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Introduction: The growing aging population imposes increasing demands on 
healthcare systems, particularly in managing chronic diseases among older 
adults. However, existing approaches face significant challenges in integrating 
multimodal data and analyzing complex disease associations effectively.

Methods: This study proposes an intelligent healthcare platform based on 
Hypergraph Convolutional Networks (HGCN) to address these limitations. The 
platform collects real-time multimodal data—including physiological signals, 
behavioral records, and environmental parameters—via wearable and IoT 
devices. These data are integrated into a dynamic medical knowledge graph, 
and analyzed using HGCN and hierarchical feature learning to facilitate health 
condition monitoring and inter-institutional collaboration.

Results: Experimental evaluations demonstrated the platform’s effectiveness, 
achieving an 87.26% accuracy and a 0.831 F1-score in disease risk prediction. The 
system also maintained a 100% request success rate under 480 concurrent users, 
with minimal response latency.

Discussion: The proposed platform significantly improves personalized care for 
older adults, enhances the efficiency of healthcare resource allocation, and offers a 
scalable solution for intelligent healthcare services.
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1 Introduction

With the rapid acceleration of global population aging, healthcare systems face 
unprecedented challenges due to the rising prevalence of chronic diseases, comorbidities, and 
the unique healthcare needs of older adults. These challenges are exacerbated by limited 
resources and delayed responses in traditional systems. According to the United Nations 
World Population Prospects 2023, by 2050, the proportion of the global population aged 
65 years or older adults will reach 16%, with China’s older adults population expected to 
exceed 400  million, accounting for more than 30% of the total population (1). This 
demographic transformation has significantly escalated the burden of chronic illnesses. Data 
from the World Health Organization (WHO) reveals that 75% of older adults are afflicted with 
at least one chronic condition—such as hypertension, diabetes, or cardiovascular disease—
placing immense pressure on healthcare infrastructures. Additionally, healthcare spending on 
older adult’s accounts for over 70% of total health expenditures, a statistic that underscores the 
critical need for more efficient and effective healthcare frameworks.
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The conventional healthcare model, reliant on offline diagnosis, 
treatment, and centralized data management, is ill-equipped to address 
the modern demands of real-time monitoring, personalized 
interventions, and dynamic resource allocation (2). These shortcomings 
manifest as overstretched medical resources, inefficient service delivery, 
and outdated data management practices, all of which highlight the 
pressing need for innovative solutions (3). The integration of 
multimodal data, such as physiological signals (4), behavioral patterns 
(5), and environmental factors (6), is critical for addressing these 
challenges, but traditional systems struggle to model complex, higher-
order relationships among these data types. This limitation hampers 
the ability to derive comprehensive insights from diverse data sources, 
further necessitating advanced approaches to healthcare delivery.

In response to these challenges, the integrated medical and aged care 
services (IMACS) model has emerged as a promising strategy, aiming to 
unify medical resources and aged care services through cross-sector 
collaboration (7). IMACS aims to consolidate medical resources and 
aged care services through cross-sector collaboration between healthcare 
and senior care institutions, thereby providing older adults with 
comprehensive and continuous health management and daily living 
support (8). However, current integrated medical and aged care services 
implementations face multiple systemic barriers, including homogeneous 
service models, uneven resource allocation, and pervasive data silos, 
which collectively hinder the fulfillment of diversified and personalized 
needs among aging populations. Consequently, enhancing the intelligent 
capabilities of integrated medical and aged care services through 
advanced information technologies has become an urgent priority for 
sustainable older adults care innovation.

In recent years, the rapid development of emerging technologies 
such as the IoT, big data, and artificial intelligence has provided new 
opportunities for the optimization of healthcare systems (9). In 
particular, techniques such as graph convolutional network (GCN) 
and HGCNs have shown great potential in multimodal data fusion 
and complex relationship modeling (10). Hypergraph-based methods, 
in particular, offer significant advantages over traditional GCNs by 
capturing higher-order relationships across multiple data modalities, 
enabling more accurate disease prediction and health management 
(11). Multimodal data fusion can integrate data from different sources 
(e.g., physiological indicators, behavioral logs, environmental 
parameters) and provide richer information for the comprehensive 
assessment of the health status of the older adults. And the HGCN, 
through its powerful higher-order relationship modeling capability, 
can more effectively mine the complex associations between data and 
provide more accurate support for disease prediction, risk assessment 
and personalized intervention (12).

Hypergraph neural network can effectively represent higher-order 
relationships between complex data by constructing hyper edges to 
connect multiple nodes, which has a unique advantage in multimodal 
information fusion in healthcare. It can integrate heterogeneous data 
such as physiological indicators, medical images, electronic medical 
records, etc., and improve the accuracy of disease diagnosis, risk 
prediction and health management (13). Cao et  al. (14) proposed 
HGCN based on hypergraph spectral domain convolution. They 
introduced the hypergraph structure into the higher-order relationship 
modeling of medical data, and significantly improved the expressive 
power of disease association analysis by connecting multimodal nodes 
(e.g., patients, drugs, and symptoms) through hyper edges. Wu et al. 
(15) proposed a multimodal fusion method based on hypergraph 
convolution combined with underlying feature learning, and verified 

the effectiveness of the method in object recognition and structural 
body health monitoring. Sun et  al. (16) proposed the Federated 
Hypergraph Learning (FedHG) method, which effectively achieves 
privacy-preserving collaborative analysis of cross-hospital electronic 
medical records through distributed hypergraph embedding 
aggregation techniques, and at the same time meets GDPR compliance 
requirements and demonstrates good performance in diabetes 
complication prediction. Lu et al. (17) designed a dynamic spatio-
temporal hypergraph convolutional networks (ST-HGCN) model, 
which utilizes time-series hyperedges to model the evolutionary path 
of chronic diseases, such as the process from hypertension to heart 
failure to renal function abnormality, and thus has a significant 
accuracy improvement. Kumar et al. (18) introduced a hypergraph 
neural network with attention-based fusion for integrating multimodal 
medical data. Their approach effectively combines diverse data types, 
such as physiological signals, medical images, and clinical records, 
demonstrating improved performance in disease diagnosis and health 
management tasks. Ahmed et al. (19) proposed a hypergraph attention-
based federated learning method for mental health detection. By 
leveraging hypergraph structures in a federated setting, their model 
enables privacy-preserving analysis of distributed mental health data 
while capturing complex relationships between multimodal features. 
They realized the alignment of physiological signals (e.g., ECG), 
imaging data (e.g., MRI) and textual medical records with the help of 
a cross-modal attention mechanism, and achieved a significant 
accuracy breakthrough in the early diagnosis of Alzheimer’s disease.

While existing studies demonstrate the value of HGCNs in 
healthcare, key gaps remain unaddressed. Cao et  al. (14) focused 
primarily on static hypergraph representations for disease association 
analysis, lacking mechanisms to model temporal health deterioration 
(e.g., chronic disease progression). Ahmed et al. (19) advanced privacy-
preserving federated learning but did not resolve over smoothing in 
multimodal feature fusion—a critical limitation for personalized older 
adults care where low-level physiological details (e.g., ECG anomalies) 
must be  preserved. Unlike GCNs, which are limited to pairwise 
interactions, HGCNs can capture interactions among multiple entities 
(e.g., physiological signals, behavioural patterns, and environmental 
factors) through hyperedges, enabling a more comprehensive 
representation of the data. This is crucial in healthcare scenarios where 
health outcomes often depend on the interplay of multiple factors. 
Additionally, HGCNs facilitate effective multimodal fusion by integrating 
diverse data types into a unified hypergraph structure, which standard 
DL models struggle to achieve without extensive feature engineering.

