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Joint spatiotemporal evaluation
of multiple healthcare resources:
hospitals, hospital beds and
physicians across 365 Chinese
cities over 22 years
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Background: Regional disparities in healthcare resource allocation across space
and time present significant challenges to the global achievement of SDG 3,
SDG 10, and SDG 11. To this end, we proposed a joint spatiotemporal evaluation
framework to assess the synergistic efficiency of multiple healthcare resources.
Methods: Using China as a case study, we analyzed data from 365 cities (2000—
2021) on three key healthcare resource indicators: hospitals, hospital beds, and
physicians. A composite healthcare resource score was constructed using the
entropy weight method. We developed a three-dimensional joint spatiotemporal
evaluation framework incorporating spatial Gini coefficient, emerging hotspot
analysis, and Bayesian spatiotemporally varying coefficients (BSTVC) model with
spatiotemporal variance partitioning index (STVPI) to evaluate spatiotemporal
equity, agglomeration, and influencing factors. Individual indicators were
evaluated to validate the framework’s robustness.

Results: (i) Spatiotemporal description: The composite indicator, weighted
by hospitals (25%), hospital beds (46%), and physicians (29%), showed only a
modest increase from 2000 to 2021, with persistently lower values in western
and northern regions. (i) Common spatiotemporal equity: The spatial Gini
coefficient for the composite indicator increased annually by 0.34%, mirroring
trends in hospital beds (0.34%) and physicians (0.26%) but contrasting with
hospitals (—0.32%). This suggested that declining equity was mainly driven by
hospital beds and physicians, partially offset by the more balanced distribution
of hospitals. (iii) Common spatiotemporal agglomeration: Hotspot intensity for
the composite indicator was lower than that for hospitals but higher than that
for hospital beds and physicians. Cold spots were more concentrated for the
composite indicator than for any individual indicator, with less than 10% overlap
across the three indicators, indicating weak regional synergy. (iv) Common
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1 Introduction

spatiotemporal drivers: BSTVC and STVPI methods revealed consistent patterns
of explainable percentages across four healthcare resource indicators, with
population density (37.96%, 95% Cl: 30.05-43.05%) and employed population
density (31.63%, 30.69-33.83%) emerging as dominant common drivers,
supporting unified and coordinated policy interventions.

Discussion: We proposed a joint spatiotemporal evaluation framework to
quantify both common and differentiated allocation patterns and driving factors
across multiple healthcare resource indicators, highlighting the necessity for
type-specific, temporally responsive, and spatially adaptive interventions to
support dynamic monitoring and precise regulation of regional healthcare
resource allocation globally.

KEYWORDS

regional healthcare resources, multiple indicators, joint spatiotemporal evaluation,
spatiotemporal heterogeneity, healthy cities, SDG, China

inequalities, and sustainable cities and communities (4). Empirical
evidence confirms a persistent spatial Matthew effect in healthcare

The equitable allocation of regional healthcare resources
constitutes a critical foundation for achieving universal health
coverage (1, 2). However, the Universal Health Coverage Service
Coverage Index (UHC SCI), proposed by the World Health
Organization, has demonstrated a significant global decline since
2015, with regions exhibiting delayed progress in basic service
coverage simultaneously manifesting substantial disparities in
healthcare resource distribution (3). This pattern directly undermines
the attainment of Sustainable Development Goals (SDGs) 3, 10, and
11, which respectively address good health and well-being, reduced
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resource allocation, characterized by concentrated abundant quality-
care resources in developed areas and persistent scarcity in
underdeveloped areas (5). Such spatial imbalances have progressively
intensified over time (6), resulting in measurable spatiotemporal
disparities in geospatial accessibility to healthcare services (7, 8).
Previous studies on the allocation of healthcare resources and the
delivery of healthcare services in China have revealed marked regional
inequities and temporal variations in healthcare capacity (9). These
findings indicate that overlooking spatial and temporal heterogeneity
obscures local inequities and dynamic trends, highlighting the
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necessity for geographically and temporally tailored health-resource
allocation policies (10, 11). A comprehensive spatiotemporal analysis
framework therefore becomes imperative to analyze the
spatiotemporal patterns of healthcare resource allocation, and
ultimately enabling evidence-based policy formulation for optimizing
resource allocation strategies (12, 13).

Previous studies have predominantly evaluated the healthcare
resource allocation patterns and associated influencing factors from
either spatial or temporal perspective (7, 14-16). These studies have
largely relied upon an individual indicator, mainly focusing on the
number of hospital beds, hospital density, or physician-to-population
ratio to quantify resource allocation patterns and yield foundational
insights for optimizing single-type healthcare resource. However, a
couple of issues embedded in real-world health planning practices
would enrich research in this area. First, the multi-dimensional nature
of healthcare system, which compromises interdependent elements
such as hospitals, physicians and hospital beds (17-20), necessitates
integrated analysis to reveal the complex interactions among these
elements. Physicians deliver essential clinical services, beds constitute
the foundational infrastructure, and hospitals integrate these human
and physical resources into a coordinated care delivery system (21-
23). The optimal service delivery requires coordination of hospitals,
physicians and hospital beds, as their interactive coordination
fundamentally determines healthcare service efficiency (24). Above
mentioned studies nevertheless persist in employing an individual
indicator, disregarding the interactive dynamics between these core
elements (25). Thus, current evaluations of healthcare resource
allocation are inaccurate due to failure to consider interactions among
multiple resources.

