comprehensive understanding of the fitness levels of 
Chinese university students and identifying potential factors 
influencing their physical performance. It provides data support 
for optimizing university physical education and establishes 
the foundation for personalized fitness training programs. 
Furthermore, the results deliver scientific evidence for future 
health promotion activities, enabling the formulation of effective 
fitness improvement strategies and overall health enhancement for 
university students. 

In addition to regular fitness assessments, future research 
will explore the interplay between fitness and lifestyle habits, 
health status, and psychological factors. This comprehensive 
perspective will contribute to a more complete understanding 
of the development and influencing factors of university 
students’ physical fitness, offering targeted recommendations 
and interventions to enhance fitness and promote 
healthy lifestyles. 

2.2 Medical examination 

The medical examination consisted of three parts: a health 
screening questionnaire, medical history evaluation, and a 
physical examination. 
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TABLE 1 Health status questionnaire. 

No. Question Options 

1 What is your age (years)?  18-20 
 21-25 
 26 and above 

2 What is your height 
(cm)? 

3 What is your weight 
(kg)? 

4 Do you have any medical 
history (if any)? 

 Hypertension 
 Diabetes 
 Heart disease 
 Asthma 
 Bone or joint disease 
 Other: 

5 Are you currently taking 
any medication? 

 Yes 
 No 
If yes, please list the 
medication and its 
purpose: 

6 What is your exercise 
habit? 

 Regular exercise 
 Occasional exercise 
 No exercise 

A questionnaire was designed for this study, as shown in 
Table 1, to assess the participants’ medical history and exclude 
individuals who did not meet the research criteria. 

The physical examinations were conducted at the university 
hospital and included the following assessments: functional 
examination, internal medicine examination, surgical examination, 
ear-nose-throat (ENT) examination, and blood tests, including 
lipid profile, blood glucose, and renal function tests. Vital sign 
measurements included blood pressure and pulse rate. Cardiac 
function was assessed using electrocardiography (ECG) to record 
heart rate, rhythm, and electrical activity. Additional tests were 
conducted as needed, following standard hospital protocols. 

The final test results were submitted to medical experts 
for evaluation, and participants suitability for the rigorous 
physical fitness tests was determined based on the Physical 
Activity Readiness Questionnaire (PAR-Q) issued jointly by the 
American Heart Association (AHA) and the American College 
of Sports Medicine (ACSM). The evaluation process included 
the questionnaire, physical examination, and a comprehensive 
assessment by medical experts. During the evaluation, the experts 
carefully analyzed the participants’ responses to the questionnaire, 
with a focus on their medical history, recent health status, and 
the presence of any cardiovascular, respiratory, or other conditions 
that could affect physical performance. The goal was to ensure 
that participants were in good health and free from any significant 
abnormalities before undergoing the fitness tests. 

This process not only helped protect the participants’ 
health and prevent unexpected incidents during testing but also 
established a solid foundation for the subsequent fitness tests, 
thereby improving the accuracy and reliability of the test results. 

All medical records were stored on password-encrypted servers 
within the university’s Health Promotion Center, with access 
restricted to two authorized medical staff. These data served 

exclusively for pre-test safety screening to exclude participants with 
contraindications (e.g., cardiovascular abnormalities), following 
AHA/ACSM protocols. No medical data were used as model inputs 
or features in the machine learning framework. 

Raw medical records were archived for 3 years post-
study completion, while anonymized fitness data were retained 
indefinitely for research replication. 