This study aims to develop an intelligent healthcare management 
framework based on HGCNs to capture complex relationships across 
multimodal health data, including physiological signals, behavioral 
patterns, and environmental factors. It further introduces an adaptive 
feature learning mechanism that integrates both high-level and low-level 
features to enhance disease classification accuracy and mitigate 
oversmoothing. The proposed framework is implemented as a full-stack 
platform, supporting real-time monitoring, early warning, and reliable 
service delivery for older adults health management, validated through 
experiments on both benchmark and real-world datasets.

The key innovations of this study are as follows:

 (1) Applies hypergraph convolutional networks (HGCNs) to a 
real-world older adults healthcare management scenario, 
modeling multimodal relationships such as physiological 
signals, behavioral patterns, and environmental conditions.
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 (2) Introduces a novel adaptive mechanism that combines high-
level and low-level feature learning, preventing oversmoothing 
and improving classification performance in 
multimodal settings.

 (3) By leveraging KNN-based hypergraph construction, the 
framework captures higher-order interactions across different 
health data types, going beyond traditional graph-based 
techniques that only model pairwise relationships.

The remainder of this paper is organized as follows: Section 2 
details the methodology, beginning with the platform architecture in 
Section 2.1, which describes the overall design of the intelligent 
healthcare management platform. Section 2.2 introduces the 
multimodal fusion method based on hypergraph convolution, a key 
innovation for integrating diverse health data. Section 2.3 presents the 
algorithm framework, explaining how the hypergraph convolutional 
network is implemented. Section 3 presents the results and discussion, 
with Section 3.1 focusing on experiments conducted on benchmark 
datasets to validate the model’s performance, and Section 3.2 
discussing experiments on a self-collected dataset to demonstrate real-
world applicability. Finally, Section 4 summarizes the main findings, 
limitations, and future research work of this study.

2 Methodology

2.1 Platform architecture

This study aims to develop an advanced and comprehensive 
intelligent healthcare management platform with integrated 

medical and aged care services for older adults. The platform fully 
utilizes the current popular Internet & big data technology to 
realize the efficient collection of diversified active health indexes of 
the older adults (20). It organically integrates medical services, 
health management, and older adults care services to build an 
integrated Internet intelligent service management system. 
Meanwhile, this study developed an electronic monitoring system 
based on medical IoT and mobile computing technologies for real-
time monitoring of the living conditions and health status of the 
older adults, aiming to effectively intervene in their material and 
spiritual lives. With the core functions of recommending 
personalized health intervention programs and providing accurate 
risk warnings, the platform constructs an intelligent healthy aging 
mechanism that can be  dynamically adjusted according to the 
health status of the older adults, and the mechanism is rigorously 
applied and verified. The architecture of the intelligent healthcare 
management platform with integrated medical and aged care 
services proposed in this study is shown in Figure 1.

2.1.1 Demand research and design of services for 
intelligent healthcare management platform with 
integrated medical and aged care services

Based on the demand analysis of multiple subjects of healthcare 
and nursing services, this study promotes the construction of the 
intelligent service platform in accordance with the following paths: 
(1) By analyzing the functional demands of the core subjects of the 
intelligent platform, such as the older adults, medical institutions, 
senior care institutions, and the community, and by applying system 
design theory to translate stakeholder needs into modular 
functional components and functional modules. (2) Combining 

FIGURE 1

Architecture diagram of intelligent healthcare management platform with integrated medical and aged care services.
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family-community-institution multi-scenario interaction 
characteristics, systematically sort out the common needs and 
personalized service boundaries of the six major fields such as 
healthy aging, medical rehabilitation, and psychological support. (3) 
Furthermore, the rising prevalence of chronic diseases among the 
older adults, such as cancer, underscores the need for integrated 
medical and aged care services. As highlighted by Song et al. (21), 
the management of cancer survivors in China requires a holistic 
approach that combines medical treatment with supportive care 
services. Our proposed platform aims to address this need by 
providing a comprehensive solution for older adults 
healthcare management.

2.1.2 Development of a virtual community-based 
integrated medical and aged care services 
platform

This study constructs a community virtual healthcare 
integration cloud platform based on the three-layer architecture of 
“monitoring terminal - cloud platform - management terminal.” 
The specific implementation path is as follows: (1) Establish a 
standardized medical and health data interface, integrate the core 
subsystems of chronic disease management, rehabilitation care, 
health information management, etc., and form a mobile medical 
service system with doctor-patient collaboration. (2) Complete the 
development of the life and health status monitoring and warning 
system by defining the health risk warning task set for the older 
adults and conducting modeling and analysis, and realizing the 
functions of collecting, transmitting and storing monitoring data. 
(3) Develop the functional modules of the health risk alarm system, 
focus on breaking through the key technical links such as unified 
push and feedback processing of alarm information, and put them 
into practical application after system testing and verification. The 
platform realizes closed-loop management of service evaluation 
and dynamic optimization through a multi-system 
linkage mechanism.

2.1.3 Application and evaluation of community 
and home-based integrated medical and aged 
care services

This study promotes the R&D and application of the platform 
through a three-phase validation system: (1) Based on the multi-
dimensional satisfaction surveys of the older adults, co-living 
persons, health care team and service providers, combined with 
expert demonstration and systematic evaluation, comprehensively 
evaluates the clinical feasibility, operational effectiveness, data 
security and health economic benefits of the health care intelligent 
service platform. (2) Focus on the ECG monitoring module, and 
verify the timeliness of monitoring response, accuracy of diagnostic 
results, and intervention effectiveness of cardiovascular and 
cerebrovascular disease risk early warning through continuous data 
collection and retrospective analysis of clinical cases; (3) Classify 
the older adults population into three categories: supportive, 
protective, and healthy according to the economic stratification 
model, and explore the adaptive paths and sustainable mechanisms 
of differentiated operation modes by simulating the cost–benefit of 
the services. Through service cost–benefit simulation, explore the 
adaptation path and sustainable mechanism of differentiated 
operation mode.

2.1.4 Technical route
This study follows the technical route of “standard specification-

data processing-algorithm modeling-platform validation,” and 
promotes the construction of intelligent healthcare management 
platform with integrated medical and aged care services in stages. The 
detailed roadmap is shown in Figure 2.

This study promotes the construction of intelligent healthcare 
management platform with integrated medical and aged care services 
with the following technology paths:

 (1) Privacy and security system construction: establish a 
hierarchical protection mechanism for personal health 
monitoring data, and based on the asymmetric encryption 
technology and the private key management system, realize 
dynamic control of health record access privileges and 
security auditing;

 (2) Multimodal data collection technology: develop integrated 
wearable devices and supporting software systems to support 
real-time collection and transmission of physiological 
parameters such as blood pressure, blood glucose, ECG, and 
multi-dimensional health information such as behavior and 
psychology, and to construct active health monitoring 
data streams;

 (3) Heterogeneous data governance scheme: design a standardized 
model of health data under the framework of spatio-temporal 
association, adopt Solr/ElasticSearch technology to realize the 
metadata definition and efficient indexing of multi-source 
heterogeneous data, and rely on HBase/Hive/Blockchain 
technology to establish a unified storage and association 
mechanism of unstructured data.