Second, the comprehensive spatiotemporal evaluation typically
three equity (26),
spatiotemporal agglomeration (24), and spatiotemporal influencing
(27-29). Theses enabled

spatiotemporal analysis of regional healthcare resource allocation,

included dimensions: spatiotemporal

factors dimensions collectively
crucial for adaptive policymaking. Existing macro-level research,
grounded in the theoretical framework of health determinants and
using geographic administrative divisions as the unit of analysis
(30), indicates that top-tier macro-scale natural environmental
variables and social environmental factors jointly drive the
spatiotemporal inequities in healthcare resource allocation (31-
33). Existing research frequently neglected the systematic
integration of these perspectives, resulting in fragmented
understanding of resource pattern, potentially exacerbating
resource misallocations (25, 34). Such methodological deficiencies
would ultimately produce suboptimal regional strategies incapable
of addressing real-world complexities, thereby undermining the
achievement of SDGs.

In addition, the comprehensive evaluation approach, compared to
single-indicator evaluation, improves analytical precision through
systematic integration and weighting of multiple indicators, thereby
fully capturing the real contribution and the relative importance of
each type of resource. This approach reduces analytical biases
associated with single-indicator evaluation while offering an
integrated macro-level framework to evaluate spatial and temporal
resource distribution patterns (35). When combined with
spatiotemporal analytical dimensions, it provides an empirical basis
for formulating evidence-based strategies to enhance allocation
efficiency and equity (36). Crucially, integrating multi-dimensional
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within the
comprehensive evaluation framework not only validates the

spatiotemporal analyses of multiple indicators
effectiveness of the composite indicator but also reveals intra-regional
disparities that might otherwise be obscured. Such a spatiotemporal
evaluation of healthcare resource allocation based on the synergy of
multiple indicators, serves as a methodological advancement critical
for addressing systemic health inequities and advancing progress
toward SDGs (37).

China currently faces a notable challenge of healthcare resource
maldistribution (12, 38, 39). The compounding effects of population
aging (40, 41), accelerated urbanization (42), and policy-induced
administrative boundary realignments (43) have exacerbated spatial
inequities in healthcare resource allocation across urban China,
thereby amplifying disparities in population health outcomes (44).
This context necessitates a comprehensive spatiotemporal evaluation
of multi-dimensional healthcare resource distribution patterns in
Chinese cities, which would inform evidence-based intervention
strategies to advance the implementation of the Healthy China 2030
Strategy (45, 46).

To address the challenges of proposing a joint evaluation
framework toward multiple healthcare resource indicators from the
spatiotemporal heterogeneity perspective, this study firstly
constructed a composite healthcare resource indicator integrating
hospitals, hospital beds, and physicians across 365 Chinese cities
(2000-2021) using the entropy weight method. Then, a three-stage
joint spatiotemporal evaluation framework was developed: (i) spatial
Gini coeflicient analysis to assess common spatiotemporal equity
dynamics, (ii) emerging hotspot detection to capture common
and (iii)
spatiotemporally varying coefficients (BSTVC) model with

spatiotemporal agglomeration patterns, Bayesian
spatiotemporal variance partitioning index (STVPI) to identify
common socioeconomic and environmental determinants and
quantify their spatiotemporal explainable percentages. Our approach
is expected to advance SDG-oriented resource optimization by
enabling spatially and temporally adaptive policy design, with
applications extending to global contexts facing similar challenges in
balancing equitable distribution and targeted health planning.

2 Data and methods
2.1 Data

This study utilized panel data spanning 2001 to 2021 from 365
Chinese cities, including three healthcare resource indicators, namely
hospitals, hospital beds, and licensed (assistant) physicians, and 34
socioeconomic and environmental influencing factors (24, 27), which
were provided in Supplementary Table S1. Healthcare resource and
socioeconomic data derived from China City Statistical Yearbook
(2000-2021)," while environmental metrics sourced from validated
remote sensing platforms. For example, SO,, PM, 5, and normalized
difference vegetation index (NDVI) were obtained from the Giovanni
platform,? PM, and PM,, were obtained from the Zenodo platform,’

1 https://data.cnki.net/
2 https://giovanni.gsfc.nasa.gov/giovanni/

3 https://zenodo.org/
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and nighttime light data were obtained from the Figshare
platform (47).

We employed the Healthcare Resource Density Index (HRDI) as
the dependent variable for single indicators, mitigating single-metric
bias inherent in population- or area-exclusive denominators (12). The
HRDI is defined as:

HRDL = (e /P ) (v 1 A ) (1)

where i, j and ¢ refer to city i, healthcare indicator j and year ¢, y;
refers to the quantity of city i’s healthcare resource j in year t, P, refers
to the number of city i’s total population in year ¢, and A is city i’s land
area in year f.

The composite healthcare resource score, derived via the
entropy weighting method (48), serves as the main dependent
variable. This objective weighting technique applies information
entropy principles to calculate indicator-specific weights through
Equation (1) based on dispersion magnitude, thereby eliminating
subjective bias and quantifying the relative importance of
healthcare resource indicators.

