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Introduction: Suitable midsoles of running shoes provide better protection for 
the feet. However, previous studies on the effect of midsole hardness on running 
biomechanics have ignored the important factor of running velocity and have 
not reached consistent results. This study set a running velocity with six gradients 
and aimed to investigate whether the midsole hardness would have a different 
impact on lower limb joint angles and plantar loading in different velocity ranges.

Methods: Eight male runners ran on a treadmill under 12 conditions (six velocities: 
self-selected velocity (SSV), 120% SSV, 140% SSV, 160% SSV, 180% SSV, and 200% 
SSV; two midsole hardness levels: soft and hard). The Noraxon Ultium® insole and 
Motion IMUs were used to collect data on joint angles and plantar loading. Two-
way repeated measures (6 velocities × 2 hardnesses) and paired t-tests were used.

Results: The study showed that at SSV and 120% SSV, the maximum ankle inversion 
angle in soft midsoles is significantly smaller than in hard midsoles. At 180 and 
200% SSV, the maximum hip abduction angle in the swing phase and the maximum 
force in the metatarsal region in soft midsoles are significantly greater than in 
hard midsoles, which might lead to a loss of stability and an increased risk of 
injury in the forefoot. Midsole hardness could have a nonlinear effect on joints 
and plantar loading as running velocity changed.

Conclusion: The study provided useful information for reducing the potential incidence 
of running-related injuries based on midsole hardness and running velocity conditions. 
When considering the impact of midsole hardness on running injury, researchers 
should pay particular attention to ankle joint motion during 100–120% SSV and hip, 
ankle joint motion, and metatarsal and arch loading during 180–200% SSV.
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1 Introduction

Running is a popular and accessible physical activity but is also associated with a high 
incidence of musculoskeletal pain and injury (1). Wearing the proper running shoes provides 
better foot protection and reduces the risk of lower limb injuries. In particular, the adjustment 
of the midsole hardness plays an important role in influencing the risk of running-related 
injuries (2). The suitable midsole hardness provides good cushioning properties (2), reducing 
the impact force generated when the heel strikes the ground and reducing local discomfort 
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(2). The design and innovation of the midsole hardness have led to 
many biomechanical studies, and it has become a hot topic in the 
fields of sports injury protection and the development of professional 
sports footwear. It’s also a focal point for research at the intersection 
of biomechanics and the development of public health interventions. 
In these studies, the motion of the lower limb joints and plantar 
loading are meaningful indicators for assessing the risk of running-
related injuries from the side (3). Because the joint angle can visually 
reflect changes in running posture stability (4, 5), foot force can reflect 
loading patterns and assess the risk of pain (6, 7).

However, previous studies on the effects of different hardnesses 
on the joint angles and foot load during running were mixed, and no 
consistent results were reached. Previous studies have shown that at 
running speeds of 7.2 km/h or 11.8 km/h, the maximum angles of hip 
and knee flexion were smaller with soft midsoles than with hard 
midsoles (8), but the range of motion (ROM) of the ankle joint was 
significantly greater (9), which may increase the risk of ankle sprain 
in runners. Different studies have found that at a running speed of 
10 km/h, there is no difference between hard and soft midsoles in 
terms of ankle eversion during the stance phase, and the effect of 
changes in midsole hardness on ankle joint angle is negligible (10). In 
studies of plantar loading distribution, the overall plantar fascia stress 
was reduced when midsole hardness was increased at a running speed 
of 13.7 km/h (11). They concluded that higher midsole hardness 
supports the arch and helps reduce the risk of plantar injuries. 
Different studies have found that when the midsole is softer, peak 
plantar pressure and relative load are reduced (12–14). At the runner’s 
self-selected velocity for jogging, soft shoes had a lower maximum and 
average forces in the midfoot region than hard shoes (12). Shoes with 
cushioning resulted in lower peak pressures in the midfoot and 
forefoot regions (14), which might reduce the risk of pain in these 
areas. Overall, the results of the above studies on the effect of midsole 
hardness on running biomechanics are inconsistent, resulting in weak 
reliability for runners or researchers to provide insights into the effects 
of midsole hardness on running potential injuries.

Based on the above studies, the running velocity conditions were 
not consistent, while the running postures and ground reaction forces 
were significantly affected by the running velocities (15, 16). 
Compared with jogging, the maximum hip and knee flexion angle 
increased by 9.0–25.6° at faster running velocities (15), which could 
lead to longer stride lengths (17) and exacerbated changes in gait 
instability (18). When the running velocity increased, the maximum 
force in the lateral midfoot and metatarsal regions increased 
significantly by 16.8–47.7% (16), raising the risk of plantar injuries. 
Meanwhile, the large individual variability in runners’ perception and 
adaptation of running velocity may have also influenced the results of 
the study. Therefore, running velocity is an important factor that 
cannot be ignored when evaluating the impact of midsole hardness on 
running biomechanics. To date, few studies have systematically 
accounted for running velocity as a modifier of midsole-hardness 
effects and explored the implications of midsole hardness and 
multigradient velocity on running joint angles and plantar loading.