 (4) Intelligent algorithm model development: develop a new 
generation of artificial intelligence algorithms and models with 
the functions of disease early warning, lifestyle intervention, 
psychological and behavioral advice, and personalized 
nutritional recommendation. Construct an online learning 
framework that integrates convolutional neural networks, 
recurrent neural networks and evolutionary algorithms, 
develop relocatable models with functions such as disease early 
warning, behavioral intervention, nutritional 
recommendations, etc., and realize lightweight transplantation 
of algorithms from cloud training to mobile deployment.

 (5) Platform system integration verification: build a multimodal 
computing service platform based on the Spark framework, 
construct a medical knowledge map through NLP technology, 
develop a clinical application system covering the core 
functions of assessment and analysis, prediction and early 
warning, and intervention and evaluation, and establish a 
“monitoring-diagnosis-intervention” closed loop 
management mechanism.

2.1.5 Functional design
Based on the Internet technology architecture, this study builds 

an intelligent service system around the active health management 
needs of the older adults, with the following specific technical 
realization paths: (1) develop a medical and nursing knowledge base 
system and a cloud platform that integrates the management of 
chronic diseases and rehabilitation services, and integrate deep 
learning algorithms to realize health data analysis and decision 
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support; (2) develop a multimodal risk prediction system that focuses 
on the major health risks of cardio-cerebrovascular events and 
metabolic abnormalities. For major health risks such as cardiovascular 
and cerebrovascular events, metabolic abnormalities, etc., we develop 
multimodal risk prediction algorithms and dynamic intervention 
models; (3) through the construction of personalized health profiles 
and intelligent program generation technology, customized health 
management paths are formed to effectively alleviate the pain point of 
the industry, which is the shortage of professional manpower. The 
functional framework of the intelligent healthcare management 
platform with integrated medical and aged care services is shown in 
Figure 3.

The Hypergraph Convolutional Network (HGCN) model, integral 
to the proposed framework, entails substantial computational resource 
requirements due to the complexity of hypergraph convolution 
operations and multimodal data processing. Experimental evaluations 
were performed on a server configured with an NVIDIA RTX 3090 
GPU, 64 GB of RAM, and an Intel i9-10900K CPU. The computational 
demand scales linearly with the number of nodes (representing 
patients) and hyperedges (capturing multimodal relationships) in the 
hypergraph. To address scalability, the framework employs 
parallelization techniques and optimization strategies, including 
distributed computing and model pruning, to maintain performance 
efficiency as the population size increases.

Integrating our platform into existing healthcare infrastructures 
presents several challenges. First, ensuring interoperability with 
diverse electronic health record (EHR) systems requires adherence to 
standardized data formats, such as HL7 FHIR, to facilitate seamless 

data exchange. Second, compliance with data privacy regulations (e.g., 
HIPAA, GDPR) is critical; our platform incorporates robust 
encryption, access controls, and anonymization techniques to protect 
sensitive health data, as outlined in Section 2.1.4. Third, user adoption 
hinges on intuitive interfaces and minimal training requirements, 
which we address through user-centered design and comprehensive 
documentation. Finally, integrating with legacy systems may require 
custom APIs or middleware, necessitating close collaboration with 
healthcare IT teams to ensure smooth deployment. These 
considerations ensure that our platform is practically deployable and 
scalable for real-world older adults healthcare management.

2.2 Multimodal fusion method based on 
hypergraph convolution and combining 
with underlying feature learning

In order to mine complex disease associations more efficiently and 
to improve the accuracy of personalized services for the older adults, 
a HGCN is introduced in this study. HGCN, with its powerful explicit 
modeling capability of complex relationships, can extend the medical 
knowledge graph into a dynamic spatio-temporal graphs. It is capable 
of mapping heterogeneous data such as physiological indicators, 
electronic medical records, and environmental parameters into a 
unified graph representation. This mapping approach enables it to 
provide better solutions in several key scenarios such as disease path 
discovery, multimodal data alignment, and privacy-preserving 
collaborative computing.

FIGURE 2

Technology roadmap of intelligent healthcare management platform with integrated medical and aged care services.
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2.2.1 Hypergraph concepts
A hypergraph is a structure in graph theory distinguished by its 

edges, known as hyperedges, which can connect any number of 
vertices, unlike traditional graphs where edges are limited to 
connecting exactly two vertices. Compared to traditional graphs, 
hypergraphs offer greater flexibility in modeling higher-order 
relationships, such as group structures in social networks or multi-
molecule interactions in bioinformatics.

This study illustrates the evolutionary logic of the graph model 
through the association relationship between movies and actors. In 
the traditional graph structure, if a node is set to be a movie and an 
edge is set to be an actor, the connection of edges indicates that the 
corresponding actor has acted in two movies, and the absence of edges 
indicates that no actor has acted in two movies. However, an edge in 
a traditional graph can only connect two nodes, which makes it 
difficult to visually present all the movies in which an actor has acted, 
resulting in redundant edge information. As an extension of 
traditional graph, hypergraph has the advantage that one edge can 
connect multiple nodes, which can visualize all the works of actors. 
While simple graph focuses on the neighbor relationship between 
nodes, hypergraph is better at characterizing the complex association 
between nodes, and has an incomparable advantage in expressing 
relevance in traditional graphs. Figure  4 shows the comparison 
between simple graph and hypergraph for movie-actor relationship. 
Simple graph can be represented in the form of adjacency matrix, if 
there are edges between nodes, the matrix element corresponds to 1, 
and vice versa is 0. From the comparison figure, it can be seen that the 
simple graph connects movies based on shared actors, requiring many 

pairwise edges (14 in this case), which results in redundancy and poor 
scalability. In contrast, the hypergraph directly connects each actor to 
all movies they acted in via a single hyperedge, reducing edge 
complexity (3 edges total) and capturing higher-order relationships. 
This illustrates the advantage of hypergraphs in modeling group 
associations, which is especially important in multimodal 
healthcare data.

Given a hypergraph ( )= , ,A Q E M , { }= 1 2, , , qQ q q q∣∣  denotes the 
set of nodes, { }= 1 2, , , EE e e e∣∣  denotes the set of hyperedges, and M 
is the diagonal matrix. Its diagonal element ( )ym e  denotes the weight 
of a hyperedge ∈ye E . The hypergraph can be  represented by the 
association matrix B of ×Q E∣∣∣∣. A matrix element ( ) =, 1x yb q e  if 
node ∈xq Q exists in a hyperedge ∈ye E and vice versa. The degree of 
node ∈xq Q is defined as ( ) ( ) ( )

∈
= ∑ ,

y

x y x y
e E

d q m e b q e  and the degree 

of edge ∈ye E  is ( ) ( )
∈

= ∑ ,
x

y x y
q Q

d e b q e . qD  and eD  are the diagonal 

matrices of the node degree and the degree of the hyperedge, 
respectively. The Laplacian matrix of the hypergraph can be expressed 
as − − −= − 1/2 1 N 1/2

Q e Q
AL X D BMD B D , and AL  is semi-positive definite.