The independent variables included socioeconomic and
environmental factors related to population and economy, industry
and employment, education and human resources, and
environment and infrastructure. This study employed variance
inflation factor (VIF) and node purity indicator for variable
selection. We set a VIF threshold of 5 to identify variables with
lower multicollinearity, and used node purity indicator to quantify
explanatory significance through complex nonlinear relationships

and interaction effects.
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2.2 Methods

2.2.1 Joint spatiotemporal evaluation framework
This study established a multi-dimensional spatiotemporal
evaluation framework for city healthcare resource allocation in China,
utilizing spatiotemporal panel data from Chinese cities spanning all
22 years from 2000 to 2021. Guided by health determinants theory,
this study focused on macro-scale social and natural environmental
factors that shaped spatiotemporal inequities in healthcare resource
allocation. Figure 1 details the analytical workflow: (i) computation of
composite scores via entropy weighting, (ii) quantification of the
common equity dynamics through spatial Gini analysis, (iii)
identification of common clustered spatial patterns and temporally
evolving priority regions via emerging hotspot detection, (iv)
revelation of the common spatiotemporal heterogeneous impacts of
influencing factors using the BSTVC model and (v) quantification of
spatiotemporal contributions of explanatory factors via STVPL. Steps
ii to v underwent parallel

implementation for single-

indicator evaluation.

2.2.2 Spatiotemporal equity evaluation

The spatial Gini coeflicient quantifies geographic disparities in
healthcare
jurisdictional allocation dynamics, thereby capturing spatial

resource distribution by incorporating inter-
heterogeneity absent in conventional Gini metrics (26). It is a
powerful tool for understanding the inequities in resource
distribution across different regions. Values range theoretically
from 0 to 1, with lower values indicating spatially balanced
allocations and higher values reflecting concentrated distributions

(49). This coeflicient has been widely applied in various fields to
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assess the spatial equity of resource allocation (50). This study
computed the spatial Gini coefficient using the Ictool package in R
4.4.0 (51), which is a reliable and efficient tool for spatial analysis.

2.2.3 Spatiotemporal agglomeration evaluation

Emerging hotspot analysis applies the Getis-Ord Gi* statistic
to quantify spatiotemporal clustering of healthcare resource
allocation efficiency. This method has been widely utilized in
spatial data analysis to detect crucial patterns of clustering across
different regions (52, 53). Statistical outputs (Z-scores and
p-values) identify notable spatial autocorrelation patterns, which
helps researchers and policymakers understand the distribution
dynamics of healthcare resources. The hotspots manifest as high-
value units surrounded by high-value neighbors, while coldspots
exhibit low-value units embedded in low-value surroundings (54),
thereby providing a clear visualization of areas with concentrated
resources and areas in need of improvement.

2.2.4 Spatiotemporal drivers evaluation

The BSTVC model is a class of local spatiotemporal regression
based on Bayesian statistics (55-57). A key advantage of this model
is its ability to use a single “full-map” framework to uniformly
capture spatiotemporal variations across all local regression
coefficients (58). This enables precise identification of the
spatiotemporal heterogeneous impacts of explanatory variables on
thereby
nonstationarity. The BSTVC model offers a powerful tool for

the target variable, revealing  spatiotemporal
uncovering the complex spatiotemporal dynamics and influencing
mechanisms affecting the target variable (55). The BSTVC model

can be formulated as follows:

K K
log(yir) =D i Xiek + Yy Xick + &it (2)
k=1 k=1

_ ok
ik | peix ~N Hao o= ik | Ve-vko Vi k

w,,k

2 2 (3)
~ N(Z}’t—l,k +7t—2,k>0'yk),5it ~ N(O,o-,;)

where y; refers to the number of healthcare resource in city i at
time t. The independent variables X constitute a K-dimensional
vector of socioeconomic and environmental covariates exhibiting
spatiotemporal heterogeneity, which collectively influence the
dependent variable y. Local parameters p; and y; refer to the k-th
X’s space-coefficients (SCs) and time-coefficients (TCs). e&;
represent the modeling residuals. We applied a log transformation
since its distribution was skewed. This achieved near-normality,
met model assumptions, and improved reliability, fit, and predictive
accuracy. It also dampened outliers and more robustly captured
underlying relationships and overall data patterns.

The STVPI is designed to quantify and compare the explainable
percentages of different spatiotemporal heterogeneous impacts (59).
By calculating spatiotemporal contributions, it clarifies key driving
factors (55, 60). Based on BSTVC modeling results, the STVPI further
breaks down the total variance of each explanatory variable into two
independent components: temporal nonstationary random eftects and
spatial nonstationary random effects. This decomposition helps reveal
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the sources of spatiotemporal variations in the data (55, 60). Based on
the BSTVC model, the STVPI can be represented as follows:

(o3 + 0
pk T Ok x100% (4)

Pk =
szzl(aﬂk +0 )+ 0

where p, is the spatiotemporal explanatory proportion of the k-th
explanatory factor, with a range of [0, 100]. 6,4 and o, represent the
variance component of the k-th explanatory factor attributable to
spatial non-stationarity and temporal non-stationarity, respectively. o,
represents the residual variance which captures the unexplained
stochastic variation. This study performed the BSTVC model
according to Equations (2, 3) and STVPI analysis according to
Equation (4) via R package BSTVCin R 4.4.0 (61).

