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To address the pressure of emissions reduction in urban residential blocks (RBs), 
this study takes 99 micro-scale RBs in Hongqiao District, Tianjin as the objects, 
aiming to reveal the driving mechanism of built environmental factors (BEF) on 
residential blocks carbon emissions (RBCE) and explore planning strategies that 
balance carbon reduction and health benefits. By integrating spatial statistical 
analysis and high-precision machine learning models, the system has systematically 
revealed the spatio-temporal evolution laws, spatial differentiation characteristics 
and driving mechanisms of BEF on RBCE. Key findings include: (1) From 2021 to 
2023, both the RBCE, residential blocks carbon emissions intensity (RBCEI), and 
average household carbon emissions (RBCE-AH) showed a “first rise then fall” 
fluctuation, with an overall 5.7% increase, signaling sustained emissions reduction 
pressure. (2) High emissions areas are spatially concentrated and contagious, while 
low carbon units are mostly peripheral. Spatial autocorrelation analysis indicates a 
significant positive correlation and a west-south clustering pattern. (3) Land area 
(LA) is the main emissions affecting factor, followed by green space ratio (GSR) and 
Land use mixing degree (LMD), whose inhibitory effect exceeds that of traditional 
high-intensity development indicators. (4) Targeted planning strategies such as 
strictly controlling land use expansion, improving GSR, and promoting functional 
combination were proposed. At the same time, it was suggested that in the future, 
the heterogeneity of building types and more three-dimensional morphological 
indicators should be incorporated into the BEF index system, and combined with 
more refined coupling models, their influence paths should be quantitatively 
analyzed. These strategies not only provide a basis for the implementation of 
macro emissions reduction policies, but also offer solutions for micro action plans 
centered on residents’mental health and cardiopulmonary system protection. 
Overall, this study provides a scientific basis for low carbon RBs planning and 
renewal that balances carbon reduction with health benefits.
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1 Introduction

Greenhouse gas (GHG) emissions from human activities have exacerbated global 
warming, leading to various serious environmental problems and becoming a key driving 
factor threatening public health. According to the data released by the Intergovernmental 
Panel on Climate Change (IPCC), cities are home to over 55% of the global population and 
contribute approximately 75% of carbon emissions (1, 2). Among them, buildings, industry, 
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and transportation are the three major sources of urban carbon 
emissions. With the advancement of urbanization and the 
improvement of people’s living standards, building carbon emissions 
show a continuous growth trend (3). It is evident that carbon 
emissions from buildings have become a key fulcrum for the 
coordinated governance of climate and health. There is an urgent need 
to reduce carbon emissions and health risks simultaneously through 
low-carbon planning and renovation of existing facilities (4, 5). 
Residential buildings account for 58.5% of the total building area and 
contribute 48% to the total carbon emissions from buildings. 
According to the “China Energy Statistical Yearbook,” urban 
residential electricity demand grows at an average annual rate of 
11.9%, with a continuous upward trend. As the basic spatial units of 
residential buildings and direct carriers of household living and 
consumption, residential blocks (RBs) have become a significant 
source of urban carbon emissions (6, 7). Therefore, studying carbon 
reduction measures at the RBs level is crucial for achieving carbon 
neutrality and health equity. RBs, as key venues for daily life, are 
closely tied to residents’ energy use. Multiple built environmental 
factors (BEF) can alter residential energy consumption by influencing 
the local microclimate (7), and at the same time, they are related to the 
health of residents. Studies indicate that residential block carbon 
emissions (RBCE) can vary 1.8–6 times across different BEF (6). 
High-emission blocks are often accompanied by higher local air 
pollutant concentrations. Long-term exposure significantly increases 
the risk of residents developing asthma, chronic bronchitis, 
cardiovascular diseases and neurological disorders. Additionally, 
high-emission blocks may further increase the psychological stress, 
anxiety and depression risks of residents due to factors such as the 
intensification of the heat island effect, noise pollution and insufficient 
green space, especially having a greater impact on vulnerable groups 
such as children, women and the older adults (8). The BEF within 
500–1,000 meters of RBs has the most significant impact on RBCE (9). 
Therefore, to maximize the synergistic benefits of climate mitigation 
and health, identifying and clarifying the key impacts of BEF on RBCE 
has gradually become an increasingly urgent research direction. 
Current studies on the influencing factors of RBCE can be divided 
into three main types. Including socio-economic factors, microclimate 
factors and BEF. These studies employed a variety of methods, 
including field measurement and questionnaire surveys, numerical 
simulations, econometric models, and machine learning and spatial 
analysis, providing an important theoretical and empirical basis for 
understanding the influence mechanism of RBCE.