This study set six levels of running velocity to investigate the 
independent effects of velocity or midsole hardness, or the potential 
interactive effects between the two, on the lower limb joint motion 
angles and plantar loading during running, as well as to analyze the 
gait stability and the potential risk of injuries. We used 3D printing to 
design running shoes with two different midsole hardnesses. Based on 

previous reports, we  hypothesized that (1) the midsole hardness 
would have different effects on the motion of the lower limb joints’ 
angles at various velocity ranges. (2) At faster running velocities, the 
difference in midsole hardness significantly affects plantar loading.

2 Materials and methods

2.1 Participants

Rearfoot strike pattern is a common foot strike pattern observed 
in recreational runners (19). This study selected 12 rearfoot runners 
from among the 15 healthy participants recruited. The inclusion 
criteria were as follows: shoe size EUR 43 (male), without significant 
foot deformities, and having no musculoskeletal or neurological 
injuries that affected running within the previous 12 months. The final 
analysis included eight male participants (age: 26.1 ± 4.7 years, height: 
174.6 ± 4.8 cm, weight: 67.6 ± 8.3 kg, BMI: 22.1 ± 2.0 kg/m2). Before 
data collection, all participants signed the informed consent form 
approved by the Sichuan University Ethics Committee (K2025004) 
and were familiarized with the experimental protocol.

2.2 Shoes

Three-dimensional (3D) printing technology is popular in the 
manufacture of shoe midsoles because it can conveniently develop 
variable hardness (20, 21). Rhinoceros® 8.0 (Robert McNeel & Assoc, 
USA) was used to design the midsole structure. The design and 
adjustment of the lattice structure and void ratio can change the 
hardness of the shoe midsole and optimize cushioning performance. 
To combine the requirements of stress dispersion, displacement and 
energy in the shoe midsole (20), the study selected the Rhombic-
dodecahedron structure (R-structure) as the lattice of the midsole. The 
top and bottom structures connecting the insole and outsole were cut 
and polished for comfort. The heel thickness of the midsole is 30 mm. 
We controlled the hardness by designing the midsole structure with 
different void ratios (65 and 70%, respectively) to meet the daily wear 
requirements of shoes within the mechanical limits of the 3D-printed 
structure and to achieve the bending hardness requirements of the 
midsoles (more than 100,000 bending times). The formula for 
calculating the midsole void ratio is as follows:
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Thermoplastic polyurethane (TPU-95A) was selected as the midsole 
material due to its excellent wear resistance and abrasion resistance, 
making it particularly suitable for components subject to friction or 
repetitive motion (22). The selective laser sintering 3D printer (S-480 
model, TPM 3D, China) was used to print the midsole. Before printing 
the two midsoles, a simple study was conducted to characterize the 
differences in midsole hardness by measuring the compression behavior 
of the two midsole specimens. Based on the heel height of the midsole, 
we cut test specimens from the two midsole models in Rhino software, 
with dimensions of 40 mm (length) × 40 mm (width) × 30 mm (height). 
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The quasi-static uniaxial compression test was conducted using a 
universal mechanical testing machine (Instron 68TM-30, Instron, USA). 
The Bluehill Universal software was used to set the test parameters and 
collect data. Both specimens were compressed at a speed of 10 mm/min 
until a shortening of 50% was achieved (22). Figure 1 shows the stress–
strain curves obtained in the experiment. Both specimens obtained 
smooth and stable curves. Table 1 shows the results of the compression 
test and the Shore hardness test. As expected, specimens from the 
midsole with 65% void ratio had greater structural stiffness (higher 
modulus and maximum stress).

After the midsole was fully printed and customized into two pairs 
of finished shoes, the only difference between the two was the hardness 
of the midsole. Their hardness is within the range of the midsole 
hardness of common running shoes on the market (23). The 
3D-printed midsole was customized into two pairs of finished shoes, 
which differed only in the hardness of the midsole. In the subsequent 
study, they were called soft midsoles and hard midsoles.