3 Results

3.1 Descriptive mapping of multiple
healthcare resources

The composite index of healthcare resources calculated through
entropy weighting of hospitals, beds, and physicians, with respective
weights of 0.25, 0.46, and 0.29, indicating that hospital beds’ main
influence on resource allocation. The spatiotemporal analysis revealed
that, the growth of city healthcare resources during the study period
was relatively small and exhibited an inequitable pattern, characterized
by lower resource levels in the west compared to the east, and in the
north compared to the south. The composite score exhibited minimal
average annual growth, demonstrating a modest increasing trend
since 2007 with annual growth rates not exceeding 5%. Hospital
density displayed a U-shaped trajectory, transitioning from initial
decline to gradual increase after 2013, with growth rates remaining
below 3%. Bed and physician densities followed similar growth
patterns, both showing sustained increases since 2004 and reaching
maximum annual growth rates of 10% (Figure 2).

3.2 Common spatiotemporal equity of
multiple healthcare resources

Figure 3A presents the average annual changes in spatial Gini
coefficients for the composite index and three single indicators during
the study period. The composite index showed an overall decline in
spatial equity, with an average annual increase of 0.34% in its spatial
Gini coefficient. Regional analysis revealed that 18 of 31 provinces
experienced reduced equity (maximum increase: 2.77% in spatial Gini
coefficient), while the remaining 13 provinces showed improved
equity (maximum decrease: 1.49%). These trends correlated with
declining equity in bed indicator (0.34% annual increase) and
physician indicator (0.26% annual increase).

Analysis of single indicators revealed distinct spatial equity
patterns: bed indicator showed equity deterioration in 15 provinces
(maximum annual increase: 3.86% in spatial Gini coeflicient)
versus improvement in 16 provinces (maximum decrease: 1.46%),
while physician indicator exhibited declines in 18 provinces
(maximum increase: 5.66%) and gains in 13 provinces (maximum
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FIGURE 2
Spatial distribution of the Healthcare Resource Density Index (HRDI) for the (A) composite scores, (B) hospitals, (C) hospital beds, and (D) physicians
across Chinese cities in 2000 and 2021.

reduction: 4.44%). In contrast, hospital indicator demonstrated
nationwide improvement with an annual spatial Gini coefficient
decrease of 0.32%. As shown in Figure 3B and listed in
Supplementary Table S2, there were strong concordance between
composite index equity and bed and physician equity. Regions with
lower composite index equity consistently displayed poorer bed
and physician equity, whereas high-equity regions exhibited
smaller inter-indicator disparities.

3.3 Common spatiotemporal
agglomeration of multiple healthcare
resources

Figure 4 shows spatiotemporal hotspot and coldspot distributions
of city healthcare resources in China during the study period, with
hotspots representing statistically significant resource-abundant
clusters and coldspots indicating resource-deficient clusters. This
study identified eleven distinct spatiotemporal agglomeration
patterns. Supplementary Table S3 lists the detailed numbers of
spatiotemporal agglomeration patterns for composite index and three
single indicators. Supplementary Text S1 clarifies the specific
meanings of these hotspots and coldspots.

The city-level composite index revealed that northwest China and
coastal East China were predominantly characterized by intensifying
and consecutive hotspots, while northeast and southwest regions
manifested primarily as intensifying, consecutive, and persistent
coldspots. Above patterns were substantially consistent with single

Frontiers in Public Health 06

indicator analysis. Nationally, 72 hotspot cities (19.73%) and 90
coldspot cities (24.66%) were identified. Quantitatively, the
comparison of hotspot distributions across indicators revealed distinct
patterns. The composite score exhibited fewer hotspots than hospital
indicator (n=105), but more than physician (n=68) and bed
indicator (n = 45). Conversely, coldspot counts for the composite
score significantly exceeded all single indicators (hospital = 76,
bed = 82, physician = 29). Structurally, 91.67% of the composite score
hotspots cities overlapped with hotspots in at least one single indicator
(hospital, bed, or physician), while 70.0% of the composite score
coldspots cities coincided with coldspots in at least one specific
resource indicator (hospital, bed, or physician). The observed
spatiotemporal polarization of composite index demonstrated an
intensifying Matthew effect in Chinas city healthcare resource
allocation, where the disparities between resource-rich and resource-
deficient regions had progressively widened over time, with
disadvantaged areas facing increasing challenges in closing the gap.
The composite index exhibited strong representativeness of all three
single indicators, as evidenced by both hotspot and coldspot
quantification and structural alignment.

3.4 Common spatiotemporal drivers of
multiple healthcare resources

3.4.1 Common influencing factor selection

Following VIF screening, we retained 15 socioeconomic and 4
environmental factors from an initial set of 34 factors, as listed in
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FIGURE 3

Spatiotemporal equity of multiple healthcare resource indicators: (A) average annual change in spatial Gini coefficients; (B) spatial distribution of the
mean spatial Gini coefficient within cities at the provincial level.

