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Wastewater-based epidemiology (WBE) provides a non-invasive, community-

level approach to monitor infectious diseases such as COVID-19. This study

investigated the temporal relationship between SARS-CoV-2 RNA levels in

wastewater and reportedCOVID-19 cases in adjacent populations inMexicoCity.

A total of 40 samples were collected from the Copilco neighborhood during two

epidemiological waves (April-September 2021 and November 2021-February

2022). An optimized one-step RT-qPCR protocol targeting the N1 gene achieved

96.7% e�ciency with a detection limit of 10 copies/µL. Spatial classification

identified three proximity zones based on drainage system topology. Cross-

correlation analysis between viral genome copies and confirmed case data

revealed a significant temporal lag of 6-8 days. These results support the

application of WBE as an early-warning tool to inform public health strategies

and anticipate infection trends.

KEYWORDS

waste-water based epidemiology, COVID-19, SARS-CoV2, temporal dynamics,
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1 Introduction

Emerging infectious diseases (EIDs), such as COVID-19, represent a persistent global

health challenge, characterized by their rapid spread and significant societal impact (1–4).

Defined as infections that have newly appeared or increased in incidence within the last

two decades, EIDs like SARS-CoV-2 pose a critical burden on health systems worldwide

(5–7). These diseases often overwhelm healthcare infrastructure, necessitate substantial

investments in treatment and vaccination, and exacerbate pre-existing health disparities

(8, 9). In Mexico, the COVID-19 pandemic has highlighted vulnerabilities in healthcare

access and response capabilities, particularly in densely populated urban centers (10–16).

The SARS-CoV-2 virus, responsible for COVID-19, spreads primarily via respiratory

droplets but has also been detected in fecal matter, suggesting wastewater as a potential

surveillance medium. Wastewater-based epidemiology (WBE) has gained traction as

a non-invasive tool to monitor viral prevalence within communities (17–21). Unlike

traditional epidemiological approaches, WBE provides a cost-effective and comprehensive
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snapshot of population-level infection dynamics, encompassing

symptomatic and asymptomatic cases (22–24). Suchmethodologies

are particularly relevant in low-resource settings where widespread

clinical testing may be unfeasible.

Globally, WBE has proven effective in early outbreak detection,

guiding public health interventions, and estimating disease

prevalence (25, 26). The approach offers distinct advantages for

public health and policy. First, it enables real-time monitoring of

infection trends at a community scale, reducing the need for costly

individual-level testing. Second, WBE can identify asymptomatic

carriers who might otherwise go undetected in traditional

surveillance systems (27–29). In parallel,WBE has enabled the early

identification of emerging variants, often several days or even weeks

ahead of clinical sampling, underscoring its potential utility for

genomic surveillance (30–33). Finally, it supports proactive health

policy decisions by providing data that inform resource allocation,

intervention timing, and public communication strategies. These

advantages make WBE an invaluable component of integrated

public health surveillance systems (34, 35).

In Mexico City, one of the areas most severely impacted

by COVID-19, leveraging WBE presents a unique opportunity

to strengthen epidemiological surveillance and inform policy

decisions (12, 13, 36, 37). This study evaluates the temporal

relationship between SARS-CoV-2 RNA levels in wastewater from

the Copilco neighborhood and reported infection trends, aiming to

validate WBE’s role in public health preparedness and response.

2 Methods

A diagrammatic scheme with the methods described here is

presented in the form of a workflow in the Figure 1.

2.1 Study design and sampling

This study was conducted in the Copilco neighborhood of

Mexico City, a densely populated urban area with a complex

drainage network. A total of 40 wastewater samples were collected

across two sampling seasons: April to September 2021 (n = 18) and

November 2021 to February 2022 (n = 22). These periods were

selected based on local epidemiological data indicating significant

COVID-19 case peaks. Sampling was performed at a drainage point

located near Copilco Metro station (19.335757 N, -99.176893 E),

chosen for its accessibility and strategic position within the local

drainage system.

2.2 Zoning and population representation

To assess spatial resolution, the area was divided into three

nested analysis zones based on drainage topology, encompassing

different distances from the sampling point. Postal codes were used

as unique proximity identifiers, as follows: Zone A (ZA) comprised

only the postal code where the sampling point was located; Zone

B (ZB) included the ZA and the immediately subsequent postal

codes connected by a drainage line; and Zone C (ZC) included

the ZA-ZB and the immediately subsequent postal codes connected

by a drainage line (Figure 2). The reported number of inhabitants

for ZA is 8,458, for the ZB it is 22,099, and for ZC it is 43,204.