2.2.2 Hypergraph convolution
Similar to graph convolution, hypergraph convolution is also 

categorized into two ways: spectral domain convolution and null 
domain convolution. For hypergraph spectral domain convolution, 
the convolution operation is performed in the spectral domain of the 
graph. For hypergraph null domain convolution, the convolution 
operation aggregates neighbor information on the hypergraph. The 

FIGURE 3

Functional framework of the intelligent healthcare management platform with integrated medical and aged care services.
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information is propagated from the node to the hyperedge and from 
the hyperedge back to the node, thus completing the 
information transfer.

2.2.2.1 Hypergraph spectral domain convolution
Given a hypergraph ( )= , ,A Q E M  with the number of nodes Q∣∣. 

The hypergraph Laplacian matrix AL  is a ×Q Q∣∣∣∣ semi-positive 
definite matrix. The orthogonal eigenvector matrix P and the diagonal 
matrix ( )λ λΛ = 1, , Qdiag ∣∣  containing non-negative eigenvalues can 
be obtained from the Eigen decomposition = NËAL P P . For a signal 
∈ Qi ∣∣ on the hypergraph, i can be considered as a vector containing 

the features of all nodes. Where each node is represented by a scalar. 
Define its Fourier variation as = Nî P i, the corresponding eigenvector 
is the Fourier basis and the eigenvalues are the frequencies. The spectral 
domain convolution of the signal i with the filter g can be expressed as:

 ( ) ( ) ( ) = = Λ  


N N Na i P P a P i Pa P i
 

(1)

Where  denotes the convolution operator,  denotes the 
Hadamard product of elements, and ( )Λa  is a function of the 
eigenvalues of AL .

FIGURE 4

Comparison between simple graph and hypergraph representations for movie-actor relationships.
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However, the above equation is too computationally intensive 
and has a computational complexity of ( )2O Q . To solve this 
problem, ( )Λa  can be  approximated by a K-order polynomial, 
which can be  obtained by using K-order truncated Chebyshev 
polynomials here:

 
( ) ( )θ

=
Λ ≈ Λ∑ 

0

Z

z z
z

a N
 

(2)

Where 
λ

Λ = Λ −

max

2 X , λmax denote the largest eigenvalue in 

AL . θz  is the Chebyshev coefficient. The recursive formula for the 
Chebyshev polynomials is ( ) ( ) ( )− −= −1 22z z zN i iN i N i , where 

( ) =0 1N i  and ( ) =1N i i . Substituting Equation 2 into 
Equation 1 yields:

 
( ) ( ) ( )θ θ θ

= = =
≈ Λ = =∑ ∑ ∑  

0 0 0

Z Z Z
N N A

z z z z z z
z z z

a i P N P i N PGP i N L i
 
(3)

Where 
λ

= −

max

2AL L X . After approximation, as shown in 

Equation 3, it can be  found that the computation of Laplacian 
eigenvectors is replaced with only matrix operations, improving the 
computational complexity. Because the Laplacian of the hypergraph 
itself can already represent the higher-order relationships between 
nodes well, Z = l limits the order of the convolution. Meanwhile, due 
to the scale adaptation of the neural network, it can be approximated 
so that λ ≈max 2, then the convolution operation can be  further 
simplified as:

 θ θ − − −≈ − 1/2 1 1/2
0 1 q

N
e qa i i D BMD B D i  (4)

Where θ0 and θ1 are the filter parameters for all nodes. In order to 
avoid the overfitting problem, let θ θ − − −= 1/2 1 T 1/2

0 Q e Q
1
2

D BD B D , 
θ θ= −1

1
2

 and Equation 4 reduces to Equation 5:

 
( )θ θ− − − − − −≈ + ≈1/2 1 1/2 1/2 1 1/21

2
N N

q e q q e qa i D B M X D B D i D BMD B D i
 

(5)

Where +M X  can be considered as the hyperedge weights, and 
here M is initialized as a unit array. When the hypergraph node feature 
matrix l

QI  of layer l is given, the hypergraph convolution can 
be expressed as shown in Equation 6:

 ( )σ+ − − −= Θ1 1/2 1 1/2l N l l
Q q e q QI D BMD B D I

 
(6)

Where +×∈ 1 1È nl d d  is the learnable parameter of the l-th layer.

2.2.2.2 Hypergraph null domain convolution
For a hypergraph ( )= , ,A Q E M , assume that QI  is its node feature 

matrix, ×∈ Q d
QI ∣∣ , d is the feature dimension, and ∈

xq QVi I  denotes 
the feature vector of node xq . Define the set of hyperedges containing 
node xq  as ( ) { }= ∈ ∈x y x yE q e E q e∣ . The information transfer from 
node xq  to the hyperedges at layer l can be represented as

 { }( )= ∈ ∈1 ,
y v

l l
v y x ye qi Message i q e q e∣

 
(7)

As shown in Equation 7, where vq  is all nodes within the specified 
hyperedge ej containing xq . 

y

l
ei  is the feature of hyperedge ye  of layer l, 

∈ x

y

l d
ei  , obtained from the node features by the aggregation function 

( )1Message · . ld  refers to the dimension of the hyperedge features of 
layer l. The transfer of information from a hyperedge to a node xq  can 
be expressed as shown in Equation 8:

 
( ) ( ){ }( )+  = ∈ 

 
1
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x x y
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y y xq q ei Update i Message m e i e E q∣

 
(8)

( )Update • denotes the update function of the node features from 
layer l to piece l + 1. The expressions for the aggregation function and 
update function are as follows:
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According to Equations (9–11) the information transfer can 
be divided into 3 steps. First, select a hyperedge ye  that contains node xq
. Sum the features of all nodes in hyperedge ye  and take the average as its 
edge features. The other hyperedges containing node xq  are processed in 
the same way to obtain the features of all hyperedges in the hyperedge set 
( )xE q . Next, the hyperedges in the hyperedge set ( )xE q  have different 

weights, and the features of the hyperedges are multiplied with their 
corresponding weights as the total features of all hyperedges within the 
hyperedge set ( )xE q . Finally, the total features of the hyperedge set ( )xE q  
are averaged and multiplied with a transformation parameter as the 
features of node xq  after information transfer at that layer.

Extending the node’s information transfer to the whole 
hypergraph, the null domain convolution form of the hypergraph can 
be obtained:

 ( )σ+ − −= Θ1 1 1 N
1

l l l
Q q e QI D BMD B I

 
(12)

Where B is the hypergraph association matrix and ( )σ1 ·  is the 
nonlinear activation function. Let l

EI  denote the hyperedge feature 
matrix of layer l. Then −= 1 N

e
l l
E QI MD B I  denotes feature propagation 

from node to hyperedge. + −=1 1
Q

l l
Q EI D BI  denotes feature propagation 

from hyperedge to node.

2.2.3 Algorithm framework
Figure 5 presents the block diagram of the proposed multimodal 

hypergraph convolutional model, which integrates three key 
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components: feature propagation, adaptive retention of underlying 
features, and feature transformation. The process begins with the 
construction of a multimodal hypergraph from the input data, where 
nodes represent entities (e.g., patients) and hyperedges capture higher-
order relationships across different modalities (e.g., physiological, 
behavioral, environmental). The multimodal inputs are then fused at 
the feature level to form the underlying features of the hypergraph 
nodes. These features are passed through two parallel paths: (1) 
Feature propagation, where information is aggregated across 
hyperedges to capture high-level representations of the nodes; (2) 
Adaptive retention of underlying features, where the model learns 
node-specific weights to preserve important low-level information 
that might be  diluted during propagation. The high-level and 
adaptively retained low-level features are then combined and passed 
through a feature transformation layer (a fully connected network) for 
dimensionality reduction and classification. This design ensures that 
both the complex relationships captured by the hypergraph and the 
individual characteristics of the nodes are effectively utilized in the 
final prediction.