Supplementary Table S4. The subsequent node purity indicator Additionally, we employed Geographically Weighted
ranking identified the top 10 low-collinearity and high-importance ~ Principal Component Analysis (GWPCA) to classify the time-
variables, including population density (X;), per capita general fiscal ~ varying and space-varying coefficients (TCs and SCs) derived
expenditure (X,), primary industry value-added/GDP ratio (Xs), per ~ from the BSTVC model, enabling the identification of dominant
capita secondary schools (X), employed population density (Xs), per ~ drivers of healthcare resource allocation and the characterization
capita primary school teachers (Xs), PM; (X;), PM,.s (Xs), nighttime ~ of localized spatiotemporal dynamics (62). The ten influencing
light index (Xs), and NDVI (X,). factors were grouped into four principal components: (i)
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Spatiotemporal agglomeration patterns of healthcare resources in Chinese cities: hotspot and coldspot distributions for the (A) composite scores,
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population and education (population density, per capita
secondary schools, per capita primary school teachers), (ii)
economic structure (per capita general fiscal expenditure,
primary industry value-added/GDP ratio, employed population
density), (iii) air quality (PMi, PM,.5), and (iv) urbanization
(nighttime light index, NDVI).

3.4.2 Spatiotemporal heterogeneous impacts of
influencing factors

Figure 5 illustrates TC trends of the composite index and single
indicators after dimensionality reduction. For the composite index,
population and education exerted the strongest influence with
increasing importance over time, while economic structure
demonstrated diminishing effects, air quality and urbanization
maintained stable impacts without notable temporal trends.
Hospital indicator exhibited TC dynamics consistent with the
composite index. Conversely, bed indicator showed divergent
trajectories: air quality gained incremental importance while other
factors declined. Physician indicator revealed declining influence
of population and education alongside growing economic structure
effects, with remaining factors fluctuating without statistically
crucial trends. Collectively, population and education and
economic structure emerged as temporally dynamic priority
factors, whereas air quality and urbanization impacts remained
comparatively stable longitudinally.

Figure 6 spatializes the dominant influencing factors for
healthcare indicators derived via GWPCA across cities. The
composite scores were predominantly influenced by population
and education (125 cities, 34.25%) and economic structure (120
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cities, 32.88%). Regarding specific single indicators, hospital
indicator was primarily associated with air quality (149 cities,
40.82%) and economic structure (97 cities, 26.58%), while bed
indicator was mainly determined by population and education
(166 cities, 45.48%) and economic structure (122 cities, 33.43%).
Physician indicator showed the strongest correlation with
population and education (270 cities, 73.97%). Spatially, composite
scores exhibited strong concordance with bed and physician
indicators (population and education and economic structure),
whereas hospitals contrastingly aligned with distinct factors (air
quality and economic structure).

3.4.3 Explanatory power of spatiotemporally
heterogeneous drivers

Figure 7A shows the comprehensive evaluation of the relationship
between the influencing factors and healthcare resources under
spatiotemporal non-stationarity assumption. The Bayesian STVC
model explained more than 99.48% (95% CI: 99.45-99.51%) of
variance in composite and single indicators, with residual
contributions less than 0.52% (95% CI: 0.49-0.55%), confirming
model efficacy and result reliability. Spatial relationships accounted for
94.81% (95% CI: 93.67-95.70%) to 96.14% (95% CI: 95.35-96.76%)
of explained variance, substantially exceeding temporal contributions
(3.52% [95% CI: 2.90-4.31%] to 4.67% [95% CI: 3.78-5.81%]).
Socioeconomic factors contributed 86.54% (95% CI: 85.38-87.62%)
t0 90.24% (95% CI: 89.41-91.02%) of variance, while environmental
factors explained only 9.41% (95% CI: 8.65-10.24%) to 12.96% (95%
CIL: 11.89-14.11%), demonstrating socioeconomic determinants’
dominant role in healthcare allocation equity.
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FIGURE 5
Temporally heterogeneous associations between healthcare resources and four categories of influencing factors from 2000 to 2021, based on time-
varying coefficients (TCs) estimated using the BSTVC model. Factor categories include: population and education (population density, per capita
secondary schools, per capita primary school teachers); economic structure (per capita fiscal expenditure, primary industry value-added/GDP ratio,
employed population density); air quality (PM;, PM,.s); and urbanization (nighttime light index, NDVI).
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Spatially heterogeneous associations between healthcare resources and four categories of influencing factors, based on space-varying coefficients
(SCs) estimated by the BSTVC model for (A) the composite scores, (B) hospitals, (C) hospital beds, and (D) physicians. The four factor categories
include: population and education (population density, per capita secondary schools, per capita primary school teachers); economic structure (per
capita fiscal expenditure, primary industry value-added/GDP ratio, employed population density); air quality (PM;, PM,.s); and urbanization (nighttime
light index, NDVI).
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Figure 7B quantifies the contribution ratios of ten influencing
factors across spatial, temporal, and spatiotemporal dimensions for
composite and single indicators. Within each dimension, contribution
ratios exhibited high consistency across indicators with minimal
different
be categorized into three tiers based on their contribution magnitude.

variation. Across dimensions, the factors could
Spatially, the primary contributors were population density (X;) and
employed population density (X;s), followed by per capita general
fiscal expenditure (X5), primary industry value-added/GDP ratio
(X3), and per capita secondary schools (X,) as secondary factors, with
per capita primary school teachers (Xs), PM; (X7), PMa.s (Xs),
nighttime light index (Xs), and NDVI (X;,) constituting tertiary
factors. Temporally, per capita general fiscal expenditure (X)
emerged as the dominant factor, while PM; (X5), nighttime light
index (Xs), and NDVTI (X;0) formed the secondary tier, with the
remaining factors (X;, X;-Xe» Xs) showing relatively
weaker contributions.