According to the latest Population and Housing Census for Mexico

City 2020 (38). Using the postal codes associated with each zone,

local reported cases specific to each zone were obtained from the

Mexican National Epidemiological Surveillance System (SISVER)

database. Spatial mapping and zoning were performed using QGIS

software (version 3.24.3) (39).

2.3 Sample collection and handling

Samples were collected following the Centers for Disease

Control and Prevention (CDC) guidelines for wastewater

surveillance (https://www.cdc.gov/nwss/wastewater-surveillance.

html) (40), emphasizing safety and contamination prevention.

Each sample was taken around 10 a.m., using sterile polypropylene

containers (1 L capacity) and transported at 4◦C to the laboratory

for processing within 24 h.

2.4 Concentration and RNA extraction

Wastewater samples were concentrated using a polyethylene

glycol (PEG) precipitation method (41, 42), modified for higher

recovery efficiency (43). A 200 mL aliquot of each sample was

mixed with 25 mL of Tris-Glycine-Extract Broth (TGEB, pH 9.5),

agitated for 2 h at 4◦C, and centrifuged at 2,500 g for 10 min.

The supernatant was adjusted to pH 7.0–7.2 and precipitated using

20% PEG 8000 and 0.3 M NaCl. After overnight incubation at 4◦C

with agitation, the samples were centrifuged at 10,000 g for 30 min.

Pellets were resuspended in 0.5 mL of phosphate-buffered saline

(PBS) and stored at -80◦C until RNA extraction. RNAwas extracted

using the QIAGEN QIAamp Viral RNA Mini Kit, yielding a final

volume of 60 µL per sample.

2.5 RT-qPCR optimization and
quantification

The RT-qPCR protocol targeted the N1 gene of SARS-CoV-2,

using forward primer 5’-GACCCCAAAATCAGCGAAAT-3’,

reverse primer 5’-TCTGGTTACTGCCAGTTGAATCTG-3’ and

probe 5’-FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1-3’

sequences (44). Quantification standard curves were prepared

using the synthetic control VR-3276T (ATCC) with a range

between 101 and 104 copies of the N1 gene. All samples were

analyzed in triplicate, including negative controls (RNase-free

water) and parallel detection of rotavirus A nonstructural protein

5 gen (NSP5) was performed using a standard genesig kit from

Primerdesign Ltd. as an internal control. Thermal cycling was

performed on an Applied Biosystems StepOnePlus system.

Key optimizations included: annealing-extension temperature,

adjustment of magnesium chloride (MgCl2), primer and probe

concentrations to improve efficiency, and reduction of reaction

volume to 10 µL.
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FIGURE 1

Workflow for this work. Created in https://BioRender.com.

2.6 Data analysis

The model considers the three defined zones ZA, ZB, ZC

for spatial analysis and three time blocks: TB1: April 2021

to February 2022 (total time represented); TB2: April 2021 to

September 2021 (sampling session 1); TB3: November 2021 to

February 2022 (sampling session 2) for temporal analysis. Time

series for interpolated viral RNA counts and reported COVID-19

cases were smoothed using a 7-day simple moving average (SMA

7) (45–47). Cross-correlation analysis (48–50) was performed

to identify temporal lags between SARS-CoV-2 RNA levels and

reported COVID-19 cases. The analysis included statistical tests for

differences between sampling seasons using the Wilcoxon signed-

rank test (51–53). The R statistical programming language (version

4.2.1) using the “ xcorr” function. The cross-correlation estimate

is thus calculated by a spectral method in which the Fast Fourier

Transform (FFT) of the first vector is multiplied element-by-

element with the FFT of second vector. The computational burden

of this algorithm depends on the length N of the vectors and is

independent of the number of lags. Wilcoxon signed-rank test were
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FIGURE 2

Zones (ZA, ZB, ZC) defined for analysis, based on proximity to the sampling point, using postal codes and the wastewater drainage map.

calculated using the “ wilcoxon.test” function of the “MASS”

R-library (54, 55).

3 Results

3.1 RT-qPCR optimization

The RT-qPCR protocol was successfully optimized to achieve

high sensitivity and efficiency. By reducing reaction volumes

to 10 µL and fine-tuning magnesium chloride concentrations,

oligonucleotide levels, and probe quantities, an efficiency of 96.7%

was achieved with a detection limit of 10 copies/µL. The optimized

conditions reduced reagent usage while maintaining robust

performance, offering a cost-effective alternative to commercial

kits. Final reaction conditions were as follows: 50◦C for 5 min 95◦C

for 20 s (enzyme activation), 45 cycles of 95◦C for 5 s and 60◦C

for 20 s. The associated results of the initial and final optimized

conditions can be seen in Figure 3.