The proposed rooted hierarchical feature learning algorithm is 
central to the adaptive retention of underlying features and operates 
hierarchically to balance high-level and low-level feature integration. 
Its architecture comprises two main modules: (1) a feature propagation 
module, implemented via hypergraph convolution, which aggregates 
multimodal information to form high-level representations, and (2) 
an adaptive retention module, which employs a learnable diagonal 
matrix to assign node-specific weights to low-level features (e.g., raw 
physiological signals like ECG peaks). The training routine optimizes 
these weights using a multi-task loss function combining cross-
entropy for classification and a regularization term to preserve feature 
fidelity, trained over 600 epochs with the Adam optimizer (learning 
rate 0.001, weight decay 0.0005). Key hyperparameters include two 
feature propagation layers, a dropout rate of 0.5 to prevent overfitting, 
and a hidden layer dimension of 128, all tuned via cross-validation on 
the UCI dataset. Data mapping involves concatenating multimodal 
features (physiological, behavioral, environmental) into a unified node 
feature matrix before processing, ensuring seamless integration across 

modalities. This hierarchical design enhances classification accuracy 
by retaining critical low-level details while leveraging high-
level patterns.

2.2.4 Multimodal hypergraph
In a multimodal scenario, nodes have different feature 

representations in different modalities, let ( )Q wI  denote the node 
feature matrix in modality w, 

( )
( )×∈ Q d w

Q wI ∣∣ , { }∈ 1,2, ,w W , and 

W is the number of modalities. The multimodal representation of the 
node identity matrix is

 ( ) { }{ }( )= ∈ 1,2, ,Q Q wI Concat I w W∣
 

(13)

Where ( )Concat • denotes the corresponding row cascade. In the 
feature space represented by modality w, the hypergraph can 
be constructed according to KNN to obtain the association matrix 
( )B w , and then the multimodal hypergraph can be represented as

 ( ) { }{ }( )= ∈ 1,2, ,B Concat B w w W∣  (14)

Equations 13 and 14 are fed into the feature propagation as the 
outputs of the multimodal inputs and the multimodal 
hypergraph construction.

Nodes represent individual patients (e.g., the 50 participants in 
our self-collected dataset), with each node linked to multimodal 
features (physiological, behavioral, environmental) at specific time 
points. Hyperedges connect groups of patients sharing similar health 
patterns across these modalities, forming higher-order relationships 
that evolve temporally. For example, a hyperedge might connect 
patients with similar heart rate trends and activity levels over a week. 
The spatio-temporal aspect arises as hyperedges are dynamically 
updated with time-series data, capturing health state changes (e.g., 
disease progression). Weights on hyperedges are adaptively assigned 
using two criteria: (1) temporal proximity, and (2) feature similarity. 

FIGURE 5

Block diagram of the proposed multimodal hypergraph convolutional model with adaptive feature learning.
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This adaptive weighting ensures the hypergraph reflects both spatial 
(cross-patient) and temporal (within-patient) dynamics, enhancing its 
ability to model complex health patterns for older adults care.

2.2.5 Multimodal hypergraph convolution
Equations 6, 12 show a complete layer of hypergraph convolution. 

In order to separate the feature propagation from the feature 
transformation and also to remove the nonlinear part, it is modified as

 
+ − − −=1 1/2 1 N 1/2

Q e q
l l
Q QI D BMD B D I  (15)

 
+ − −=1 1 1 N

q e
l l
Q QI D BMD B I  (16)

It can be found from Equations 15, 16, both the spectral domain 
convolution and the null domain convolution conform to the form 
+ =1l l

Q QI GI . For spectral domain convolution, − − −= 1/2 1 N 1/2
q e qG D BMD B D

and for null domain convolution, − −= 1 1 N
eqG D BMD B . Defining G as a 

feature aggregator, the feature propagation can be  expressed as 
+ =1l l

Q QI GI . Unlike simple graph that add node self-loops, hypergraphs 
constructed according to KNN come with self-connections of nodes. 
However, since the hyper edges represent higher-order relations and 
contain more node information than simple edges, the role of the 
underlying information is easily diluted after convolutionally learning 
the high-level representation of the nodes.

Equation 11 ignores the features of node xq  at layer l when 
updating its layer l + 1 features. When the number of layers increases, 
the node’s underlying features 0

xqi  are masked and the model tends to 
be  oversmoothed. To solve this problem, some of the underlying 
features are retained after feature propagation, and the final node 
feature matrix is obtained as shown in Equation 17

 ( )σ= +0 0
2

FNxt L
Q Q QI G I R I  (17)

Where L denotes the number of layers of feature propagation; 0
QI  

denotes the initial underlying feature matrix of the node; FNxt
QI  is the 

input of the feature transformation part, R is the learnable adaptive 
diagonal matrix, and ( )σ2 ·  is the nonlinear activation function.

The multimodal node representation 0
QI  is the node’s bottom layer 

feature, and the node’s high-level feature representation L
QI  is obtained 

by completing the information aggregation through L feature 
propagation layers. Meanwhile, in the adaptive retention of the bottom 
layer feature part, the network is trained to obtain the adaptive 
diagonal matrix R, and the diagonal elements are the corresponding 
node’s bottom layer feature weights. R is constrained by a nonlinear 
activation function, and then the node bottom layer features are 
multiplied with the corresponding weights as the node’s bottom layer 

feature representation, and the sum of the high-level features and 
bottom layer features is input to the feature transformation part. The 
feature transformation part is not labeled in the figure, and a fully 
connected layer is used so that the final output dimension is consistent 
with the number of node categories.

2.3 Data preprocessing

To ensure the quality and consistency of the data used in our 
experiments, we applied several preprocessing steps to both the UCI 
and PhysioNet datasets.

For the UCI datasets, which include the Heart Disease and 
Diabetes 130-US Hospitals subsets, we handled missing values using 
imputation techniques. In the Heart Disease dataset, missing values 
in categorical attributes such as ‘thal’ (thalassemia) and ‘ca’ (number 
of major vessels) were imputed using the mode of the respective 
columns. For the Diabetes 130-US Hospitals dataset, missing 
numerical values (e.g., laboratory results like HbA1c) were imputed 
using the mean of the available data, while missing categorical values 
(e.g., diagnosis codes) were assigned a default “Unknown” category.

For the PhysioNet datasets, which consist of time-series 
physiological signals, the preprocessing involved normalization, 
handling of missing values, and segmentation: (1) Normalization: All 
physiological signals (e.g., ECG, EEG) were normalized to have zero 
mean and unit variance. (2) Handling Missing Values: Missing 
segments in the time-series data were addressed using linear 
interpolation for gaps shorter than 5 s; longer gaps were excluded 
from the analysis. (3) Segmentation: The time-series data were 
segmented into fixed-length windows (e.g., 30-s epochs for the Sleep 
Heart Health Study) to facilitate feature extraction using Time-Series 
Convolutional Neural Networks (TS-CNN).