Firstly, socio-economic factors. Numerous empirical studies have 
explored the socioeconomic aspects, demonstrating that factors like 
age, education, income, and policies drive RBCE. Commonly used 
methods include the STIRPAT model and baseline regression analysis 
(10). For example, Zhu et al. employed a probit regression model to 
analyze how behavioral factors, family socioeconomic characteristics, 
and housing structural attributes influence energy-related behaviors. 
They found that non-economic factors such as environmental 
awareness and social norms are as important as economic incentives, 
with educational levels and housing characteristics significantly 
impacting energy usage patterns (11). Xiao et  al. studied the 
spatiotemporal carbon emissions patterns at the RBs scale in China’s 
Yangtze River Delta Integration Demonstration Zone. They also 
examined how economic growth and housing policies affect the 
carbon emissions patterns throughout RBs’ life cycles, offering 
references for cross border ecosystem governance and regional 

circular economy development (12). Zen et al. used statistical methods 
to analyze the impact of socioeconomic factors on the carbon 
footprint of RBs in Malaysia’s Iskandar region. They found that 
household income, green attitudes, and education levels significantly 
influence the carbon footprint of these blocks (13). The advantages of 
the above-mentioned methods lie in the authenticity and reliability of 
the data, which can reveal the statistical correlations and relative 
importance among factors. They can be used to predict trends based 
on historical data and clearly reveal the direct and indirect impacts of 
socio-economic variables on carbon emissions (14). However, their 
limitations include high requirements for data quality and quantity, 
and the difficulty in obtaining micro-scale (single buildings, individual 
behaviors) data. This leads to a limited sample size. It mainly reveals 
correlations and is difficult to strictly prove causal relationships. It is 
difficult to precisely quantify the direct impact of physical processes 
(such as microclimate and building physical performance) on energy 
consumption. It is difficult to capture complex nonlinear relationships 
and spatial heterogeneity.

Secondly, microclimate factors. Studying the influence of 
microclimate on RBCE is another important direction. Common 
methods include numerical simulation and field experiments, and 
software includes ENVI-met and Grasshopper, etc. These studies have 
revealed the relationship between the built environment and carbon 
emissions by simulating the impact of microclimate conditions on 
energy consumption. For example, Ren et al. centered on Dublin, 
generated local climate data using the Surface City Energy and Water 
Balance Scheme, conducted energy simulation using the Integrated 
Environmental Solution Virtual Environment, and deeply analyzed 
the impact of microclimate on heating energy demand. It was found 
that the layout of buildings could significantly reduce wind speed, 
while both temperature and wind speed significantly affected the 
heating demand. Among them, the presence of trees significantly 
reduced the heating demand and could, respectively, reduce carbon 
emissions from residences and apartments by 3.1 and 4.6% (15). Wei 
et  al. used Phoenics and Ecotect software to simulate the 
microenvironments of Chinese RBs, analyzing the impact of 
microclimates on RBCE (16). Xu et al. assessed the adaptability of 
mountainous settlement planning in Chongqing, constructing a 3D 
coupling model based on heat, wind, humidity, and light, and 
proposed a low-carbon ecological RBs planning framework (17). Cui 
et al. combined field measurements with ENVI-met simulations to 
analyze microclimate and energy consumption optimal conditions for 
carbon reduction in cold region RBs (18). The advantage of the above-
mentioned methods lies in its ability to deeply understand the physical 
mechanisms and processes, and to precisely quantify the influence of 
physical factors (such as the performance of the envelope structure, 
shading, and ventilation). The design scheme can be evaluated in the 
absence of actual operational data (such as during the design stage). 
However, the calibration of input parameters relies on actual 
measurement and has high computational costs. It is usually difficult 
to fully integrate complex human behaviors and socio-economic 
factors, and the simulation accuracy of actual building performance 
and resident behavior is limited.