1. 2.5 µL of 4X Master Mix (Applied Biosystems, A28525)

2. 1 µL each of forward and reverse primers (150 nM)

3. 1 µL of probe (60 nM)

4. 0.4 µL of MgCl2 (2 mM)

5. 3 µL of RNA template

6. 1.1 µL of nuclease-free water

3.2 Quantification of viral RNA

N1 gene copy number counts per liter (copies/L) in wastewater

samples ranged from 103 to 105. Temporal trends revealed

distinct peaks in viral RNA levels during the sampling seasons,

corresponding to reported COVID-19 case surges. The first season

(April–September 2021) showed a gradual increase, peaking in July

2021, while the second season (November 2021–February 2022)

exhibited sharper spikes in December 2021 (Figure 4).

3.3 Spatial analysis of infection trends

The analysis of the relationship between SARS-CoV-2 viral load

in wastewater and clinically reported cases in three geographical

areas studied (ZA, ZB and ZC) revealed a positive correlation,

more pronounced in Zone C, which covers a wider area (Figures 5,

6). This trend was consistent across the different temporal

periods analyzed, becoming more evident during period TB3,

corresponding to the sampling season 2 (Figure 7). The steeper

slope observed in the data from Zone C suggests that spatial

integration over a larger geographic scale allows for a more

robust identification of the relationship between viral circulation

and reported cases. However, this approach requires careful

consideration of the associated population size, as expanding

the spatial coverage may also increase data variability and,

consequently, weaken the strength of the observed association

between the variables.

3.4 Temporal correlation analysis

Cross-correlation analysis revealed significant time lags

between viral counts in wastewater and reported infections.

In TB1, the highest correlation (ccf = 0.571) was observed

with a 7-day lag; in TB2, the strongest correlation (ccf =

0.825) was observed with an 8-day lag; and in TB3, the

highest correlation (ccf = 0.924) was observed with a 6-day

lag. These results can be seen in Table 1 and the associated graphs

in the Supplementary material (Supplementary Figure S1).

The cross-correlation values obtained throughout the

process can be compared in the Supplementary material

(Supplementary Figure S2 and Supplementary Table S1), which

contain the values obtained using only the interpolation process

and using interpolation and smoothing. Figure 7 shows the results

for the ZC, which showed the highest correlation values. These

results in particular show similar trends to those found in other

studies (56–58) where it was possible to find maximum infection
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FIGURE 3

Outline of the RT-qPCR analytical method. (A) amplification panel (1Rn vs. Cycle) and (B) associated regression panel (copies/µL N1 gene vs. Cycle),

for annealing-extension temperatures 55◦C, 60◦C, 62◦C, 65◦C and 25 µL final volume; (C) amplification (1Rn vs. Cycle) and (D) associated regression

(copies/µL N1 gene vs. Cycle) for optimized RT-qPCR (60◦C, MgCl2 (2 mM), forward and reverse primers (150 nM), probe (60 nM) and 10 µL final

volume.
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FIGURE 4

SARS-CoV-2 copies measured on each sampling dates. (A) Sampling dates for season 1 and season 2. (B) Boxplots of SARS-CoV-2 copies showed no

statistical di�erences in the two sampling seasons.

FIGURE 5

Smoothed curves depicting the full sampling season. Black curve with scale on the left y-axis is the measured concentration of SARS-CoV-2 whereas

red blue and green curves with scale on the right y-axis are the number of cases in zones A, B, and C respectively.

peaks in advance using WBE of SARS-CoV-2 with a variable

time advantage.

4 Discussion

This study reinforces the value of wastewater monitoring

as a surveillance tool, particularly in urban settings. The

significant time lags observed indicate that wastewater monitoring

can provide early warnings of infection spikes, enabling

proactive public health responses. While this study focused

on a single sampling site, the surrounding population ranges

from 8,000 to 43,000 inhabitants, depending on the zone (A,

B, C) analyzed. This is a strategic location, as it serves as a

wastewater collection point for the surrounding neighborhoods.

Due to these characteristics, the study assumes high local

representativeness, but expanding the sampling network to increase

coverage and reliability could improve the representativeness of

Mexico City.

