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Public health systems have long touted the integration of artificial intelligence (AI)

as the game-changing innovation with the potential to transform the delivery of health

services, the diagnosis of diseases, and the protection of people in the community. Ranging

from sophisticated disease surveillance to computer-aided diagnosis applications, AI is

being used in myriad contexts within public health, with the promise to make things

more efficient, personalized, and accessible. Underlying all this promise, however, is one

much under-investigated concern: the threat posed by algorithmic bias. In contexts where

margins for error are thin and exclusion is likely to have high stakes, biased AI systems can

widen the existing health gaps instead of bridging them (1). Hidden in code, imperceptible

in action, this is an urgent threat to consider.

AI systems are only as effective as the data used to train them and the assumptions

under which they are created (2). Many public health AI models, however, draw from data

sets in populations which are unrepresentative of those in the low- and middle-income

countries (LMICs). The resulting data inequity means the algorithms then do not capture

the cultural, linguistic, genetic, or environmental variety in the underserved populations

(3). Consequently, health AI systems will systematically underdiagnose, misclassify, or

outright ignore patterns in the non-conforming population. This is especially risky in

settings where the healthcare infrastructure is already under stress, such as where digital

health interventions are viewed as cost-saving measures (4).

Sources of health AI bias are multi-pronged. They begin with the data collection

stage, where the majority of data sets come from city hospitals, research centers, or

wealthy countries. Such data sets systematically exclude rural patients, ethnic minorities,

indigenous people, or socially marginalized groups (2). During the labeling phase, clinical

annotations can introduce bias when medical thresholds and definitions are drawn from

the dominant population without accounting for cultural or biological variation (5, 6).

Algorithmic in its own right, models optimized to be as accurate as possible might

disregard considerations of fairness, resulting in consistently disparate performance across

subgroups (7, 8). Finally, at the deployment phase, systems can act capriciously if brought

into use in settings unlike those in which it has been developed and evaluated (2).

Cumulatively, the problems lead to a series of silent reaffirmations of structural disparities.

To more rigorously frame the sources of AI bias, it is important to refer to well-

established typologies in algorithmic bias literature. Public health AI typically suffers from

historic bias, by which prior injustices—inequities in access to care or discriminatory health

policy, say—are embedded within datasets for learning (9, 10). Representation bias is

present when samples from urban, wealthy, or connected groups lead to the ignoring of

samples from rural, indigenous, or disenfranchised groups (2). In addition, measurement

bias is present when health endpoints are approximated with the help of proxy
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variables—hospital attendance or smartphone usage, say—

strikingly different between socioeconomic or even cultural

environments (11). These biases are again compounded by

aggregation bias, by which models assume homogeneity

between heterogeneous groups, and deployment bias, by

which tools developed within high-resource environments

are simply implemented without modification into low-resource

environments (12). Recognition of these forms of bias allows more

structured comprehension of how algorithmic harm takes place

and where mitigation efforts must be targeted.

Real-world instances of algorithmic bias in public health

reinforce the urgency of addressing these typologies. A well-

documented case of historic bias is evident in a widely used

U.S. healthcare risk prediction algorithm that systematically

underestimated the health needs of Black patients by using prior

healthcare expenditure as a proxy—unintentionally replicating

patterns of historical underutilization of care (13). Representation

bias has surfaced in sepsis prediction models developed in high-

income settings that showed significantly reduced accuracy among

Hispanic patients due to unbalanced training data (14). In the realm

of measurement bias, India’s digital health initiatives have often

relied on smartphone usage for patient engagement, effectively

excluding large segments of women, older adult individuals, and

rural populations who lack digital access (15). Deployment bias

was starkly illustrated during the COVID-19 pandemic through

the Aarogya Setu contact tracing app, which failed to reach

populations without smartphones, particularly in rural and low-

income communities, raising concerns about uneven public health

protection (8). These examples underscore that algorithmic bias

is not merely theoretical; it has material consequences that

can exacerbate the very inequalities public health systems aim

to mitigate.

At the heart of algorithmic bias lies the issue of structural data

exclusion. Many AI systems draw their inputs from data sources

that systematically omit rural populations, marginalized castes,

indigenous groups, or those without digital access. This exclusion

is not accidental—it is a byproduct of how data is collected, labeled,

and interpreted (16). Clinical annotations are often standardized

using thresholds derived from dominant populations, ignoring

genetic, environmental, or cultural differences that influence health

outcomes (17). When these biased models are used in low-resource

contexts, they risk making inaccurate diagnoses or failing to detect

public health emergencies altogether (18). This is not a technical

shortcoming but a structural flaw, one that reflects who is seen,

heard, and counted in the design of digital health tools.