Thirdly, BEF. Studying the impact of BEF (such as urban road 
networks, land use and architectural forms) on RBCE has been an 
important direction in recent years. Common methods include 
ordinary least squares models, geoweighted regression, energy 
consumption simulation and machine learning. For example, Su et al. 
modeled 81 residential communities geometrically, calculating 
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lifecycle carbon emissions to analyze how layout, building height, 
spacing, and orientation temporally affect RBCE (9). Liao et al. used 
grey correlation analysis and the general global optimization method 
to assess building environmental factors’ impact on Zibo City’s RBCE, 
finding these factors significantly influence RBCE and that optimized 
urban design can reduce them (19). Li et al. applied geographically 
weighted regression to establish local regression models, revealing that 
BEF, public transport infrastructure, and urban road areas per capita 
affect RBCE, with impacts varying by location (20). Luo et  al. 
combined optimized backpropagation neural networks with spatial 
weight matrices to model land use and RBCE. They found mixed 
commercial and residential land expansion positively impacts RBCE 
intensity and analyzed future RBCE spatial patterns at a 1 km 
resolution (21). The advantages of the above-mentioned methods lie 
in their powerful ability to handle complex nonlinear relationships, 
their skill in mining hidden patterns from massive amounts of data, 
their high prediction accuracy, and their ability to quantitatively assess 
the long-term impact of building forms on carbon emissions. 
However, their interpretability is usually poor, making it difficult to 
understand the underlying physical mechanisms. Meanwhile, most 
research on machine learning methods still takes administrative 
regions as the basic unit and lacks detailed characterization of micro-
scale residential areas.

Therefore, the high-precision machine learning model and spatial 
statistical analysis method adopted in this study have significant 
advantages in terms of data processing capacity, model complexity, 
and result interpretability. Firstly, machine learning models can 
capture complex nonlinear relationships and spatial heterogeneity, 
making up for the limitations of traditional statistical models. 
Secondly, spatial statistical analysis methods can quantitatively assess 
the spatial dependence and dynamic changes of built environmental 
factors on carbon emissions, providing a scientific basis for policy-
making. Finally, by integrating State Grid data and high-resolution 
spatial data, high-precision prediction of RBCE is achieved, deeply 
revealing the spatial differentiation pattern and providing a scientific 
basis for the planning and update of low-carbon and healthy RBs.

In recent years, with the large-scale construction of the national 
smart grid and the extensive installation and use of intelligent 
sensing devices, especially the popularization of the advanced 
metering infrastructure (AMI), power supply companies have 
obtained an extremely large amount of data with geographical 
identifiers and time information (22). Unlike traditional data such 
as survey questionnaire sampling and model simulation, AMI data 
can accurately and in real time reflect the spatial–temporal 
information of each power consuming unit, including desensitized 
and anonymized user names, user ownership, power consumption 
locations, as well as electricity consumption, voltage, power factor, 
etc. It has the characteristics of high accuracy, high timeliness and 
high coverage (23). Therefore, studies based on AMI data has 
gradually become an emerging research hotspot (24, 25). Institutions 
such as IBM, Oracle, and HP have successively released white papers 
on big data for smart grids, describing and envisioning the 
application scenarios of AMI data. EPRI has carried out a five-year 
scientific research project on power big data and focused on 
developing a power big data platform. Institutions such as PG&E, 
Oncor, and UCLA have also conducted research on the application 
of AMI data in areas such as user electricity consumption behavior 
analysis and classification, load forecasting, power grid planning, 
assessment and early warning of distribution network operation 

status, and optimal operation strategies, achieving some goals and 
results that could not be realized under previous data conditions 
(26). However, few systematic studies on RBCE have been 
conducted using AMI data. Whether the research results of AMI 
data support traditional data and whether deeper research 
conclusions can be drawn remain worthy of further exploration 
(19, 27).