2.3 Experimental protocol

The Noraxon Ultium® insoles (Noraxon Inc., Scottsdale, AZ, 
USA) were used to collect plantar loading data. This insole has 
acceptable accuracy and was used by many researchers to collect data 
on plantar loading (24). Noraxon Ultium® Motion IMUs (Noraxon 
Inc., Scottsdale, AZ, USA) were used to simultaneously collect joint 
angle data during running at a sample rate of 100 Hz. The Noraxon 
IMU sensors are reliable tools for measuring kinematics and have 
been used by many researchers to obtain joint angle data (25). 
According to the definition of anthropometry and Noraxon’s 
guidelines, sensors were placed on the following locations: pelvis 
(body area of the sacrum), thigh (midpoint of the lateral femur), 
shank (front and slightly medial along the tibia medial), foot (upper 

of the shoe corresponds to the 3–5 metatarsal area). All sensors were 
secured to Velcro straps around their respective body parts to ensure 
minimal motion artifacts but were exercised comfortably. Laboratory 
technicians verify the accuracy of all IMUs throughout the 
measurement process to ensure that they are properly collected. 
Participants’ anthropometric data were collected to build the lower 
extremity biomechanical model in Myo Research 3.20 software. 
Participants were asked to maintain a neutral reference posture to 
calibrate IMUs and Ultium insoles (25).

Individuals’ self-selected velocity (SSV) is thought to provide 
good coordination and stability (26). Participants walked on a 
treadmill and gradually increased the velocity until reaching their SSV 
during jogging. The other velocities were set to various increments of 
the SSV. The mean of the six velocities of the participants was 
6.9 ± 0.5 km/h (SSV), 8.3 ± 0.6 km/h (120% SSV), 9.7 ± 0.7 km/h 
(140% SSV), 11.1 ± 0.8 km/h (160% SSV), 12.5 ± 0.9 km/h (180% 
SSV), and 13.9 ± 1.0 km/h (200% SSV). Participants wore shoes of two 
different hardnesses and ran on a treadmill (PK12LT model, RELAX, 
China) with 0% grade, respectively. Each trial lasted 2 min with a 
5-min rest in between. Participants wore two pairs of shoes in a 
randomized order and had 15 min to familiarize themselves with the 
running shoes before each test.

2.4 Data analysis

Myo Research 3.20 software (Noraxon Inc., Scottsdale, AZ, 
USA) was used to process plantar loading and joint angle 
recordings. The IMU biomechanical model that provides joint and 
segmental kinematics was included in the software and complies 
with the International Society of Biomechanics recommendations 
for lower extremity joints (27). The software automatically filters 
raw data using a robust fusion algorithm (Kalman filter) optimized 

FIGURE 1

Stress-strain curves of different specimens in compression tests.
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for IMU data. Data from 20 consecutive running strides were 
extracted from the middle section of 12 running trials (2 shoes × 
6 velocities) for each participant. The gait cycle was defined as the 
period from one foot strike to the next for the same leg. The 
software automatically divided the plantar area into four regions 
(heel, arch, metatarsal and toes) based on eight sensors. The 
specific sensing distribution is as follows: heel region = average of 
medial and lateral heel area sensor data; metatarsal 
region = average of the first metatarsal, third metatarsal, and fifth 
metatarsal area sensor data; toe region = average of hallux and toe 
sensors data. Plantar force and joint angle data were time-
normalized to 100% of the gait cycle. The gait cycle was divided 
into stance and swing phases based on plantar force.

The interest variables selected for analysis in this study included 
maximum angles of hip, knee, and ankle in the sagittal, frontal, and 
transverse planes, joint ROM, normalized maximum force (NMF), 
average force percentage (AFP), and percentage of gait cycle 
subphases. The joint ROM is the absolute value of the maximum angle 
minus the minimum angle during the gait cycle. The insoles were 
automatically normalized to each participant’s body weight, and the 
NMF eliminated the effect of weight differences. The AFP is the 
percentage of the average force in a certain foot region relative to all 
areas during the gait cycle. In subsequent studies, it is used to assess 
gait loading patterns and load transfer in plantar regions. One side 
(left or right) of their dominant foot was selected (the leg a participant 
would use to kick a soccer ball) in each participant for data 
analysis (28).

2.5 Statistical analysis

Statistical analysis was performed using SPSS 26.0 (IBM, 
Armonk, USA). The Shapiro–Wilk test was used to check for 
normal distribution. A two-way (velocity × midsole hardness) 
repeated measures ANOVA was used to test for between-group 
differences in plantar loading, joint angles and joint ROM, and to 
assess the interactive effect of velocities and midsole stiffness on 
data. When the homogeneity of variance was rejected, the results 
were corrected using the Greenhouse–Geisser method. Post hoc 
comparisons at different running velocities for the same midsole 
hardness were corrected using the Bonferroni method. Paired 
t-test and Wilcoxon’s signed-rank test were used to compare the 
kinetic and kinematic data of two midsoles at the same velocity. 
Confidence intervals for statistical analyses were set at 95% and 
the significance level was set at p < 0.05. Effect sizes (ES) were 
calculated for all significant mean differences. ES (η2 ) assessed 
ANOVA, interpreted as small (< 0.06), medium (0.06–0.14) and 
large (> 0.14); ES ( ′Cohen d) assessed t-tests, interpreted as small 
(< 0.5), medium (0.5–0.8) and large (> 0.8) (29).