2.3 Experimental model architecture and 
data mining framework 

The relationship between motor competence-related physical 
fitness (MCPF) and BMI was transformed into a classification 
problem in this study. The BMI values of the participants were 
classified into four categories according to the standards of the 
World Health Organization (WHO): underweight (A), normal 
weight (B), overweight (C), and obesity (D). A hybrid model 
combining convolutional neural networks (CNN) with an attention 
mechanism and a gradient boosting decision tree (LightGBM) was 
proposed to explore the relationship between motor competence-
related physical fitness (MCPF) and BMI. Convolutional neural 
networks (CNN) are deep learning models particularly suited for 
processing grid-structured data. CNNs effectively extract spatial 
features through local connections, weight sharing, and pooling 
layers. The attention mechanism is a deep learning technique 
that enables the model to dynamically focus on the most 
important parts of the input data by assigning higher weights to 
features relevant to the task at hand. LightGBM is an efficient 
gradient boosting decision tree (GBDT) algorithm known for 
its fast training and strong classification capabilities. The hybrid 
model leverages the feature extraction power of CNN, with the 
attention mechanism further enhancing focus on key features, 
thereby improving the model’s generalization. LightGBM then 
takes these extracted features, applying decision tree-based learning 
to optimize classification performance. By combining deep learning 
with gradient boosting, this model captures complex non-linear 
relationships in the data, significantly improving classification 
accuracy and efficiency. 

Let xi represent the physical fitness test results of the i-
th participant. As mentioned, BMI values are classified into 
four categories: underweight (A), normal weight (B), overweight 
(C), and obesity (D). Let yi ∈ {A, B, C, D} represent the BMI 
classification of the i-th participant. The relationship between the 
fitness test results and the BMI classification of the i-th participant 
is represented as (xi, yi). The aim of this study is to use machine 
learning models to explore the association between the physical 
fitness test results and BMI classification. 

The collected data from the participants were processed into a 
dataset D = {(xi, yi)}, where xi ∈ R

n represents the feature vector 
of the i-th participant, yi ∈ R represents the corresponding label 
or output, and n is the dimension of the feature space. First, the 
data were trained using a one-dimensional convolutional neural 
network (CNN1D) with an attention mechanism. 

ŷCNN 
i = fCNN(xi;WCNN) (1) 
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where fCNN(·) is the forward propagation function of the CNN1D 
model, and WCNN represents the model parameters. After 
introducing the attention mechanism, the weighted feature output 
of the model is: 

ŷ Attention 
i = fAttention(ŷ CNN 

i , αi) (2) 

where αi is the attention weight, and fAttention(·) represents the 
feature representation after applying the attention mechanism. 
CNN1D effectively captures local features in time-series data, 
making it particularly suited for processing the sequential 
indicators in physical fitness tests. The introduction of the attention 
mechanism augmented the model’s feature extraction capabilities, 
facilitating global identification of key features for BMI prediction. 

The learned feature weights from the CNN1D-Attention model 
were then imported into the LightGBM model, where the feature 
weights are represented as WCNN. In the LightGBM model, the 
input features are: 

x̃i = fAttention(xi;WCNN) (3) 

The output of the LightGBM model is: 

ŷLightGBM 
i = 

K  

k=1 

fk(x̃i;WLightGBM) (4) 

where fk(·) is the prediction function of the k-th decision tree, 
WLightGBM represents the parameters of the LightGBM model, and 
K is the total number of trees. During training, the model’s loss 
function Lis minimized, defined as: 

L = 
N  

i=1 

l(yi, ŷ
LightGBM 
i ) + (WLightGBM) (5) 

where l(·) is the loss function (e.g., mean squared error or 
cross-entropy), (·) is the regularization term to control model 
complexity, and N is the number of participants. The final output 
of the model is: 

ŷi = ŷ 
LightGBM 
i (6) 

This output represents the predicted BMI category for 
each participant. 

Specifically, the feature weights learned by the CNN1D-
Attention model are used as initial features for LightGBM, which 
helps the LightGBM model converge faster and further improves 
prediction performance. In this step, LightGBM is retrained on the 
dataset using the initial feature weights to generate the final model. 

In this study, handling imbalanced datasets is a key challenge in 
model design. Due to the uneven distribution of sample sizes across 
different BMI categories, the model may tend to favor the majority 
class (e.g., normal weight) while neglecting minority classes (e.g., 
underweight or obesity). To ensure accurate classification across all 
categories, a weighted cross-entropy loss function was introduced 
to address class imbalance in the dataset. 