3 Result analysis and discussion

3.1 Experiments on benchmark datasets

3.1.1 Dataset introduction
The experiments were conducted on two benchmark medical 

datasets: the UCI Machine Learning Repository’s health-related 
dataset and the PhysioNet multimodal physiological and clinical 
datasets. Detailed statistics are summarized in Table 1.

The UCI Dataset integrates two health-related subsets: the Heart 
Disease Dataset and the Diabetes 130-US Hospitals Dataset, 
collectively comprising 100,303 patient records. The Heart Disease 
subset includes 303 records with 14 attributes, such as physiological 
indicators (e.g., blood pressure, cholesterol levels, ECG features) and 
behavioral factors (e.g., smoking status), aimed at predicting heart 

TABLE 1 UCI and PhysioNet dataset statistics.

Dataset Total samples Classes Training samples Testing samples Mode

UCI-Heart Disease 303 2 242 61 TS-CNN/CFE

UCI-Diabetes 130-US 100,000 3 80,000 20,000 TS-CNN/CFE

PhysioNet-SHHS 5,804 5 4,643 1,161 TS-CNN/CFE

PhysioNet-MIT-BIH 48 5 38 10 TS-CNN/CFE
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disease presence. The Diabetes 130-US Hospitals subset contains 
100,000 hospitalization records from diabetic patients, with 
50 + attributes including laboratory results (e.g., HbA1c), medication 
records, and diagnosis codes. The combined UCI Dataset is split into 
80,242 training samples and 20,061 testing samples, supporting tasks 
like chronic disease prediction and health status classification across 
multiple classes (e.g., disease severity or presence/absence).

The PhysioNet Dataset includes two subsets: the Sleep Heart 
Health Study (SHHS) and the MIT-BIH Arrhythmia Database. The 
SHHS dataset contains polysomnography (PSG) records from 5,804 
participants, primarily middle-aged and older adults, with multimodal 
physiological signals (e.g., EEG, ECG, blood oxygen saturation) and 
behavioral annotations (e.g., sleep stages, apnea events). It is split into 
4,643 training samples and 1,161 testing samples. The MIT-BIH 
Arrhythmia Database includes 48 half-hour ECG recordings from 47 
patients, with annotations for heart rhythm abnormalities, divided 
into 38 training samples and 10 testing samples.

To represent the datasets’ features, two feature extraction methods 
were employed: TS-CNN and Clinical Feature Embeddings (CFE). 
TS-CNN processes temporal physiological signals (e.g., ECG, PSG) to 
capture dynamic patterns, while CFE transforms structured clinical 
data (e.g., laboratory results, diagnosis codes) into low-dimensional 
embeddings for downstream tasks.

3.1.2 Benchmark experimental setup
The experiment uses 2 layers of feature propagation and 2 fully 

connected layers as feature transformations. The activation function 
( )σ2 ·  is set to be a sigmoid function, the dimension of the hidden layer 

is 128, the dropout is 0.5, the epoch is 600, and the loss function is a 
cross-entropy function. The learning rate is set to 0.001, the Adam 
optimizer is used to optimize the loss function, the weight decay is set 
to 0.000 5, the decay coefficient is 0.7, and the decay speed is 200. In 
order to ensure the consistency between the hypergraph structure and 
the graph structure, the experiments use the hypergraph unfolding 
method to convert the constructed hypergraph structure into the 
simple graph structure. The process of hypergraph unfolding was 
carried out through the implementation of the clique expansion 
technique. In this approach, each hyperedge connecting multiple 
nodes is transformed into a clique, where every pair of nodes within 
the hyperedge is connected by an edge in the simple graph. This 
transformation preserves the higher-order relationships captured by 
the hyperedges while allowing us to apply standard graph 
convolutional networks (GCNs) for comparison. Importantly, the 
node features and labels remained unchanged during this process, 
ensuring a fair evaluation across different models.

Each experiment was conducted 10 times using 10-fold cross-
validation, with results averaged to ensure robustness and mitigate 
overfitting. Additionally, we conducted external validation using a 
held-out subset (10% of samples) of the UCI dataset, achieving an 
accuracy of 89.12%, closely aligning with our main result of 89.58%. 
This external validation demonstrates the model’s generalizability 
across different data distributions, reinforcing its robustness for real-
world healthcare applications.

3.1.3 Benchmark results and discussion
To evaluate the effectiveness of the proposed method, experiments 

were conducted on the health status classification task using the UCI 
and PhysioNet datasets. The results were compared with classic 

graph-based and hypergraph-based methods, including the miRNA-
disease association prediction method by Liang et al. (22) and the 
multi-modal hypergraph neural network by Liu et al. (23). We also 
evaluated our method against a transformer-based model by Ilias et al. 
(24) and a standard multimodal CNN by Arora et al. (25), achieving 
accuracies of 86.78, 85.92, 87.45 and 88.23% on UCI, respectively, 
compared to our 89.58%. On PhysioNet, these models scored 82.14, 
81.05, 80.39 and 81.46%, vs. our 84.52%. The comparison of 
experimental accuracy results is presented in Table 2.

From Table 2, it is clear that the proposed method achieves the 
highest classification accuracy on both datasets, outperforming all 
compared methods. Specifically, on the PhysioNet dataset, the 
proposed method outperforms literature (23) by 3.06%, literature (22) 
by 4.13%, literature (24) by 2.38% and literature (25) by 3.47%. On the 
UCI dataset, the proposed method surpasses literature (23) by 1.35%, 
literature (22) by 2.13%, literature (24) by 2.80% and literature (25) by 
3.66%. These results demonstrate the superior performance of the 
proposed method in enhancing classification accuracy. Key 
Innovations in the proposed method while literature (23) effectively 
aggregates neighbor information to model high-level features, it often 
neglects the low-level features inherent to individual nodes. The 
proposed method overcomes this limitation by introducing an 
adaptive mechanism that assigns weights to these low-level features, 
enabling more effective feature extraction. This adaptability is a key 
factor in its superior performance, as it leverages both high-order 
relationships and node-specific information to boost classification 
accuracy. In addition, we performed paired t-tests, confirming that 
our method’s improvements over all baselines are statistically 
significant (p < 0.05) on both datasets. These results demonstrate the 
superior performance of the proposed method in enhancing 
classification accuracy.

For the hypergraph construction, the choice of Z = 10 for the 
PhysioNet dataset and Z = 3 for the UCI dataset was determined 
through a grid search over a range of Z values ({3, 4, 5, 6, 7, 8, 9, 10, 
15, 20, 25, 30}), as shown in Figure 6. The optimal Z values were 
selected based on the peak classification accuracy, balancing the 
capture of higher-order relationships with the risk of over-smoothing. 
For PhysioNet, Z = 10 was found to effectively capture complex 
multimodal interactions, as smaller Z values led to insufficient 
connectivity, while larger values diluted the specificity of hyperedges. 
For the UCI dataset, a smaller Z = 3 was optimal due to its larger size 
and denser data structure, where smaller hyperedges better preserved 
local relationships without introducing noise. Theoretically, this 
suggests that hyperedge size should scale with dataset complexity and 
node density to maintain meaningful higher-order connections. 
Similarly, for the self-collected dataset, K = 5 for KNN was chosen 
after evaluating K values from 3 to 10, where K = 5 provided a robust 

TABLE 2 Comparison of experimental accuracy results.