3 Results

3.1 Lower limb joint angles

Table 2 shows the p-values and ES of the maximum angle and 
ROM of the lower limb joints affected by velocity and midsole 
hardness. Table  3 shows the mean and standard deviation of the 
maximum angle and ROM of the lower limb joints under 12 
conditions. (1) When velocity was the main effect, the maximum hip 
flexion angle of both midsoles and the maximum ankle abduction 
angle of the hard midsole showed significant changes during the stance 
phase. In the swing phase, the maximum flexion angles of the hip and 
knee joints showed significant changes in the two midsoles. During the 
whole gait cycle, significant changes occurred in the maximum flexion-
extension ROM of the hip and knee joints in both midsoles. The 
maximum abduction-adduction ROM of the knee joint and the 
maximum plantarflexion-dorsiflexion ROM of the ankle joint in the 
soft midsole also showed changes. The maximum abduction-adduction 
ROM of the ankle joint in the hard midsole was changed. (2) When 
midsole hardness was the main effect, the maximum ankle inversion 
angle in the stance and swing phases was smaller in soft midsoles than 
in hard midsoles during SSV and 120% SSV. During 180–200% SSV, 
the maximum hip abduction angle in the swing phase in the soft 
midsole was larger than that in the hard midsole. In the 200% SSJV, the 
soft midsole had a smaller maximum ankle abduction angle during the 
stance phase than the hard midsole. The soft midsole had a larger 
maximum plantarflexion-dorsiflexion ROM of the ankle in the gait 
cycle than the hard midsole. (3) In the interaction effect, velocity and 
midsole hardness had a significant interactive effect on the maximum 
inversion and abduction angle of the ankle joint during the stance 
phase, and the maximum abduction angle of the hip joint during the 
swing phase. Figure 2 shows the proportion of the stance phase and 
swing phase of runners’ gait, as well as the motion of lower limb joints 
during the gait cycle. At the end of the stance phase, the ankle joint has 
a greater inversion angle in hard midsoles than in soft midsoles.

3.2 Plantar loading

Table 4 shows the p-values and ES of NMF and AFP affected by 
velocity and midsole hardness. Table 5 shows the mean and standard 
deviation of NMF and AFP under 12 conditions. (1) When velocity 
was the main effect, the NMF of the metatarsal and heel regions in the 
soft midsoles changed significantly. The NMF of all regions in hard 
midsoles changed, except the toe region. The AFP of both midsoles 
changed in the metatarsal region. (2) When midsole hardness was the 
main effect, during 120–200% SSV, soft midsoles had greater AFP in 
the arch region than hard midsoles. At 200% SSV, soft midsoles had 
greater NMF in the metatarsal region than hard midsoles. (3) In the 
interaction effects, velocity and midsole hardness had a significant 
interactive effect on NMF in the metatarsal region and AFP in the 
arch region.

4 Discussion

This study investigated the biomechanical response of runners at 
different velocities with two midsole hardnesses. The results of the 

TABLE 1 Compression test results and hardness of the two types of 
midsoles.

Midsole type Elastic 
modulus

(kPa)

Maximum 
stress
(kPa)

Hardness
(Shore-C)

A 65% void ratio 1,300 229.3 68

A 75% void ratio 520 124.3 52
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study support two hypotheses: (1) midsole hardness has a significant 
effect on ankle joint and hip joint angle activity at 100–120% SSV and 
180–200% SSV. (2) Midsole hardness affects plantar loading patterns. 
Soft midsoles have greater AFP in the arch region. At 200% SSV, the 
NMF in the metatarsal region is significantly greater in soft midsoles 
than for hard midsoles.