To fill the existing research gap, this study is based on the AMI micro-
scale residential area data of State Grid. By adopting a method framework 
that couples high-precision machine learning models and spatial 
statistical analysis, it has significant advantages in data processing capacity, 
model complexity, and result interpretability. It overcomes the limitations 
of traditional research methods in terms of data processing capacity, 
model complexity and result interpretability, and simultaneously realizes 
the fine identification of the spatio-temporal evolution and agglomeration 
patterns of RBCE on 3,564 panel data of 99 settlements. Robust estimation 
of nonlinear threshold effects of built environmental elements Rapid 
simulation of the emission reduction effect of planning scenarios. This 
methodological system not only makes up for the insufficiency of 
measured samples but also avoids the assumption bias of spatial effects in 
traditional econometric models, providing a directly implementable 
decision-making tool for micro-scale low-carbon community planning. 
It provides a new perspective and methodological reference for RBCE 
study. Firstly, we will collect and calculate carbon emissions data for 99 
RBs in Tianjin’s Hongqiao District from 2021 to 2023. Secondly, Moran’s 
I based spatial autocorrelation analysis will be used to explore the spatial 
distribution characteristics of carbon emissions. Thirdly, relevant analysis 
models and Random Forest models will be established to examine how 
BEF drive carbon emissions in RBs. This study focuses on three key 
questions. (1) What are the spatial distribution characteristics of RBCE 
based on AMI data? Is there year to year differences in RBCE? (2) How 
do BEF influence RBCE? (3) What effective policy suggestions can 
be derived from the analysis for highly urbanized regions? This study aims 
to assist urban planners and decision-makers in formulating more 
targeted policies to promote urban carbon reduction and public health, 
thereby deepening the understanding of the spatial pattern and driving 
factors of RBCE in the context of new data.

2 Materials and methods

2.1 Study area

Tianjin (38°34 “−40°15” N, 116°43 “−18°04” E) is in northern 
China. By the end of 2024, the total area of Tianjin is 11,917 km2, with 
16 administrative districts under its jurisdiction and a permanent 
resident population of 13.64 million. The study area covers Hongqiao 
District, which is one of the six central urban districts of Tianjin. It is 
in the northwest of the urban area of Tianjin (Figure  1), with a 
jurisdiction area of 23.76 km2. It governs 114 RBs and has a permanent 
resident population of 428,800. This study selected 99 RBs in 
Hongqiao District as the research objects, mainly distributed in the 
south and north of Hongqiao District, with a relatively small 
distribution in the middle. At the same time, in combination with the 
spatial distribution of RBs, the study area is demarcated. Overall, the 
study area is one of the old urban districts of Tianjin, mainly composed 
of the old RBs. The RBCE is relatively stable and has the most 
significant impact on public health. Therefore, choosing Hongqiao 
District as the research area is typical.
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2.2 Research data

The dataset encompasses monthly electricity consumption records 
for RBs in Hongqiao District, Tianjin (2021–2023), alongside BEF 
including land use, buildings, roads, and green spaces. Specifically, 
electricity consumption data were obtained from the State Grid 
Tianjin Electric Power Company. Land use data were sourced from 
the Tianjin Municipal Bureau of Planning and Natural Resources. 
Buildings, roads, etc. were acquired from the Tianjin Construction 
Bureau and open-source geospatial platforms (e.g., OpenStreetMap) 
(Table 1).

This study employs 2021–2023 micro-scale data for three primary 
reasons. Firstly, 2021 marked the inaugural year of China’s formal 
integration of “dual carbon” goals into its national strategy, with 
Tianjin implementing consequential emissions reduction policies 
(e.g., Tianjin Carbon Peak Implementation Plan). The data of this 
period can keenly capture the immediate response of RBCE under 
policy intervention and reveal the typical characteristics of the 
transition period. Secondly, energy consumption data at the RB level 
relies on refined statistics (such as individual metering by power 
companies and property management ledgers). However, it was not 
until 2021 that Tianjin began to require each sub-district at the district 
level to submit energy ledgers at the RB level. Before that, Hongqiao 
District had neither a sub-item energy consumption ledger at the 
residential area scale nor made the corresponding geographic 
information public. Therefore, it is impossible to systematically 

construct microscale panel data consistent with this study. Thirdly, 
although the sample period is relatively short, there are already 
monthly data from 99 RBs for three consecutive years, totaling 3,564 
sets of observations tracking the changes in carbon emissions. This is 
a relatively rich sample in micro-scale carbon emissions research and 
can partially alleviate the bias caused by the short time period. 
Crucially, RBCE exhibit seasonal periodicity while maintaining 
interannual stability. This consistency is corroborated by Zhang et al., 
who compared monthly electricity consumption in seven mature RBs 
against annual totals across 3 years (28). Consequently, RBCE patterns 
remain relatively stable within defined periods, establishing a well-
founded basis for analysis. While extended temporal coverage would 
enhance robustness, the 2021–2023 period represents the most 
complete, comparable, and spatially verifiable RB-level sequence 
currently accessible through official channels. We  will continue 
tracking data updates to test long-term effects in subsequent research.