The cross-entropy loss function, commonly used in 
classification tasks, measures the difference between the predicted 
and true class distributions. To address class imbalance across 
BMI categories, differential class weights were assigned to enhance 
classification accuracy for minority samples. The cross-entropy 
loss function is defined as: 

CrossEntropyLoss = −  
N  

i=1 

wi · yi · log(pi) (7) 

where wi is the weight of class i, yi is the true label, and pi is the 
predicted probability. In this formula, the weight wi is calculated as 
the inverse of the sample size for each BMI category: 

wi = 
1 

class_count(i) 
(8) 

where class_count(i) is the number of samples in class i. 
This weight adjustment increases the contribution of minority 

samples to the overall loss, balancing the model’s attention across 
different categories and addressing the class imbalance problem. 
The main goal of handling imbalanced datasets is to prevent the 
model from favoring the majority class during training and to 
improve prediction accuracy for minority classes. For the BMI 
classification problem, underweight (A) and obesity (D) categories 
have fewer samples, but they are of significant importance 
in health assessments. The application of a weighted cross-
entropy loss ensures model focus on minority classes, preventing 
their oversight. 

The class weights are set based on the sample size of each 
category in the dataset. The four BMI categories are defined as: 
underweight (A), normal weight (B), overweight (C), and obesity 
(D), with corresponding sample sizes NA, NB, NC , ND. The class 
weights can be calculated as: 

wA = 
1 

NA 
, wB = 

1 

NB 
, wC = 

1 

NC 
, wD = 

1 

ND 
(9) 

In this way, the model increases the contribution of minority 
samples to the loss function, improving its ability to predict 
minority classes. 

This study involves four main fitness tasks: the 3,000-meter run, 
pull-ups, sit-ups, and the 30-meter x2 shuttle run. To incorporate 
task-specific impacts during training, a multi-task weighted loss 
function was implemented, assigning differential weights to each 
fitness task for calibrated influence on predictions. For the four 
fitness tasks–3,000-meter run, pull-ups, sit-ups, and 30-meter x2 
shuttle run–the loss function is defined as: 

Lmulti-task = α · L3,000 m + β · Lpull-ups + γ · Lsit-ups + δ · L30*2 (10) 

where: 
- L3000m: loss for the 3,000-meter run (mean squared error), 
- Lpull-ups: loss for pull-ups (cross-entropy loss), 
- Lsit-ups: loss for sit-ups (cross-entropy loss), 
- L30*2: loss for the 30-meter x2 shuttle run (mean squared 

error). 
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The weights (α, β , γ , δ) are assigned based on both empirical 
correlation analysis and domain knowledge of physical test 
relevance. The 3,000 m run exhibits the highest positive correlation 
with BMI (0.2009), justifying a higher weight α = 0.4. While 
pull-ups show a strong negative correlation (-0.2786), their weight 
β = 0.2 is kept consistent with the other strength-related tasks to 
maintain balance across task types. Sit-ups and the 30×2 shuttle 
run, with weaker correlations, are also assigned weights of 0.2. 
These values were manually tuned in this study, and future work 
will explore learnable or adaptive weight strategies. 

The attention mechanism enhances the model’s feature 
extraction ability by assigning different weights to different features. 
To incorporate the attention mechanism’s impact into the loss 
function, an attention loss term was introduced: 

Lattention = λ · 
N  

i=1 

AttentionWeights· 

CrossEntropyLoss(outputs, targets) 

(11) 

where λ is the coefficient that controls the weight of the attention 
loss, balancing the influence of the attention mechanism. 

This loss function ensures that the model dynamically adjusts 
the weight distribution across different features, yielding more 
accurate predictions. Furthermore, the attention weights generated 
during training allow us to interpret the importance of each 
input feature. As shown in Figure 1, the model assigns the highest 
average attention to the 3,000 m run, which aligns with the 
strongest empirical correlations with BMI observed in Table 2. This 
consistency between data-driven correlation analysis and attention-
based feature weighting demonstrates the interpretability of our 
hybrid model. 