The midsole hardness could affect the runner’s posture stability 
during jogging and fast running. Our study found that velocity and 
midsole hardness had a significant interactive effect on the 
maximum ankle inversion angle during the stance phase. Previous 
studies have found that the impact of running velocity on ankle 
joint inversion and eversion was not significant (30, 31). In a 
previous study, the maximum ankle inversion angle during the 
stance phase while barefoot or near-barefoot was similar to the 
results of wearing hard shoes in our study (32). Our research 
showed that as the velocity increased, the maximum ankle inversion 
angle in the soft midsoles increased, and was similar to that of hard 
midsoles only at higher running velocities. One possible 
interpretation is that when running slowly, the stance phase is 
longer, and the soft midsole is compressed for a longer time and to 
a larger extent. This might cause the participant to enter the swing 
phase before the ankle has been inverted. In the late stance, as the 
ankle is inverted, the oblique and longitudinal midtarsal axes 
become more skewed, allowing the foot to push off the ground 
stably and powerfully (33). Wearing soft midsoles results in a 
smaller ankle inversion angle and a closer-to-parallel axis. This 
increases the movement of the transverse tarsal joint and increases 
foot mobility, which could lead to a loss of stability when pushing 
off (21). This may lead to instability in the runner’s ankles, increasing 
the risk of sprains, while reduced stability during the push-off phase 

may compel other joints or muscles to adopt compensatory 
strategies. The hard midsole might provide a more stable foundation 
for the foot to enter the swing phase.

In running faster, most of the forward momentum is generated by 
the swinging rather than the standing leg (34). During the swing 
phase, our study found that velocity and midsole hardness have a 
significant interactive effect on the maximum hip abduction angles. 
The soft midsole had a significantly larger maximum hip abduction 
angle than the hard midsole at 180% SSV and 200% SSV. At the same 
time, soft midsoles have a larger ROM in the dorsiflexion-
plantarflexion of the ankle than hard midsoles. This could be because 
runners in soft midsoles need greater joint movement to maintain 
high muscle activity (35). At the same time, high levels of muscle 
activity could lead to fatigue, which increases the ROM of joint and 
further weakens postural stability (28). Our research showed no 
significant effect of midsole hardness on hip and ankle angle during 
the stand and swing phase at 140–160% SSV. A previous study has 
found that the midsole hardness has no significant effect on runners 
under similar velocities and hardness conditions, and has little 
relationship with the risk of running injuries (36). Therefore, the effect 
of midsole hardness on running stability may be more pronounced 
during slow and high-velocity running.

Previous studies have shown that an increase in running velocity 
leads to a significant increase in plantar force (16). Hard midsoles 
often cause higher plantar load (12). Our study found that velocity and 
midsole hardness had a significant interactive effect on the NMF in 
the metatarsal region. It is worth noting that as the velocity increased, 
the NMF in the metatarsal region of the hard midsole with the special 
3D-printed structure increased more slowly than that of the soft 
midsole. At 200% SSV (high-velocity running), the NMF in the 

TABLE 2 The effects (p-value, ES) between velocity and midsole hardness on joint maximum angles (°) and range of motion (°) during running.

Angle type Velocity Midsole hardness Velocity× 
Hardness

Soft 
midsole

Hard 
midsole

SSV 120% 
SSV

140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

MA-Stance phase

Hip flexion 0.023, 0.68 0.032, 0.66 0.224 0.357 0.641 0.894 0.409 0.573 0.770

Ankle inversion 0.262 0.766 0.017, 

2.37

0.018, 2.14 0.674 0.401 0.735 0.374 0.016, 0.78

Ankle abduction 0.141 0.017, 0.71 0.109 0.639 0.603 0.787 0.187 0.016, 1.38 0.043, 0.64

MA-Swing phase

Hip flexion <0.001, 0.86 <0.001, 0.88 0.244 0.730 0.897 0.496 0.886 0.566 0.267

Hip abduction 0.057 0.602 0.929 0.791 0.409 0.069 0.044, 1.10 0.047, 1.11 0.037, 0.19

Knee flexion 0.001, 0.84 <0.001, 0.89 0.485 0.344 0.738 0.883 0.599 0.998 0.570

Ankle inversion 0.644 0.565 0.041, 

1.13

0.040, 1.14 0.989 0.320 0.165 0.241 0.504

ROM-Gait cycle

Hip Flexion-extension <0.001, 0.93 <0.001, 0.92 0.152 0.493 0.176 0.133 0.632 0.944 0.292

Knee Flexion-extension 0.007, 0.79 0.005, 0.81 0.562 0.965 0.616 0.690 0.816 0.766 0.659

Knee abduction-adduction 0.022, 0.69 0.218 0.439 0.828 0.480 0.484 0.320 0.122 0.689

Ankle Dorsiflexion-plantarflexion 0.021, 0.24 0.396 0.947 0.804 0.203 0.095 0.053 0.021, 0.75 0.425

Ankle abduction-adduction 0.374 0.002, 0.81 0.328 0.756 0.100 0.060 0.887 0.376 0.135