Tianjin, located in a cold region, has seen most existing studies 
on RBCE focus on heating energy, with less attention given to 
electricity consumption (29). This study chooses electricity 
consumption as the research focus for two main reasons. On one 
hand, urban buildings in cold regions typically use centralized 
heating systems. The hot water generated by centralized heat sources 
is supplied to the heat needed for urban area heating through pipe 
networks. Heating data is usually provided by heating companies or 
heating stations and is supply-side data rather than demand-side 
data. Take Tianjin as an example. The data provided by the heating 

FIGURE 1

Location of study area.

https://doi.org/10.3389/fpubh.2025.1645402
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1645402

Frontiers in Public Health 05 frontiersin.org

company is the thermal energy value that ensures the indoor 
temperature of the building in winter is above 18°C, rather than the 
actual thermal energy demand value of the building. On other hand, 
due to the limitations of heating methods, it is also very difficult to 
measure and obtain the actual demand values of heating energy 
consumption for different buildings (30). The energy consumption of 
building electricity is the summary of the terminal electricity 
consumption of each electricity user and represents the actual 
demand value. Moreover, under the same geographical location, fixed 
built environment and unified climatic background, the influence 
mechanism of the external spatial environment on the energy 
consumption of building electricity and heating is the same (29, 31). 
Therefore, in this study, the energy consumption of building 
electricity is selected as the basis for calculating RBCE, which can 
better reflect the impact of the BEF on the overall energy consumption 
demand of buildings. Secondly, as the economic development level 
of cities in cold regions, the living standards of residents and their 
demands for comfort continue to rise, the stock of buildings and the 
number of internal electrical equipment are constantly increasing. 
The use of air conditioners in summer and electric heating equipment 
in transitional seasons also significantly increases, which in turn leads 
to a rapid rise in the total amount of electricity consumption. 
Therefore, in addition to heating energy consumption, more attention 
should also be paid to electricity conservation in residential buildings 
in cold regions.

2.3 Methods

Reducing RBCE is one of the important measures to achieve the 
“dual carbon” goals. Due to the different BEF in different areas of the 
city, there may be spatial differences in RBCE, and different spatial 
patterns may form over time. The RBCE mainly depend on the level 

of economic development, the structure of energy consumption, and 
the degree of technological progress. However, internal factors of the 
block such as floor area ratio and green space ratio, as well as 
peripheral factors such as road network density, land mix degree, 
diversity of public service facilities, and accessibility of educational 
service facilities, will also affect RBCE intensity through various 
energy usage patterns and economic activities. The impact of these 
factors on RBCE may vary at different levels. To reveal the spatial–
temporal variation patterns of RBCE and identify their key 
influencing factors, this study first calculated the total RBCE, 
residential blocks carbon emissions intensity (RBCEI) and 
BEF. Then, by using the spatial autocorrelation method, the spatial-
temporal characteristics of the overall pattern of RBCE were 
analyzed. On this basis, the key factors influencing the RBCE were 
determined based on correlation analysis and the Random Forest 
model, and the linear or nonlinear response relationships between 
these factors and RBCE were explored. Finally, the influence 
mechanisms and policy applications of these key influencing factors 
are analyzed (Figure 2).

2.3.1 Measurement of residential blocks carbon 
emissions

The energy consumption of RBs mainly includes buildings, 
transportation, waste treatment, etc. Among them, the proportion 
of building energy consumption is the largest. The actual energy 
consumption of buildings includes centralized heating, electricity 
and gas, which are mainly used for heating, cooling, lighting, and 
equipment, etc. Studies have also confirmed this. Zhang et  al. 
collected the RBCE in Changxing, Zhejiang Province, China, and 
found that carbon emissions from electricity consumption were the 
main source of emissions, accounting for more than 98%, while 
carbon emissions from the consumption of natural gas accounted 
for only about 1% (32). Therefore, in this study, the main feature of 
RBCE is carbon emissions from electricity consumption. According 
to the carbon emission coefficient, taking the electricity 
consumption of each RB as the unit, the RBCE is calculated by 
Equation 1:

 = ×E AD EF (1)

where E  is carbon emissions (kg), AD is electricity consumption, 
and EF is the carbon emissions coefficient. Among them, AD  is the 
annual electricity consumption of residential land provided by the 
Tianjin power supply company. EF  uses the average carbon 
emissions per unit of electricity consumption in North China and 
the value is 0.5834 kgCO2/kWh. Additionally, residential blocks 
carbon emissions intensity (RBCEI) is the ratio of RBCE to the RB 
area. The average household carbon emissions (RBCE-AH) is the 
ratio of RBCE to the number of households in the RB. The 
measurement method of RBCEI and RBCE-AH are defined as 
follows (Equation 2):

 = /I E S (2)

where I  is carbon emissions intensity (kg/m2), E  is carbon 
emissions (kg), and S is the area of residential land (m2) (Equation 3).