Spatiotemporally, the factor grouping pattern resembled the
spatial dimension. Among primary contributors, population
density (X,) demonstrated contribution ratios ranging from 30.05%
(95% CI: 27.54-32.77%) to 43.05% (95% CI: 40.74-45.43%), with a
mean of 37.96%, while employed population density (Xs) showed
contributions between 30.69% (95% CI: 28.50-33.01%) and 33.83%
(95% CI: 31.03-36.62%), with a mean of 31.63%. Secondary factors,
including per capita general fiscal expenditure (X,), primary
industry value-added/GDP ratio (Xs), and per capita secondary
schools (X4), exhibited contribution ratios of 4.10% (95% CI: 3.61-
4.70%) to 8.13% (95% CI: 7.29-9.11%). The remaining tertiary
factors displayed contributions ranging from 1.31% (95% CI: 1.09-
1.61%) to 4.67% (95% CI: 4.13-5.29%). Notably, population density
and employed population density emerged as consistent
spatiotemporal drivers across all four healthcare indicators, with

cumulative contributions reaching 76.88%.

4 Discussion

This study advances a methodological triad for multidimensional
spatiotemporal evaluation of city healthcare resources in China: (i)
entropy-weighted composite index construction integrating hospitals,
hospital beds, and physicians to examine macroscale equity dynamics,
agglomeration patterns, and socioeconomic-environmental drivers; (ii)
parallel spatiotemporal validation through individual indicator
analyses, quantifying intra-regional disparities while verifying
composite index robustness; (iii) dual-capacity analytical framework
combining spatial Gini coefficients for strategic-level equity diagnostics
with emerging hotspot detection for operational-scale resource
surplus/deficit identification. The integrated approach reconciles
spatial governance priorities by bridging systemic trend analysis
(composite index) with precision targeting (individual indicators),
enabling national policymakers to monitor allocation equity through
aggregated metrics while empowering municipal authorities to
implement context-specific interventions. This dual-scale architecture
resolves the equity-precision paradox in resource governance,
establishing a replicable protocol for SDG-aligned optimization of
public infrastructure systems, with demonstrated applicability
extending to education, ecology, and transportation networks through
its modular analytical design.
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4.1 Proposing a generic joint
spatiotemporal evaluation framework for
multiple healthcare resource indicators

This study’s joint spatiotemporal evaluation framework advanced
multi-dimensional equity evaluation by simultaneously capturing
localized asynchronous variations and systemic constraints of
healthcare indicators while mapping macroscale allocation patterns.
The results methodological diverged from single-indicator temporal
analyses and nonspatial multi-dimensional studies (12, 24, 38),
yet substantively aligned with United Nations statistical conclusions
(3), confirming the critical role of spatiotemporal integration in
comprehensive evaluation. Furthermore, the framework revealed the
operational logic of allocation mechanisms through distribution
pattern analytics, thereby providing robust theoretical support for
policymakers to balance macro-level equilibrium with micro-level
precise adjustments.
this the
spatiotemporal evolution and inter-regional coordination of China’s

Specifically, study systematically examined
city healthcare resources from 2000 to 2021, revealing three critical
findings. First, while aggregate healthcare resources measured via
the composite index exhibited sustained increases, over half of
Chinese regions concurrently experienced considerable equity
declines, underscoring persistent systemic challenges in achieving
equitable distribution. Second, the analysis revealed systemic
interdependencies between composite and single indicators,
highlighting the necessity for policymakers to sustain the stabilizing
effects of incremental hospital equity improvements while
prioritizing bed availability as a critical determinant of system-wide
equity. Such a dual-strategy approach enabled targeted interventions
to address allocation imbalances. Third, the framework identified
polarized equity clusters, enabling dual-track policy responses:
strategic replication of best practices from high-equity clusters and
targeted interventions in low-equity areas exhibiting critical
bottlenecks. These findings operationalized a multiscale governance
model that integrated macroscale equity diagnostics with precision
resource targeting, offering empirically validated pathways to
reconcile aggregate growth with localized equity optimization in
China’s healthcare system.

4.2 Prioritizing intervention strategies
based on spatiotemporal disparities in
regional healthcare resource allocation

This study advanced a multi-dimensional spatiotemporal
evaluation framework to empirically identify critical healthcare
allocation patterns and priority intervention targets. The composite
index functioned as a macroscale diagnostic tool, exposing systemic
allocation deficiencies and geospatial resource disparities, while
parallel single indicator analyses revealed intra-regional inequities
through comparative validation. This dual-scale analytical architecture
provided policymakers with dual-capacity decision-support. The
composite index dynamics guided macroscale intervention zoning,
whereas single indicator evaluations served to identify short-board
effects in specific resource categories at operational levels.
Methodologically, the
spatiotemporal equity and spatiotemporal agglomeration analysis to

framework transcended descriptive
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a dynamic decision support system that bridged macro-equity
monitoring with precision governance strategies, enabling
simultaneous pursuit of system-wide equilibrium through strategic
resource reallocation and localized optimization via context-specific
short-board remediation.