SSV, self-selected velocity; MA, maximum angles; ROM, range of motion. Bold values: the mean difference is significant at the 0.05 level.
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metatarsal region of hard midsoles was significantly lower compared 
to soft midsoles. This is different from previous research (37). One 
reasonable interpretation could be that the hard midsole based on 
proper R-structure void ratio differs from ordinary hard materials 
(20). The R-structure is a unique rhombic structure that satisfies 
geometric symmetry and constitutes a stable three-dimensional 
structure. The dense rhombic lattice structure has higher energy 
absorption and release functions than the sparse structure (38). Under 
the condition of the midsole with a 65% void ratio based on 
R-structure, sufficient hardness could provide runners with stable 
support while offering proper energy absorption and resilience. 
Compared to a softer midsole, it might significantly reduce the risk of 
stress injuries in the forefoot region during high-velocity running. 
Additionally, this study found that midsole hardness affects AFP in the 
arch region. Hard midsoles had significantly lower AFP in the arch 
region than soft midsoles. Plantar loading patterns differed between 
the two midsole hardnesses. During the landing and foot ‘forward 

rolling’ phases, the hard midsole was rigid enough to provide greater 
arch support (11), which reduced the AFP in the arch region.

To summarize these results, we have an important finding that 
the effect of midsole hardness on joint angle and plantar loading 
during running may be nonlinear and influenced by velocity. At a 
slow velocity, the vertical force is small, and the soft midsole 
provides a soft contact between the foot and the shoe, which 
reduces the compression strain on the foot’s soft tissues (39). The 
foot has better compliance, thereby reducing the overall plantar 
loading. When given the same stress, soft midsoles get more 
compressed than hard ones. As the vertical force keeps going up, 
the midsole compression will reach its limit when it reaches a 
certain velocity. The ability of soft midsoles to absorb and disperse 
plantar force remains stable (39). The ROM of the joint could 
provide more evidence for this explanation. In our study, the 
ROM of the soft midsole during ankle dorsiflexion-plantarflexion 
increased significantly as velocity increased. It remained within a 

TABLE 3 Means (standard deviations) of maximum joint angles (°) and range of motion (°) in twelve conditions.

Angle 
type

Soft midsole Hard midsole

SSV 120% 
SSV

140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

SSV 120% 
SSV

140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

MA-Stance phase

Hip flexion 23.1

(8.3)

20.4

(6.9)

20.1

(8.9)

22.0

(8.3)

25.4

(7.8)

26.4

(7.4)

18.5

(5.9)

17.5

(5.0)

18.4

(5.2)

21.5

(6.6)

22.5

(5.7)

24.6

(5.1)

Ankle 

inversion

2.2

(1.0)

1.7

(2.8)

2.2

(2.5)

5.6

(6.2)

6.0

(5.6)

5.6

(4.4)

5.8

(1.9)

6.5

(1.5)

6.1

(2.8)

5.1

(1.5)

9.8

(3.5)

8.0

(10.5)

Ankle 

abduction

4.3

(1.9)

3.8

(1.4)

2.2

(4.6)

3.0

(1.6)

1.1

(3.0)

2.1

(2.3)

3.0

(1.2)

3.4

(1.7)

3.2

(1.9)

2.8

(1.6)

2.9

(1.9)

4.9

(1.7)

MA-Swing phase

Hip flexion 31.8

(6.8)

30.5

(5.9)

30.5

(8.6)

33.0

(8.7)

38.2

(7.9)

39.7

(6.8)

28.2

(5.0)

29.4

(6.3)

31.0

(8.4)

36.0

(8.3)

38.8

(8.1)

41.9

(8.2)

Hip abduction 3.6

(3.0)

3.3

(3.1)

5.1

(3.9)

6.8

(3.0)

7.5

(3.2)

6.2

(3.4)

3.4

(4.9)

2.9

(3.6)

3.4

(4.1)

2.5

(5.3)

2.8

(5.1)

1.4

(5.1)

Knee flexion 72.9

(11.5)

79.1

(9.4)

80.5

(11.1)

85.6

(11.8)

92.5

(10.6)

93.8

(11.4)

68.8

(11.1)

74.1

(10.9)

78.4

(13.6)

84.5

(16.7)

88.5

(18.0)

93.7

(19.1)

Ankle 

inversion

6.3

(3.4)

5.3

(2.6)

9.0

(6.6)

9.9

(7.7)

8.5

(3.2)

8.1

(5.5)

9.3

(1.6)

10.7

(6.2)

9.1

(3.2)

15.4

(12.9)

15.5

(13.2)

14.5

(13.7)

ROM- Gait cycle

Hip Flexion-

extension

44.6

(7.6)

41.2

(7.6)

40.7

(14.2)

46.2

(10.7)

53.9

(7.2)

54.3

(7.9)

41.0

(6.2)

40.1

(8.1)

44.7

(10.2)

49.3

(10.7)

52.1

(11.0)