This loss function ensures that the model dynamically adjusts 
the weight distribution across different features, yielding more 
accurate predictions. 

Combining the above loss terms, the total loss function for this 
study is expressed as: 

Ltotal = Lmulti-task + Lattention + Lclass-weighted CE (12) 

where Lmulti-task is the weighted loss for the four fitness 
tasks, Lattention is the loss for the attention mechanism, and 
Lclass-weighted CE is the weighted cross-entropy loss for addressing 
class imbalance. This combined loss function effectively resolves 
the class imbalance problem while fully leveraging multi-task 
learning and the attention mechanism to improve the model’s 
prediction performance and interpretability. 

3 Results 

The results of the participants’ motor competence-related 
physical fitness tests and BMI classifications are shown in Table 3. 
The results indicate that 355 male university students were 
classified as underweight, 4,991 as normal weight, 1,270 as 
overweight, and 82 as obese. 

3.1 Design decision 

The design decisions in this study were based on an 
in-depth exploration of the relationship between motor 
competence-related physical fitness (MCPF) and BMI 
classification. Convolutional neural networks (CNN) were 
integrated with an attention mechanism and a gradient boosting 
decision tree (LightGBM), leveraging deep learning-based 
feature extraction alongside traditional machine learning 
classification capabilities. The specific design decisions are 
as follows: 

3.1.1 Data processing and feature extraction 
The motor competence-related physical fitness test 

results and BMI data collected from university students in 
Central China were first preprocessed. Data normalization 
ensured all features occupied the same numerical range. 
Subsequently, a one-dimensional convolutional neural network 
(CNN1D) processed the physical fitness test data to extract 
local features. 

3.1.2 Incorporation of attention mechanism 
Given the varying importance of fitness data features for BMI 

classification, an attention mechanism was incorporated into the 
CNN architecture. This mechanism assigns differential weights to 
features, prioritizing those most relevant to BMI classification and 
enhancing the model’s discriminative ability. 

3.1.3 Selection of hybrid model 
To enhance classification performance and model 

generalizability, a hybrid architecture was adopted. First, the 
CNN1D-Attention model was used to perform initial training 
on the data, and the learned feature weights were fed into the 
LightGBM model. LightGBM, as an efficient gradient boosting 
decision tree algorithm, provides fast training and effectively 
handles complex relationships between features. This design not 
only accelerated model convergence but also improved prediction 
accuracy and robustness. 

3.1.4 Data splitting and evaluation metrics 
The dataset was split into 70% for training and 30% for testing. 

Accuracy and F1 score were adopted as primary evaluation metrics 
for model performance assessment. Accuracy measures the overall 
correctness of the model and is calculated as: 

accuracy = 
TP + TN 

TP + TN + FP + FN 
(13) 

where TP represents true positives, TN true negatives, FP false 
positives, and FN false negatives. 

The F1 score combines precision and recall, providing a more 
balanced performance evaluation. It is calculated as: 
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FIGURE 1 

Average attention weight assigned to each physical test feature by the CNN-Attention module. 

TABLE 2 Correlation coefficients between physical fitness tests and BMI 
classification. 

Assessment 
metrics 

BMI 3,000 
m 

Pull-
ups 

Sit-
ups 

30×2 

BMI - 0.200954 -
0.278618 

-
0.045984 

0.005206 

3,000 m 0.200954 - -
0.405648 

-
0.131292 

0.007651 

Pull-ups -
0.278618 

-
0.405648 

- 0.207525 -
0.010552 

Sit-ups -
0.045984 

-
0.131292 

0.207525 - -
0.01116 

30x2 0.005206 0.007651 -
0.010552 

-0.01116 -

Fα = 
(1 + α 2)TP 

(1 + α 2)TP + α 2FN + FP 
(14) 

Precision and recall were weighted equally in this study, with α 
consequently set to 1. It should be noted that the best Fα score is 1, 
while the worst is 0. 