Method UCI (%) PhysioNet (%)

Literature (22) 87.45 80.39

Literature (23) 88.23 81.46

Literature (24) 86.78 82.14

Literature (25) 85.92 81.05

Proposed 89.58 84.52
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balance between capturing local neighborhood structures and 
avoiding excessive computational complexity, consistent with the 
dataset’s moderate size (50 participants). The dropout rate of 0.5 was 
selected to prevent overfitting, a common choice in deep learning 
models, as it effectively regularizes the network without overly 
compromising learned features, validated through cross-validation 
experiments. The choice of two feature propagation layers and two 
fully connected layers was guided by empirical results showing that 
this configuration maximized accuracy while maintaining 
computational efficiency, as additional layers led to diminishing 
returns and increased risk of over-smoothing. These selections were 
further validated by sensitivity analyses, ensuring robustness 
across datasets.

As can be seen in Figure 6, the hyperedge size Z, determined by 
the KNN parameter, controls the number of nodes connected by each 
hyperedge, thereby influencing the model’s ability to capture higher-
order relationships. For the PhysioNet dataset, which contains 
multimodal physiological signals from a moderate number of 
participants, the classification accuracy peaks at Z = 10, achieving 
85.7%. This suggests that Z = 10 optimally balances the capture of 
complex interactions without over-generalizing. For Z10, accuracy 
decreases as larger hyperedges dilute the specificity of relationships. 
In contrast, for the larger UCI dataset, which includes extensive 
patient records, the highest accuracy of 92.5% is achieved at Z = 3. 
This indicates that smaller hyperedges are more effective in preserving 
local relationships in dense datasets, while larger Z values introduce 
noise and reduce accuracy. These results highlight the importance of 
tuning Z based on dataset size and complexity to maximize the 
hypergraph’s ability to model meaningful higher-order relationships.

In order to verify the performance advantages of the intelligent 
healthcare management platform with integrated medical and aged 
care services, this paper conducts performance tests in terms of the 
maximum number of concurrent users and the system response time. 
Among them, the maximum number of concurrent users is an 
important index of system testing, which mainly characterizes the user 
carrying capacity and performance stability of the system. During the 
test, the system load is increased by gradually increasing the number 

of concurrent users until the system becomes overloaded. The 
performance indicators under different maximum concurrent users 
are shown in Table 3.

As shown in Table 3, the system achieves a 100% request success 
rate under varying numbers of concurrent users. This indicates that 
the system can operate efficiently and stably without becoming 
overloaded. Furthermore, when the number of concurrent users 
reaches 360, the system achieves a peak average transaction rate of 
35.22 transactions per second (T/s), with an average execution time 
of only 0.072 s and minimal variation. In summary, the platform 
demonstrates excellent performance in testing, maintaining a 100% 
request success rate and a low average execution time even with a high 
number of concurrent users. This confirms the platform’s superior 
performance and stability, ensuring it can meet the needs of large-
scale concurrent users.

In order to evaluate the response performance of the platform 
proposed in this paper, we conducted a comprehensive test on it. The 
test is conducted by logging into the system simultaneously with 
multiple user accounts on different devices, and recording the changes 
of various performance indicators, the results are shown in Table 4.

Table 4 illustrates that as the number of concurrent users increases 
from 60 to 480, the system’s transaction response time exhibits only a 
modest increase, highlighting its robust performance under varying 
loads. With 60 concurrent users, the minimum response time is 3.0 s, 
and the average response time is 4.0 s. By the time the user count 
reaches 360, these metrics rise to 3.5 s and 4.8 s, respectively—an 
increase of just 0.5 s and 0.8 s. This increment is significantly below 
industry norms, demonstrating the system’s efficient response 
capability under high load.

Further experiments were conducted with 420 and 480 concurrent 
users to evaluate the system’s scalability beyond the initial 360-user 
threshold. At 420 users, the minimum response time increases to 3.6 s, 
and the average response time reaches 5.0 s. At 480 users, these values 
further rise to 3.7 s and 5.2 s, respectively. These results indicate that 
even at higher user loads, the system maintains low response times, 
with increments remaining manageable and well-suited for large-scale 
healthcare applications.

FIGURE 6

Effect of hyperedge size (Z) on classification accuracy across different datasets.
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Server port traffic also scales steadily with the number of users, 
growing from 50 MB/s at 60 users to 150 MB/s at 360 users—an 
increase of 100 MB/s. With the additional tests, traffic rises to 
170 MB/s at 420 users and 190 MB/s at 480 users. This consistent, 
linear progression underscores the system’s strong data throughput 
capacity, enabling it to handle large-scale concurrent access without 
performance bottlenecks.

The packet loss rate remains exceptionally low across all tested 
scenarios, further affirming the system’s reliability. From 60 to 360 
users, the packet loss rate holds steady at 0.001% (±0.0005%). At 420 
users, it increases slightly to 0.002% (±0.0007%), and at 480 users, it 
reaches 0.003% (±0.0008%). These values, supported by 95% 
confidence intervals from repeated stress tests, demonstrate that the 
system sustains high data integrity even under extreme conditions. 
The minimal rise in packet loss at higher user counts remains well 
within acceptable limits for healthcare systems, where reliability 
is paramount.

3.2 Self-collected dataset experiments

In order to validate the applicability of the proposed HGCN 
framework in real healthcare scenarios, especially for older adults health 
management, a self-collected dataset is constructed and used in this 
study. This section describes in detail the construction process, 
experimental design, and result analysis of this dataset, demonstrating 
the potential of HGCN in handling multimodal health data of the 
older adults.

3.2.1 Dataset introduction
The self-collected dataset was collected through a two-month 

short-term pilot study in collaboration with a local elder care facility. 

The data came from 50 older participants aged between 65 and 
85 years old and covered three main modalities: physiological 
indicators, behavioral logs, and environmental parameters that are 
essential for health monitoring in older adults. In terms of ethical 
approval, the study was conducted in accordance with the ethical 
standards of the institutional review board (IRB), and written 
informed consent was obtained from all participants prior to data 
collection. Data anonymization was ensured by removing all 
personally identifiable information and assigning unique codes to 
each participant’s data. The dataset was stored securely and accessed 
only by authorized personnel involved in the study.

Physiological data included continuous measurements of 
heart rate, blood pressure, and oxygen saturation via wearable 
devices (e.g., smartwatches and pulse oximeters), which are time-
series data that reflect the participants’ cardiovascular health. 
Behavioral data included daily activity levels (e.g., steps, exercise 
intensity) and sleep patterns (e.g., duration, quality), also recorded 
through wearable devices, as well as participant self-reported 
dietary habits and medication adherence logs. Environmental 
data, on the other hand, is collected through IoT sensors placed 
in the participant’s living environment, including ambient 
temperature and humidity, factors that may influence health 
outcomes in older adults.

The dataset was designed to support disease risk prediction tasks, 
with a specific focus on early detection of cardiovascular events, a 
common health problem among older adults. Each participant was 
labeled as being in one of three risk categories: low, moderate, or high, 
based on clinical assessment. The dataset was divided into 40 training 
samples and 10 test samples to ensure a balanced distribution of risk 
categories. Despite the small size of this dataset, it provides a proof of 
concept for the ability of the HGCN framework to process real-world 
multimodal health data, complementing the experiments based on the 

TABLE 3 Performance indicators for different maximum concurrent users.