54.4

(9.6)

Knee Flexion-

extension

65.4

(2.0)

65.1

(3.6)

67.9

(7.7)

72.1

(8.3)

78.5

(6.8)

79.4

(6.5)

65.7

(4.4)

66.6

(6.1)

71.4

(10.2)

75.6

(12.8)

80.3

(13.6)

83.8

(15.0)

Knee 

abduction-

adduction

13.0

(4.9)

13.0

(4.9)

15.8

(8.3)

17.3

(5.5)

18.7

(6.3)

17.1

(4.1)

11.4

(2.9)

14.1

(9.8)

14.7

(8.9)

16.0

(9.9)

16.0

(7.4)

13.5

(3.5)

Ankle 

Dorsiflexion-

plantarflexion

37.7

(9.6)

40.9

(7.0)

43.3

(8.1)

43.4

(6.0)

43.1

(6.8)

44.4

(6.6)

37.5

(7.7)

39.8

(9.0)

39.7

(7.9)

39.8

(6.6)

39.5

(6.4)

40.6

(6.7)

Ankle 

abduction-

adduction

14.1

(3.6)

15.6

(10.2)

13.7

(4.4)

12.9

(3.3)

16.5

(9.7)

15.6

(5.7)

15.5

(1.0)

17.0

(7.4)

16.4

(2.9)

15.8

(3.6)

17.3

(8.1)

19.9

(8.3)

SSV, self-selected velocity; MA, maximum angles; ROM, range of motion.
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FIGURE 2

Mean joint angle changes during the gait cycle for running at different speeds in soft and hard midsoles. (A) Hip abduction (+) - adduction (−). (B) Ankle 
dorsiflexion (+) - plantarflexion (−). (C) Ankle inversion (+) - eversion (−). (D) Ankle abduction (+) - adduction (−).

TABLE 4 The effects (p-value, ES) between velocity and midsole hardness on normalized maximum force (%BW) and average force percentage (%) 
during running.

Plantar 
regions

Velocity Midsole hardness Velocity× 
HardnessSoft 

midsole
Hard 

midsole
SSV 120% 

SSV
140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

NMF

Toes 0.167 0.065 0.759 0.570 0.470 0.612 0.795 0.630 0.542

Metatarsal <0.001, 0.86 0.006, 0.76 0.334 0.545 0.415 0.487 0.135 0.032, 0.63 0.013, 0.28

Arch 0.266 0.038, 0.65 0.481 0.407 0.751 0.870 0.744 0.822 0.484

Heel 0.020, 0.70 0.009, 0.75 0.587 0.349 0.387 0.343 0.659 0.396 0.575

AFP

Toes 0.326 0.825 0.552 0.521 0.176 0.206 0.114 0.118 0.241

Metatarsal 0.036, 0.65 0.028, 0.67 0.173 0.230 0.134 0.064 0.109 0.061 0.544

Arch 0.347 0.138 0.062 0.041, 1.13 0.018, 1.34 0.013, 1.41 0.015, 1.39 0.014, 1.40 0.026, 0.24

Heel 0.065 0.228 0.924 0.635 0.667 0.534 0.485 0.848 0.599

SSV, self-selected velocity; NMF, normalized maximum force; AFP, average force percentage. Bold values: the mean difference is significant at the 0.05 level.
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certain range of fluctuation during high-velocity running. A 
previous study with velocity conditions similar to the 180% SSV 
in this study found similar results to ours (8). Their study showed 
a significant effect of midsole hardness on lower limb joint angles 
in the sagittal plane. The regulatory effect of midsole hardness on 
lower limb movement control might be amplified during high-
velocity running. Overall, the current results show that the impact 
of different midsole hardnesses on joint angle and plantar load is 
more pronounced during jogging (100-120%SSV) and high-
velocity running (180–200% SSV).

Our study aims to address the mixed results observed in the 
literature, which might be caused by differences in running surface 
(40) and shoe type (14), variations between ground and treadmill 
running (41), and foot strike patterns (42). Our study systematically 
controlled two key variables and minimized changes in other factors. 
Running velocity through control of the treadmill conveyor belt 
(41), at the participant’s SSV and SSV’s incremental velocities. 
Midsole hardness is achieved through 3D printing, while 
maintaining consistency in other parts, such as the upper  and 
outsole (40). From the perspective of potential sports injury 
prevention, our research highlighted the necessity of selecting shoe 
hardness and running velocity based on runners’ needs, while also 
providing information for customized running training measures to 
minimize joint and foot injury burden. Meanwhile, it provided 
valuable data for two midsole hardness levels within the mechanical 
range that can be achieved by 3D printing at present. This study has 
the following strengths and limitations. To the best of our knowledge, 
this is the first study to investigate the effects of two midsole 
hardnesses on lower limb joints and plantar loadings across a wide 
range of relative running velocities. Due to 3D printing limitations, 
the hardness in this study falls within the range of medium to hard 

midsoles for commercially available running shoes (23), and the 
effects of softer midsoles (Shore C-38 to C-51) need to be further 
investigated. Additionally, due to the restrictions imposed by the 
inclusion criteria, we  ultimately included only eight male 
participants. Further data collection on female runners is needed in 
the future.