It should be noted that a formal power analysis was not

performed due to the lack of standardized methods for estimating

power in time-lagged WBE studies of SARS-CoV-2 viral RNA

concentrations at the time of sampling. This work should be

considered an exploratory analysis demonstrating the feasibility

of detecting temporal correlations between SARS-CoV-2 N1 gene

quantifications in wastewater and reported infections in a specific
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FIGURE 6

Scatter plot behavior for the di�erent defined zones: ZA,ZB and ZC across selected time lags (only the most relevant are shown) and date ranges. (A)

TB1 April 2021 to February 2022; (B) TB2 April 2021 to September 2021; (C) TB3 November 2021 to February 2022.
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FIGURE 7

Graphs and cross-correlation results between the concentration of measured viral copies and reported cases for season 1 (A) and season 2 (B) for

the analysis of Zone C.

urban context. Future work would benefit from larger sample sizes

and power calculations based on the effect sizes and time lags

observed here. Furthermore, the detection of SARS-CoV-2 RNA in

wastewater only reflects the presence of genomic material and does

not guarantee viral viability (59–61). Therefore, the observed peaks

should be interpreted as a population indicator of epidemiological

trends useful for monitoring but not as a direct measure of the risk

of community transmission.

To address missing data from dates without sample collection

or reported cases, data interpolation was performed for both

datasets. A higher number of interpolated values were required

for wastewater samples, though an expected trend of genome

count fluctuations was observed. Additionally, data smoothing

was applied to reduce noise and facilitate subsequent analysis,

ensuring the identification of generalizable patterns within the

model’s variable constraints.

To conduct an exploratory graphical analysis of the potential

temporal relationship between both datasets, a scatter plot analysis

was performed. This involved shifting the genome count data by

one-day increments relative to the number of reported cases, within

a time-lag window ranging from 14 days before to 5 days after.

The analysis was carried out using the complete dataset from

both sampling periods combined (TB1) and separately for each

sampling period (TB2 and TB3). As it was previously mentioned,

a cross-correlation analysis was performed. In all cases, the cross-

correlation factor (CCF) is higher for TB2 and TB3, that is, when

the sampling seasons are analyzed separately. It is also greater for

Zone C, which corresponds to the sum of infection cases reported

in Proximity Levels 1, 2, and 3. Additionally, the time lags with the

highest CCF values correspond to the scatter plots with the steepest

slopes. This suggests that the relationship improves when analyzing

time periods with better representativity of sampled days and a
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TABLE 1 Results of the cross-correlation factor (CCF) analysis for the

combinations between the defined study zones (ZA, ZB, ZC) and the

di�erent time blocks (TB1, TB2, TB3).

TB1 TB2 TB3

lag
(days)

ccf lag
(days)

ccf lag
(days)

ccf

Zone A 4D 0.498 -3D 0.678 6D 0.922

3D 0.498 -2D 0.676 5D 0.919

5D 0.496 -4D 0.672 7D 0.917

2D 0.494 -1D 0.669 4D 0.909

6D 0.492 -5D 0.662 8D 0.905

1D 0.486 0D 0.657 3D 0.892

7D 0.485 -6D 0.649 9D 0.887

8D 0.477 -7D 0.634 2D 0.866

0D 0.475 1D 0.631 10D 0.863

9D 0.467 -8D 0.619 11D 0.834

Zone B 7D 0.530 0D 0.733 6D 0.924

6D 0.529 1D 0.730 7D 0.923

8D 0.527 2D 0.725 5D 0.918

5D 0.526 -1D 0.723 8D 0.916

9D 0.521 3D 0.719 4D 0.906

4D 0.520 4D 0.714 9D 0.901

10D 0.512 -2D 0.710 3D 0.887

3D 0.512 5D 0.709 10D 0.879

2D 0.501 6D 0.703 2D 0.864

11D 0.501 -3D 0.696 11D 0.851

Zone C 7D 0.571 8D 0.825 6D 0.924

6D 0.570 7D 0.823 5D 0.924

8D 0.569 9D 0.823 7D 0.918

5D 0.566 6D 0.819 4D 0.917

9D 0.563 10D 0.818 8D 0.904

4D 0.559 5D 0.813 3D 0.903

10D 0.554 11D 0.810 9D 0.884

3D 0.549 4D 0.805 2D 0.883

11D 0.542 12D 0.798 1D 0.857

2D 0.537 3D 0.796 10D 0.856

higher number of reported cases. Therefore, these two parameters

were continuously refined to enhance the proposed model.

For TB2 (April 2021 to September 2021), the highest

CCF (0.823 to 0.825) corresponds to a lag of 7 to 9 days

before the reported cases in the population. In contrast, for

TB3 (November 2021 to February 2022), the highest CCF

(0.918 to 0.924) corresponds to a lag of 5 to 7 days before

the reported cases. As it was shown in the Results section,

these time windows align with the steepest slopes in the

previous exploratory graphical analysis, indicating the period

before detection through direct epidemiological evaluation in

the population.