 = /A E H (3)

TABLE 1 Data sources and description.

Name Description Sources

Electricity 

consumption data

Electricity consumption 

data of RBs

Tianjin power supply 

company Public Security 

Bureau

Road systems of 

Tianjin

Vector data of road traffic 

system

OpenStreetMap (OSM)

Land use map of 

Tianjin in 2021

Master Plan of Tianjin 

Territorial Space

Natural Resources 

Bureau

Buildings Building area, height, type, 

etc.

Construction Bureau

Population The number of households 

of RBs

Anjuke website

Public charging piles Location of public 

charging piles

Gaode map

POI Location of public service 

facilities, educational 

service facilities, and 

public transportation stops

Baidu map

Remote sensing data The coverage rate of trees https://www.gscloud.cn/
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where A is average household carbon emissions (kg/h), E  is 
carbon emissions (kg), and H  is the number of households in 
the RB (h).

2.3.2 Measurement of built environmental factors
According to the control requirements of Master Plan of Tianjin 

Territorial Space, combined with relevant literature research and 
through expert interviews, According to the control requirements 
of Master Plan of Tianjin Territorial Space, combined with relevant 
literature research and through expert interviews, Meanwhile, to 
avoid the interference of microclimate factors such as solar 
radiation acquisition, natural ventilation potential and thermal 
environment comfort within the RB, this study only uses the planar 
BEF attributes to describe the BEF characteristics of RBs, and does 
not include three-dimensional parameters such as building height, 
volume and sky view factor (SVF). Ultimately, The Building 
Southward Coefficient (BSC), Building Density (BD), and Building 
Group (BG) are proposed from five dimensions: architectural 
spatial layout, land use, facility configuration, road traffic, and 
ecological construction. Floor Area Ratio (FAR), Land Area (LA), 
Land Use Mixing Degree (LMD), Public Facilities Diversity (PFD) 
Educational Facilities Accessibility (EFA), Public Charging Piles 
Accessibility (PCPA) Road Network Density (RND), Public 
Transportation station Density (PTSD), Green Space Ratio (GSR) 

Tree Coverage Rate (TCR), Park Green Spaces Accessibility (PGSA) 
14 BEF. The measurement methods of the 14 BEF can be found in 
Table 2.

2.3.3 Pearson correlation analysis
This study conducts correlation analysis through the Pearson 

correlation coefficient. In statistics, the Pearson correlation coefficient 
can be used to measure the correlation between two variables X and 
Y. Its value ranges from −1 to 1, describing the strength of the linear 
correlation between the two variables. The larger its absolute value, the 
stronger the correlation. The measurement method of Pearson 
correlation coefficient is defined as Equation 4:

 =

  − −
=   −   

∑
n

i i

X Yi 1

1 X X Y Yr
n 1 S S  

(4)

Where r is the Pearson correlation coefficient, X  and XS  are the 
sample mean and sample standard deviation, respectively.

2.3.4 Spatial autocorrelation analysis
Spatial autocorrelation analysis is mainly used to describe the 

spatial distribution characteristics of variables, and it includes global 
and local spatial autocorrelation analysis. The global Moran’s I describes 

FIGURE 2

Framework of methods.
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TABLE 2 Evaluation index system of built environment.

Type BEF Formula Description Source

Architectural spatial layout

(ASL)

Building southward coefficient (BSC) I= =∑1n 1
Di
Li

n
i

(i = 1,2,…,n)

I represent the southward coefficient index of residential buildings; n represents the number of individual 

buildings; Di represents the maximum projected length of the i-th building in the east–west direction. Li is 

the perimeter of the i-th building.

(47)

Building density (BD)
=

=
∑
1

s
S

s

n
i

i
(i = 1,2,…n)

S represent the building density; n represents the number of individual buildings; si represent the base area of 

the i-th building, and S represents the total land area.
(48)

Building group (BG)
Z = Xi

(i = 1,2,…5)

Z represent the architectural combination form; Xi represents the first type of architectural combination form. 