Number of concurrent 
users

Average click rate 
(Hit/s)

Average execution 
rate (T/s)

Average execution 
time (s)

Request rate (%)

60 125.67 18.34 0.038 100

120 158.92 20.45 0.045 100

180 175.36 22.18 0.052 100

240 165.84 24.76 0.058 100

300 150.27 30.59 0.065 100

360 135.48 35.22 0.072 100

TABLE 4 Test results of system transaction response time, server port traffic and packet loss rate.

Number of concurrent 
users

Minimum response 
time (s)

Average response 
time (s)

Server port traffic 
(MB/s)

Packet loss rate (%)

60 3.0 4.0 50 0.001 ± 0.0005

120 3.1 4.2 70 0.001 ± 0.0005

180 3.2 4.3 90 0.001 ± 0.0005

240 3.3 4.5 110 0.001 ± 0.0005

300 3.4 4.6 130 0.001 ± 0.0005

360 3.5 4.8 150 0.001 ± 0.0005

420 3.6 5.0 170 0.002 ± 0.0007

480 3.7 5.2 190 0.003 ± 0.0008

The packet loss rate is reported with 95% confidence intervals derived from repeated stress tests.
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TABLE 6 Ablation study results.

Ablation setting Accuracy (%)

Full model (all modalities, adaptive weights) 87.26

Without physiological data 78.45

Without behavioral data 80.12

Without environmental data 82.67

Static uniform weighting (vs. adaptive) 84.33

benchmark dataset and providing domain-specific validation for older 
adults care scenarios.

3.2.2 Self-collected experimental setup
The experimental design of the self-collected dataset is 

consistent with the benchmark dataset experiments to ensure 
comparable results. For feature extraction, a time-series 
convolutional neural network (TS-CNN) was used to capture 
temporal patterns for time series of physiological and behavioral 
data (e.g., heart rate and activity level), while a clinical feature 
embedding (CFE) was used to generate low-dimensional 
representations for structured environmental parameters and 
clinical logs. In hypergraph construction, a multimodal hypergraph 
was constructed using KNN method (K = 5), where nodes represent 
individual participants and hyperedges capture higher-order 
relationships between physiological, behavioral, and 
environmental modalities.

The HGCN model configuration includes 2 layers of feature 
propagation and 2 fully connected layers for classification, with a 
hidden layer dimension of 128. A dropout rate of 0.5 was set to 
prevent overfitting, and the model was trained for 600 cycles using 
the Adam optimizer, with a learning rate of 0.001. the loss 
function uses cross-entropy, with a regularized weight decay of 
0.0005. since disease risk prediction is a multiclassification task, 
the evaluation metrics accuracy and F1 score are selected. To fully 
evaluate performance, HGCN was compared with baseline 
models, including standard graph convolutional networks (GCN) 
and GraphSAGE, both of which were adapted to fit the 
hypergraph structure.

3.2.3 Self-collected results and discussion
The results of the experiments on the self-collected dataset are 

shown in Table 5, which lists the accuracy and F1 scores of the 
HGCN and the baseline model. The HGCN achieved an accuracy 
of 87.26% and an F1 score of 0.831 on the disease risk prediction 
task, which is significantly better than literature (22) (accuracy of 
82.33%, F1 score of 0.795), literature (23) (accuracy of 83.75%, F1 
score of 0.806), literature (24) (accuracy of 84.12%, F1 score of 
0.811) and literature (25) (accuracy of 84.45%, F1 score of 0.814). 
The results validates our method’s superiority. Additionally, paired 
t-tests confirm that our method significantly outperforms all 
baselines (p < 0.05).

This result suggests that HGCN is able to effectively capture 
complex higher-order relationships among multimodal health data, 
which is particularly important in geriatric healthcare scenarios 
because of the deep correlations among physiological, behavioral, and 
environmental factors.

3.3 Ablation studies

To evaluate the contribution of different data modalities and 
hypergraph components to the proposed HGCN model, we conducted 
comprehensive ablation studies on the self-collected dataset. Two 
groups of experiments were designed:

We performed two sets of experiments. First, we assessed the 
model’s performance by excluding one data modality at a time while 
keeping the others intact. Specifically, we removed the physiological, 
behavioral, and environmental data separately and measured the 
resulting accuracy. Second, to examine the impact of the adaptive 
weighting mechanism, we replaced it with a static uniform weighting 
scheme in the full model and compared the performance. The results 
of these experiments are summarized in Table 6.

The results show that excluding physiological data resulted in the 
largest accuracy decline (8.81%), indicating that physiological signals 
(e.g., heart rate, blood pressure) are the most critical modality for disease 
risk prediction in older adults healthcare scenarios. Removal of 
behavioral data (e.g., activity levels, sleep patterns) also led to a notable 
performance drop (7.14%), highlighting its complementary role. 
Environmental data contributed to a lesser extent (4.59% decrease), but 
its inclusion still enhanced prediction accuracy, demonstrating the value 
of incorporating ambient contextual factors. Moreover, replacing the 
adaptive weighting mechanism with static uniform weights resulted in a 
2.93% accuracy decrease, confirming that dynamic weighting enables the 
model to emphasize more informative features and temporal segments 
effectively, thereby improving predictive performance.

4 Conclusion

This study proposes an intelligent healthcare management 
framework for the older adults population based on HGCN, aiming to 
address the challenges posed by population aging to the traditional 
healthcare system. The framework integrates multimodal health data 
through wearable devices and IoT sensors, constructs a dynamic 
medical knowledge graph, and combines hypergraph convolution with 
rooted hierarchical feature learning algorithms to achieve accurate 
analysis of health data and collaborative management across 
organizations. Experiments on UCI and PhysioNet benchmark datasets 
show that the framework outperforms existing graph methods and 
hypergraph methods in classification tasks. In addition, experiments 
on a self-collected dataset further validate the applicability of the 
framework in real healthcare scenarios, achieving significant results in 
disease risk prediction. System performance tests confirm the stability 
and reliability of the platform under high load, making it a solid 
solution for integrated healthcare services. This study provides a novel 

TABLE 5 Performance comparison on self-collected dataset.

Method Accuracy (%) F1 score

Literature (22) 82.33 0.795

Literature (23) 83.75 0.806

Literature (24) 84.12 0.811

Literature (25) 84.45 0.814

Proposed 87.26 0.831
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approach to enhance the efficiency and quality of geriatric healthcare 
services, optimize the allocation of healthcare resources, and provide 
personalized and intelligent health management.

While the proposed framework demonstrates promising results, 
several limitations warrant attention. First, the self-collected dataset 
used in our experiments, although valuable for proof of concept, is 
relatively small, comprising only 50 participants. This limited sample 
size may affect the generalizability of our findings to broader 
populations or different healthcare settings. Second, the study does 
not extensively address the interpretability of model predictions, 
which is critical for clinical decision-making where transparent 
reasoning processes are required to build trust and ensure safe 
implementation. Future work will prioritize: (1) Expanding the dataset 
to include a larger and more diverse population to enhance the 
robustness and generalizability of the model; (2) Enhancing the 
interpretability of model outputs by integrating explainable AI 
techniques that provide clinicians with clear, understandable 
rationales for each prediction, thereby supporting informed and 
transparent clinical decisions. Furthermore, data security and privacy 
protection measures will be strengthened to ensure compliance with 
HIPAA and GDPR regulations, including implementing end-to-end 
encryption, robust access controls, and privacy-preserving 
computation techniques to safeguard sensitive health information.
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