5 Conclusion

Within a wide range of velocity (jogging to fast running), 
we found for the first time that the effect of midsole hardness on 
joint angle and plantar loadings during running could 
be  non-linear. Running velocity and midsole hardness had an 
interactive effect on maximum hip and ankle abduction angles, 
maximum ankle inversion angles, NMF in the metatarsal region 
and AFP in the arch region. At 100–120% SSV (jogging) and 
180–200% SSV (high-velocity running), soft midsoles might affect 
the runner’s postural stability. At 180–200% SSV, the hard midsole 
with special structures allows a flatter rise in plantar maximum 
force. Compared with soft midsoles, it reduced the maximum 
force in the metatarsal region. At ranges from 140 to 160% SSV, 
midsole hardness may not significantly affect the risk of injury to 
runners in the hip, knee, ankle, and rearfoot and forefoot regions. 
Therefore, we suggest that a running posture at this range is likely 
safer, whether wearing a shoe with a soft or hard midsole. These 
results emphasize that running velocity and midsole hardness 
should be used together to assess running gait and potential injury 
risk. This study also provides valuable information for runners 
and researchers in developing effective running training programs 
and designing suitable running shoes based on multiple velocities.

TABLE 5 Means (standard deviations) of normalized maximum force (%BW) and average force percentage (%) in twelve conditions.

Plantar 
regions

Soft midsole Hard midsole

SSV 120% 
SSV

140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

SSV 120% 
SSV

140% 
SSV

160% 
SSV

180% 
SSV

200% 
SSV

NMF

Toes 38.3

(14.6)

39.0

(15.0)

39.0

(14.6)

44.0

(16.5)

45.8

(17.7)

46.9

(16.4)

46.9

(16.4)

36.9

(11.4)

41.4

(14.5)

42.1

(16.0)

46.8

(16.2)

48.5

(18.3)

Metatarsal 72.9

(32.4)

88.5

(26.6)

93.9

(27.9)

99.6

(26.5)

109.5

(28.8)

112.4

(28.6)

79.9

(21.8)

85.1

(21.5)

88.5

(20.9)

94.1

(20.8)

97.7

(19.1)

97.0

(19.1)

Arch 32.4

(12.1)

36.4

(12.0)

38.7

(12.2)

40.4

(12.6)

42.2

(14.2)

43.0

(14.5)

35.2

(18.2)

40.3

(19.4)

40.3

(19.1)

41.3

(23.2)

44.0

(23.8)

44.5

(24.1)

Heel 100.3

(35.8)

94.8

(41.6)

105.1

(51.1)

109.1

(45.2)

113.6

(55.1)

126.0

(55.4)

93.8

(39.0)

79.6

(23.4)

91.3

(23.7)

96.2

(18.1)

106.6

(18.8)

109.0

(20.1)

AFP

Toes 13.4

(4.0)

15.0

(4.8)

13.5

(3.7)

13.9

(4.0)

13.4

(4.6)

12.8

(4.1)

14.8

(4.4)

16.2

(3.9)

16.6

(4.7)

16.3

(4.6)

16.7

(4.9)

16.9

(5.9)

Metatarsal 36.3

(7.6)

38.3

(8.9)

37.1

(8.7)

36.1

(8.5)

35.9

(9.1)

34.5

(9.4)

41.7

(11.5)

43.5

(10.0)

42.8

(9.1)

43.1

(9.3)

41.4

(7.8)

41.2

(8.1)

Arch 22.2

(8.7)

23.7

(9.5)

24.6

(9.8)

25.1

(10.1)

25.6

(10.3)

25.3

(10.1)

14.9

(5.3)

14.9

(5.5)

14.0

(5.4)

13.2

(6.3)

13.9

(6.0)

13.7

(5.9)

Heel 28.2

(8.1)

23.0

(8.4)

24.8

(7.8)

24.9

(7.3)

25.2

(8.4)

27.3

(8.7)

28.6

(10.8)

25.3

(8.8)

26.7

(7.6)

27.4

(7.1)

28.0

(6.6)

28.2

(7.0)

SSV, self-selected velocity; NMF, normalized maximum force; AFP, average force percentage.
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