The dataset used in this study included four motor competence-
related physical fitness tests (3,000-meter run, pull-ups, sit-ups, and 
30x2 shuttle run) along with the corresponding BMI classifications 
(BMI_Category). Data analysis and model training were employed 
to explore the complex relationship between motor competence-
related physical fitness (MCPF) and BMI classification, with 
predictions generated via the hybrid model. 

TABLE 3 BMI distribution of male university students in Central China.

Weight status Male 

Underweight 355 

Normal weight 4,991 

Overweight 1,270 

Obesity 82 

Table 3 shows that cardiorespiratory endurance tests (3,000 
m: 0.2009; 30×2 shuttle: 0.0052) positively correlate with BMI, 
indicating that individuals with higher BMI perform worse in 
endurance tasks (21). Strength tests (pull-ups: -0.2786; sit-ups: 
-0.0459) are negatively correlated, especially pull-ups, suggesting 
higher BMI impairs strength. 

The CNN1D-Attention+LightGBM hybrid model identified 
the 3,000 m run as having the greatest impact on BMI prediction, 
with sit-ups demonstrating lower contribution. The hybrid 
outperformed SVM and XGBoost on accuracy and F1, accurately 
distinguishing normal vs. overweight categories, confirming that 
fitness data reliably reflect BMI differences. 

Overall, cardiorespiratory endurance (3,000 m run) and upper-
body strength (pull-ups) are key BMI predictors. The proposed 
model achieved excellent performance, demonstrating that deep-
learning-extracted features from these tests can accurately classify 
BMI categories and support targeted health interventions for 
university students. 
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TABLE 4 Comparison of accuracy and F1 scores between the proposed 
framework and other classifiers. 

Algorithm model Accuracy F1 score 

NB 75.40% 0.72 

SVM 82.30% 0.80 

ANN 88.60% 0.87 

XGBoost 90.10% 0.89 

CNN1D-Attention 91.40% 0.90 

CNN1D-
Attention+LightGBM 

94.50% 0.93 

Bold values indicate the optimal performance metrics among comparative methods. 

4 Discussion 

4.1 Model training 

Comparative experiments evaluated the proposed CNN1D-
Attention-LightGBM hybrid model against baseline classifiers: 
Naive Bayes (NB), Support Vector Machine (SVM), Artificial 
Neural Network (ANN), and XGBoost. Table 4 presents the 
accuracy and F1 score comparisons of these models. 

In the experiments, Naive Bayes (NB), as a basic probabilistic 
model that assumes feature independence, performed less 
effectively on BMI classification tasks. Although NB is 
computationally efficient, its performance is limited when 
dealing with complex, high-dimensional data. As a result, the 
NB model showed lower accuracy and F1 scores compared to 
other models. 

Support Vector Machine (SVM), which seeks the optimal 
hyperplane in high-dimensional space, performed better than 
Naive Bayes in handling complex feature data. However, while SVM 
achieved higher accuracy and F1 scores, it still exhibited limitations 
in managing nonlinear relationships between features. 

Artificial Neural Networks (ANN), due to their strong 
nonlinear feature extraction capability, performed well when 
processing high-dimensional data. Its accuracy and F1 scores 
surpassed those of both Naive Bayes and Support Vector Machine. 
However, ANN’s performance heavily depends on the network’s 
depth and parameter tuning, and it requires longer training times. 

XGBoost, a gradient boosting decision tree model, builds 
a strong classifier by enhancing the performance of weak 
classifiers, demonstrating significant advantages in handling 
complex data. XGBoost achieved high accuracy and F1 scores in 
our experiments, showcasing its strong performance in feature 
learning and classification. 