These effects of algorithmic prejudice in public health

do not remain theoretical. They appear as material harm.

In Brazil, AI models trained with city-level data did not

capture rural disease epidemics from environmental and socio-

economic features missing from the training data (19). In

India, mobile applications using smartphone availability for self-

reporting or tele-consultation exclude significant parts of the

population who have no familiarity with digital technologies

or simply no means to own or access mobile phones (20,

21). Such exclusion is neither a technical error nor simply an

oversight; it is the further extension of historic inequalities now

replicated through ostensibly neutral technology. The illusory

assumption that technology has intrinsic objectivity obscures the

need for contextual intelligence in the crafting and deployment

of systems.

A central risk in today’s AI-in-health interventions is the

myth of neutrality. It is assumed frequently that AI systems

lack biases inherent in human beings due to their use of data

and statistically grounded reasoning. AI models, however, are

created, trained, and evaluated by people, and cannot help but

reflect the developers’ assumptions, tastes, and blind spots. This

is particularly problematic where AI development is concentrated

in the Global North, and deployment in LMICs has radically

dissimilar social and health contexts (22). The outcome is one

digital colonialism where technologies created in one context

get transferred to another with little or no adaptation or

local contribution.

This myth of neutrality obscures the fact that AI systems

are human artifacts—shaped by the data they are trained on,

the objectives they are given, and the assumptions of their

developers. Public health AI often reflects the institutional biases

of the healthcare systems and research ecosystems from which

it originates (11). For instance, the development of AI tools

predominantly in high-income countries leads to the encoding

of social, cultural, and biological norms that are misaligned

with the realities of low-resource settings (23). When these

systems are deployed in vastly different environments, they bring

with them embedded assumptions that do not travel well. As

a result, the notion that AI offers a ‘scientific’ or ‘impartial’

solution to global health problems becomes not only misleading

but dangerous—especially when it prevents critical reflection

or accountability for systemic failures in underrepresented

communities (24).

Public health systems in low-resource settings tend to

be poorly equipped to detect or respond to the impacts

of biased AI. They lack effective regulatory frameworks

to govern AI, have weak or unenforced data protection

laws, or lack the technical skills to conduct audits of AI

systems (25). This is a perfect storm in which suboptimal

algorithms can be injected into national health policy with

inadequate oversight. Digital exclusion further exacerbates

these dynamics. Underprivileged populations who already have

inadequate access to healthcare services are also likely to be

marginalized from digital interventions, further entrenching

inequalities (23).

Tackling algorithmic bias in public health requires more

than technical interventions—it demands a reengineering of

values into systems (26). Equity cannot be retrofitted; it must

be a foundational design principle. This means ensuring that

development teams are multidisciplinary and inclusive of voices

from the Global South, marginalized communities, and local

health ecosystems (27). Participatory design, where affected

populations co-create and critique AI tools, should be standard

practice rather than an afterthought (28). Moreover, the use of

fairness audits, synthetic data for underrepresented cases, and

multilingual NLP models can help mitigate systemic blind spots

(29). Countries like India, with their complex demographic and

linguistic diversity, offer both cautionary tales and promising

models. If India pioneers equity-focused AI governance, it could
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serve as a replicable framework for other low- and middle-

income countries facing similar challenges. To meet these

challenges, we need a paradigm shift in the conceptualization,

development, and deployment of AI for public health. More than

technical sophistication or predictive precision, developers and

policymakers need to support an equity-focused orientation. This

work would start with inclusive data practices with the express

goal to capture the full diversity of the population. Strategies

in data collection need to be redesigned to encompass rural

areas, under-represented languages, and marginalized groups (30).

Local health workers as well as community-based organizations

can be critical allies in the creation of representative as well

as relevant.

Bias reduction should also be integrated into the development

and assessment of AI systems. AI tools should be subject to

fairness audits in front of deployment to examine their accuracy

against different demographic and socio-economic groups (31).

Imbalances in the accuracy of predictions, false positives, and

false negatives should be recorded and rectified. Crucially, such

evaluations should not be looked at as singular processes but

as continuing routines in the life cycle of the AI system (26).