One of the first studies conducted to evaluate the correlation

between the presence of SARS-CoV-2 genomes in wastewater and

reported cases in the population analyzed data from treatment

plants in six cities and an airport in the Netherlands. It found

the presence of viral particles 7 to 9 days in advance using

RT-qPCR (56). Another study evaluating 32 treatment plants in

Catalonia, Spain, detected viral genomes 7 days in advance. It

also assessed different population sizes andmodels, concluding that

understanding population dynamics can lead to a more accurate

predictive model (57). In a separate study that collected a total of

1,101 samples from various treatment plants and sewer systems

in Paris, France, it was found that SARS-CoV-2 genomes could

be detected 3 to 4 days in advance, particularly in populations

with limited mobility. The variation in detection also depended

significantly on the time of sample collection mainly due to the

different dynamics of population behavior (62, 63).

A more recent study conducted in Xàtiva, in the province

of Valencia, reported predictive windows of 15 to 17 days using

different models and hospitalization data. This was facilitated by

a more established local sampling strategy and a well-documented

population dynamic (64). Meanwhile, another study in Yamanashi

Prefecture, Japan, reported a predictive window ranging from 3 to

9 days (58).

It is important to note that some longitudinal studies indicate

that a proportion of those infected shed SARS-CoV-2 RNA in feces

days before the onset of symptoms, but shedding can also last

several weeks, so the exact magnitude of this presymptomatic phase

varies between populations and viral lineages (65–67). Therefore,

inference of time lags fromWBE should be interpreted with caution

due to this uncertainty, and the set-up of a monitoring system

should consider these issues (61, 68).

A key aspect of this study was the selection of populations

associated with the sampling points. This was done by integrating

information on drainage systems with population sizes linked to

postal codes, defining an area of influence around the selected

collection point. This approach allowed for the delineation of

reported infection data corresponding to the sampling site. This

is particularly important because infection dynamics may differ in

other areas, and including additional populations could increase

variability in the model, making it less robust.

All these findings indicate that predictive time windows can

vary across different locations depending on the population and

site context. The inclusion of intrinsic variables related to the

population’s dynamics, along with a detailed understanding of

wastewater characteristics and additional health system data, could

help refine these predictive models. In the case of this study, the

determination of the geographic area and, consequently, the study

population was appropriate; however, incorporating a parameter

to normalize the size population size associated with each sample

could help reduce result variability if applied correctly. Therefore,

it is recommended to explore measurement strategies such as

genes associated with Pepper mild mottle virus (PMMoV) or

physicochemical parameters like chemical oxygen demand (COD)

or different nitrogenous compounds to include them as part of the

analysis process (69–72).
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5 Conclusions

The findings of this study highlight the effectiveness of

wastewater-based epidemiology as a viable tool for monitoring

SARS-CoV-2 infection trends at the community level.

The optimized RT-qPCR method for quantifying the N1

gene of SARS-CoV-2 reported in this study has a detection

limit of 10 copies/µL with a runtime of 30 to 35 min using

separately available reagents. Additionally, it can be optimized

for even smaller volumes or adapted to different enzyme

brands if necessary. This makes it a viable alternative to

commercial test kits, which can be more expensive or have

limited availability.

The various sample processing methods used for detecting

SARS-CoV-2, along with inherent variations in population

behavior, contribute to variability in the results. Despite

this, the raw data suggest that infection trends in the target

population–both increases and decreases–can be tracked

using this direct wastewater monitoring method integrating

information on drainage systems with local population size.

Even with a relatively small number of samples, this approach

demonstrates effectiveness compared to traditional epidemiological

monitoring methods, however, incorporating a method to

normalize population size would be necessary to further improve

the model.

When comparing the genome count data for the N1 gene with

reported infection data, the application of computational methods

for data interpolation on missing dates, along with data smoothing

using the central simple moving average technique, revealed a time

lag of 5 to 9 days. Additionally, a cross-correlation factor ranging

from 0.825 to 0.924 was observed between the genome detection

curves and reported infection curves. This lag can serve as an

early warning for infections in monitored populations, allowing

for the implementation of public health contingency measures

if needed.

The method presented here can be replicated in other

populations, provided that sampling points in the sewage system

are carefully selected. Combined with a well-planned collection

schedule, this approach can help validate and improve the proposed

model.

Both the sample processing techniques and computational

analysis methods can be further refined through continuous

feedback, which would enhance the effectiveness of the proposed

monitoring system.

In conclusion, we have shown how WBE offers a viable

approach for monitoring SARS-CoV-2 and potentially other

pathogens. Future research should integrate more variables, such

asmobility patterns and climatic factors, to refine predictivemodels

and enhance public health interventions.
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