The proposed CNN1D-Attention model first extracted local 
patterns from the time-series data of the physical fitness tests using 
a one-dimensional convolutional network (CNN1D). The attention 
mechanism further enhanced the model’s feature selection ability, 
ensuring focus on the most important features. Experimental 
results showed that the CNN1D-Attention model performed 
exceptionally well in terms of accuracy and F1 score, significantly 
outperforming other traditional machine learning models. 

Finally, the hybrid CNN1D-Attention and LightGBM model 
achieved the best performance. By inputting the deep features 
extracted by CNN1D-Attention into LightGBM for classification, 
the model fully leveraged the feature extraction capabilities of 
deep learning and the efficient classification power of LightGBM. 

This combination greatly improved both accuracy and F1 score, 
demonstrating the strong performance of the hybrid model in 
handling complex tasks. 

Table 4 illustrates the experimental results of each model, 
highlighting the clear advantage of our proposed hybrid model 
in BMI classification tasks. These results indicate that combining 
deep learning with traditional machine learning provides better 
capture of complex feature relationships, leading to more accurate 
classification outcomes. 

4.2 Limitations 

This study has several limitations. First, it included only male 
university students due to the demographic composition of the 
participating institution, where female enrollment was too low to 
allow statistically meaningful analysis. As a result, the findings 
cannot be generalized to the entire student population. 

Second, although multiple physical fitness indicators were 
used, the analysis did not further distinguish how each specific 
component (e.g., cardiorespiratory endurance, muscular strength, 
agility) individually correlates with other health outcomes, such as 
cognitive function or psychological status. 

Third, the proposed model focused exclusively on BMI 
classification, without incorporating other health indicators such as 
metabolic risk or cardiovascular condition. 

Lastly, the performance of the model may be influenced 
by the characteristics of the dataset used. As the data were 
collected from a single region and institution, caution should be 
exercised when applying the results to broader populations or 
different environments. 

4.3 Practical implications and future 
directions 

This study yields actionable insights for health governance 
bodies engaged in professional fitness management. By identifying 
cardiorespiratory endurance and upper-body strength as the 
most predictive physical indicators, our framework enables 
early detection of students at risk of developing suboptimal 
BMI categories. This capacity supports personalized exercise 
prescriptions and optimizes the allocation of health resources 
within higher educational institutions. 

The proposed Hybrid Deep Learning Framework demonstrates 
significant translational potential for integration into mobile health 
(mHealth) applications and intelligent fitness platforms. When 
incorporated with appropriate interface architecture, it can provide 
real-time BMI assessments while dynamically adapting training 
recommendations based on individual performance trajectories. 

Future investigations should incorporate multidimensional 
health determinants–including but not limited to dietary 
patterns, sleep metrics, and psychological wellbeing indicators– 
to enhance model robustness. Expansion of cohort diversity 
through inclusion of female participants and geographically 
distinct populations would substantially improve generalizability. 
Moreover, longitudinal designs capturing temporal dynamics 
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in fitness-BMI relationships will facilitate the development of 
adaptive predictive models for continuous health surveillance. 

5 Conclusion  

The performance of this framework should be evaluated 
primarily through its translational utility rather than isolated 
statistical metrics. This methodology addresses fundamental 
limitations of conventional BMI assessment by enabling predictive 
trend analysis for predefined fitness objectives, thereby facilitating 
proactive weight regulation prior to clinical manifestation of 
health risks. It establishes quantifiable relationships between 
BMI modifications and physical performance enhancements— 
exemplified by observable improvements in endurance running 
outcomes following targeted BMI optimization—delivering 
evidence-based foundations for training regimen design. 

When implemented in institutional contexts possessing 
requisite health monitoring infrastructure, the system 
demonstrates potential for reducing BMI surveillance expenditures 
relative to manual protocols. This operational efficiency is 
achieved while identifying critical physiological patterns—such as 
paradoxical co-occurrences of fitness gains and BMI escalation—to 
enable precision interventions. Furthermore, the translation of 
defined fitness milestones into physiologically congruent BMI 
parameters provides a mechanistic basis for next-generation 
AI-driven exercise prescription systems. 
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