Transparency and explainability should be valued as well. Public

health officials as well as community stakeholders should have

insight into the workings of these systems, the data used, and

the assumptions.

Health technologists need to collaborate with social scientists,

public health practitioners, ethicists, and impacted communities to

ensure AI systems remain contextually situated. Such collaboration

should not only occur in the development stage but also in

deployment, monitoring, and evaluation. Participatory methods, in

which the individuals at the heart of the issue participate in defining

the tools impacting them, can bridge the disconnect between

technical innovation and everyday experience (32).

One new path to enhancing equity in public health AI is

to utilize synthetic data generation to bridge the gaps in under-

representative populations—as long as it is carried out ethically

(33). Generative models such as GANs can, for instance, mimic

data from rare diseases or rural settings where authentic data

is in short supply. This cannot entirely supplant genuine field

data, but it can supplement it at early stages to circumvent

algorithmic blind spots. Also, incorporating local languages and

indigenous knowledge into NLP-based health applications has

the potential to expand coverage in multilingual cultures (34).

Decentralized AI architectures, in which models get trained locally

using varied datasets in place of central data repositories, have as-

yet untapped potential. Such methods could limit prejudice and

amplify cultural emphasis.

India is an interesting case study in the intersection of AI, public

health, and equity. With its demographics, geographic variation,

and hybrid public-private healthcare delivery system, India has

adopted AI at breakneck velocity in applications from disease

surveillance to diagnosis to telemedicine (35). The velocity has,

to date, not been paired with a strong framework to determine

the threat of algorithmic bias. The Aarogya Setu app used in

the COVID-19 response to track contacts serves to highlight

the strength as well as the limitations of digital public health

technologies (36). It reached the millions, but only those with

smartphones, with severe privacy as well as data governance

worries. AI models to predict diabetes as well as cardiovascular

risk have had promise, but whether their findings can generalize

to the varied subgroups in India is uncertain given the variation

in regions in terms of dietary intake, lifestyle, as well as availability

of care.

India’s experience highlights the necessity to develop country-

specific strategies for AI in consideration of socio-cultural,

linguistic, and infrastructural diversity (35). Developing AI systems

in India with ethics and awareness about biases needs technological

investment as well as in local research, grassroots engagement,

and policy reform. If India is successful in developing an inclusive

AI environment, it can be replicated in similar challenges in

other LMICs.

No single stakeholder is responsible for addressing algorithmic

bias in public health AI. It is the collective responsibility of

governments, developers, funders, researchers, and communities

(37). International reformers, international funders, and global

health institutions need to make bias assessments and equity

measures mandatory as part of project proposals and program

evaluations (16). Tech companies and research institutions need

to put open-source models and data sets with global diversity

as their priority. International regulators need to frame explicit

guidelines for the deployment of ethical AI with mechanisms to

ensure community redress and accountability (38).

In the end, the goal is not to eliminate AI but to rethink it as an

inclusionary technology, rather than an exclusion technology. This

means designing systems which do not simply reproduce what is

effective in privileged situations but also develop in accordance with

the needs of those who have long been unserved. It means designing

feedback mechanisms in which users can challenge, critique, and

shape AI systems. It means committing to the value that equity

needs to be engineered—and not just assumed.

In the years to come, artificial intelligence will further leave

its mark in world health. As it does so, the hidden biases

embedded in algorithms will determine who is diagnosed, who

is treated, and who is left behind. The stakes could hardly be

higher. Without conscious effort to detect, minimize, and block

algorithmic bias, we risk automating injustice and entrenching

inequality in the very technologies we hope to enhance. The time to

act is now, before such biases harden into the default reasoning of

digital health.

By making fairness, transparency, and inclusivity the

foundation in the development and deployment of public health

AI, we can turn the potential threat into an empowering

force toward health equity. It will take more than good

intentions to do it, however; it will take critical analysis, system

reform, as well as the willingness to break the seductive myth

about neutrality.

Author contributions

JJ: Writing – review & editing, Conceptualization, Writing –

original draft.

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1643180
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Joseph 10.3389/fpubh.2025.1643180

Funding

The author declares that no financial support

was received for the research and/or publication of

this article.

Conflict of interest

The author declares that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Generative AI statement

The author declares that no Gen AI was used in the creation of

this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References
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