This study utilized spatial Gini coefficient trajectories derived
from composite index and single indicators to identify asynchronous
dynamics in the equity of healthcare resource distribution across
Chinese provinces, pinpointing regions with pronounced short-board
effects. For example, Tibet achieved sustained improvement in equity
through integrated policy interventions including centralized fiscal
transfers (63), targeted aid programs (64), population redistribution
policies (65), and the development of traditional healthcare system
(66), thereby establishing a replicable governance model for sparsely
populated and economically underdeveloped regions (67). In contrast,
Sichuan experienced a decline in equity, primarily driven by resource
concentration induced by population-economic gradients (68), and
patients’ cross-regional health seeking behaviors (69). Above
structural contradictions constrained equity improvements despite
intervention efforts (70). These contrasting cases highlighted three
critical policy imperatives, including enhancing the monitoring
mechanism for the spatial impacts of population-economic gradients,
optimizing allocation mechanisms to mitigate excessive resource
polarization and implementing context-specific governance to address
systemic bottlenecks, thereby identifying strategic priorities for
achieving nationwide equitable healthcare distribution.

The spatiotemporal hotspot analysis identified 11 distinct
agglomeration patterns of healthcare resource disparities across
China, revealing systemic rather than isolated regional imbalances.
Three geographically stratified paradigms were distinguished.
Northeastern industrial bases exhibited resource depletion driven
by economic contraction-induced fiscal austerity and population
outflow-related service attrition (71). Yunnan-Guizhou plateau
regions displayed suboptimal efficiency in central fiscal transfers
due to dispersed settlements that impaired population-resource
spatial matching. Yangtze River Delta regions manifested market-
driven structural inequities where economic advancement coexisted
with healthcare accessibility deficits despite resource abundance
(72). These patterns collectively demonstrated the multiscale
complexity of national healthcare imbalances, integrating
macroeconomic volatility, mesoscale demographic-geographic
mismatches, and market-mediated allocation mechanisms. These
findings necessitate policy frameworks that reconcile macro-level
equity objectives with micro-scale precision governance, addressing
both fiscal constraints from economic cycles and population
distribution impacts on allocation efficiency. The developed
analytical model provides a methodological foundation for
designing spatiotemporally adaptive interventions that balance
systemic equity with context-specific effectiveness in complex
resource allocation systems.

4.3 Identifying key socioeconomic and
environmental drivers of spatiotemporal
variations in multiple healthcare resources

The spatiotemporal analysis revealed distinct temporal dynamics
and spatial patterns in healthcare resource allocation determinants.
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Temporally, economic development exerted immediate regulatory
effects on resource distribution through rapid policy feedback
mechanisms (73), while urbanization exhibited a three-phase
U-shaped trajectory in hospital allocation, potentially reflecting
municipal prioritization of economic growth over public service
infrastructure development (44, 74). Spatially, the evaluation
discrepancy between single indicators and composite index was
attributed to spatial spillover effects that inter-city policy diffusion
enhanced resource concentration (75), though regional heterogeneity
in socioeconomic contexts and policy enforcement shaped final
composite outcomes. Five principal determinants emerged with
combined explanatory power of 83.64-88.16% variance, including
population density (30.05-43.05%
concentration (30.69-33.83%), per capita fiscal expenditure, primary

contribution), workforce
industry GDP share, and per capita secondary education
infrastructure. The predominance of demographic and economic
density factors underscored their critical role in shaping healthcare
resource allocation patterns, necessitating priority consideration in
policy optimization frameworks.

The analysis identified five structural determinants governing
spatial healthcare disparities. Population density demonstrated
polarization effects, with hyperdense city clusters exhibiting
facility congestion while hypodense peripheries faced service
scarcity and accessibility deficits (20, 76). Fiscal capacity,
operationalized through per capita public expenditure, regulated
healthcare investment magnitude, where increased allocations
corresponded to infrastructure expansion, service optimization,
and measurable outcome improvements including mortality
reduction and longevity extension (77). Primary industry-
dependent regions encountered compounded accessibility barriers
from geographic isolation, structurally limiting advanced care
availability while increasing reliance on primary care system to
address occupation-environmental health risks (78, 79).
Educational attainment mediated healthcare utilization efficiency
through health (80),
quantifiable associations between academic achievement and

literacy enhancement establishing
service optimization (81). Workforce concentration generated
dual effects. It might exacerbate demand-supply imbalances
through accelerated urbanization (82, 83) while paradoxically
strengthen healthcare workforce retention in industrial clusters
through economic attractiveness (84). These interdependent
mechanisms collectively explained the structural foundations of
healthcare
differentiated allocation frameworks that addressed regional

inequities, supporting the implementation of

specificities through targeted policy interventions (85).

4.4 Regional policy implications across
space and time

This study proposed a spatiotemporally informed policy
framework to optimize healthcare equity through three governance
strategies. First, the spatiotemporal evaluation framework could
serve as a dynamic decision-support mechanism. The evaluation
system would enable real-time identification of regions with equity
deterioration through spatial Gini coefficient trends of composite
scores, evidence-based reallocation via

guide resource

spatiotemporal hotspot and coldspot analysis, and further facilitate
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iterative policy adjustments through systematic monitoring of
the of
spatiotemporally adaptive governance protocols is highly

allocation outcomes. Second, implementation
recommended to address regional heterogeneities through
differentiated interventions. For example, declining equity areas
require prioritized establishment of cross-regional medical
alliances to reduce access gaps, while physician-deficient areas
necessitate incentive systems integrating service-credit portability,
accelerated career pathways, and tax-benefit package to stabilize
workforce allocation. Third, healthcare resource prioritization
should be stratified according to economic structure and
urbanization levels. Primary industry regions need infrastructure
investments for basic care capacity enhancement and disease-
specific competency building, while city healthcare development
areas focus on specialized service networks and medical technology
innovation to address advanced care demands. This framework
bridges macroscale equity monitoring with context-specific
implementation, offering a scalable model for precision health

governance aligned with SDGs.

4.5 Interaction mechanisms and
optimization strategies among multiple
healthcare resource indicators

The
highlights the critical role of multiple resource interplay in

proposed spatiotemporal evaluation framework
driving healthcare equity. A co-evolutionary analysis of hospital
infrastructure and physician workforce reallocation reveals that
hospitals unlock substantially greater allocation efficiencies when
their capacity expansions are synchronized with targeted
physician distribution adjustments, an effect most pronounced
in rapidly urbanizing zones (86). These intertwined dynamics
underscore the necessity of integrated policy design: hospital
bed-and-facility growth must be coupled with robust physician
incentive and mobility schemes to forestall local resource
agglomeration and access gaps. The combined use of the
composite index and its constituent indicators equips decision-
makers with a dual-perspective diagnostic system to locate
resource-complementary regions. In areas exhibiting bed
abundance but physician scarcity, for instance, rotational clinical
training programs and telemedicine platforms can be strategically
introduced to optimize utilization and redress short-board
effects (87).

Furthermore, the bidirectional feedback loop between composite
and individual metrics refines precision governance across scales. The
composite index charts macroscale allocation trajectories and,
through spatial Gini coefficient trends, identifies priority intervention
zones, whereas single indicators spotlight granular resource deficits
demanding immediate operational attention (88). This dual-scale
diagnostic architecture enables a stratified implementation pathway:
high-scoring regions can concentrate on optimizing specialized
service networks, while low-scoring areas should prioritize
foundational infrastructure build-out. Crucially, monitoring the
influence of single-indicator improvements (e.g., increases in
physician density) on composite index dynamics creates an iterative,
spatiotemporally adaptive mechanism for fine-tuning resource
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redistribution, thereby enhancing allocation accuracy and sustaining
equity over time (89, 90).

4.6 Limitations

This study has limitations. First, the selected healthcare resource
indicators were hospitals, hospital beds, and physicians. We did not
include other indicators such as primary healthcare facilities, nursing
staff, and medical equipment due do data unavailability, potentially
constraining the granularity of multi-dimensional characterization.
Second, the city-level analytical scale prevented granular analysis of
intra-city resource distribution patterns across sub-city administrative
units, thereby limiting insights into localized disparities in healthcare
accessibility. Third, the current evaluation framework primarily relied
on quantitative metrics for resource distribution, neglecting critical
dimensions such as service quality assessments, facility upgrading
indices, and patient accessibility metrics, which resulted in an
incomplete examination of operational effectiveness. Fourth, the
analysis did not incorporate cross-provincial healthcare utilization
due to the absence of comprehensive interprovincial patient flow data
and the jurisdictional basis of resource allocation, leaving
spatiotemporal equity considerations only partially addressed. These
methodological constraints underscore the need for future research to
expand indicator systems, conduct multiscale spatial analyses,
integrate quality-effectiveness and patient flow metrics, and
accommodate cross-boundary utilization patterns to enhance the
comprehensiveness and applicability of healthcare resource
evaluations. Finally, it is worth noting that a common practice in
current mainstream research, namely, first reducing multiple target
variables into a single composite indicator, has significant drawbacks,
as it loses crucial multi-target information. Future methodological
studies on BSTVC should aim to jointly model the spatiotemporal
nonstationarity of multiple targets within a unified framework
(91, 92).

5 Conclusion

We innovatively propose a joint spatiotemporal evaluation
framework to assess multiple healthcare resources across three key
dimensions: equity, agglomeration, and driving factors. This approach
reveals the limited synergy among different resource types and addresses
a critical gap in existing research, which has largely overlooked the
interconnected dynamics of multiple indicators. Meanwhile, this multi-
dimensional joint spatiotemporal evaluation framework systematically
reveals the evolving patterns of city healthcare resource allocation in
China and offers integrated macro- and micro-level evidence to support
informed policymaking. At macro level, despite quantitative growth in
healthcare resources, equity improvements remain limited with
pronounced spatial disparities and declining trends in certain regions.
At micro level, the identified “short-board effects” and intra-regional
variations highlight systemic coordination challenges in current
resource allocation. Furthermore, we quantitatively identify key drivers
and elucidate their heterogeneous spatiotemporal impacts on resource
distribution, establishing a theoretical foundation for implementing
cross-regional monitoring, gradient compensation policies, and
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interregional cooperation. The proposed framework would not only
guide healthcare resource optimization and support SDG acceleration
globally, but also offer methodological innovations for assessing
resource allocation in education,

transportation, ecological

environments, and other public services.
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