1 is a standalone building, 2 is a scattered building, 3 is an enclosed building, 4 is a row building, and 5 is a 

combined building.

(49)

Land use

(LU)

Floor area ratio(FAR) F=
=
∑
1

M
s

n
i

i
(i = 1,2,…,n)

F represent the floor area ratio; n represents the number of individual buildings; Mi  represents the total area of 

the i-th building. S represents the total land area.
(45)

Land area(LA) -- LA refers to the total land area of the RB, which is directly calculated and extracted through the GIS system. (50)

Land use mixing degree(LMD) T = (−1)    
   
   =∑ ln1
Li Li
u u

n
i

(i = 1,2,…,n)

T represents the degree of land mix in RB; u represents the total number of POI within a 1-kilometer radius of 

the RB. n represents the total number of POI classes within the range; Li  represents the quantity of the i-th 

type POI within the range.

(51)

Facility configuration

(FC)

Public facilities diversity(PFD) C= =∑ 1
Li
S

n
i

(i = 1,2,…,n)

C represents the diversity of public service facilities; S represents an RB of 1 square kilometer. n represents the 

total number of types of public service facilities within the range; Li  represents the number of public service 

facilities of Category i within the scope.

(52)

Educational facilities accessibility(EFA)
Q = Min(Li)

(i = 1,2,…,n)

Q is the accessibility of educational service facilities; The length of the travel route from the Li Type i RB to the 

corresponding primary school in the school district.
(53)

Road traffic

(RT)

Public charging piles 

accessibility(PCPA)

M = Min(Li)

(i = 1,2,…,n)

M represents the configuration density of public charging piles; The length of the travel route from the Li Type 

i residential area to the surrounding public charging stations.
(54)

Road network density(RND) K= =∑ 1
Li
S

n
i

(i = 1,2,…,n)

K represents the road network density within a 1-kilometer radius of the RB. n represents the number of roads 

within the range; Li  represents the length of the i-th road within the range; S represents the area within 1 

meter of the RB.

(55, 56)

Public transportation stations 

density(PTSD) D=R
S

D represents the density of public transportation stops; R represents the number of public transportations 

stops within a 1-kilometer radius of the RB. S represents the area within a 1-kilometer radius of the RB.
(57)

Ecological construction

(EC)

Green space ratio(GSR) G= =∑ s
S

n i
i 1

(i = 1,2,…,n)

G represents the green space ratio; n represents the total number of green spaces within the RB; si represents 

the area of the i-th green space within the RB; S represents the total land area of the RB.
(58)

Tree coverage rate(TCR)
E=G

S

E represents the coverage rate of trees in the RB; G represents the projected area of the canopies of all the trees 

in the RB on the ground. S represents the total land area of the RB.
(59)

Park green spaces accessibility (PGSA)
W = Min(Li)

(i = 1,2,…,n)

W represents the accessibility of the park green space in the RB; The length of the travel route from the Li 

Type i RB to the surrounding parks and green spaces.
(60)
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the degree of agglomeration in space, and its value range is [−1, 1]. A 
Moran’s I greater than zero indicates a positive correlation in the spatial 
distribution of carbon emissions, and the closer it is to 1, the higher the 
spatial agglomeration of carbon emissions. A Moran’s I less than zero 
indicates that the spatial distribution of carbon emissions is different. 
The closer it is to −1, the stronger the spatial heterogeneity of carbon 
emissions. A Moran’s I equal to zero indicates that carbon emissions in 
the study area are not correlated. The measurement method of Moran’s 
I are defined as follows (Equations 5, 6):

 

( )( )= =

= =

− −
=
∑ ∑

∑ ∑
1 1

2
1 1

n n
ij i ji j

n n
iji j

n W y y y y
I

S W
 

(5)

 
( )= =

= − =∑ ∑22
1 1

1,n n
i ii iS y y y y

n  
(6)

Where I  represents the Moran’s I, n is the total number of spatial 
units in the study area, iy  and jy  respectively represent the mean 
carbon emissions of the i-th and j-th spatial units, and ijW  is the 
standardized spatial weight matrix. The spatial weight matrix 
constructed in this study adopts the Queen adjacency matrix, that is, 
if there are common edges or common vertices between regional unit 
i and regional unit j, then =1ijW ; Otherwise, = 0ijW .

The global Moran’s I can prove whether the spatial autocorrelation 
between regional elements is significant or not through the assumption 
of normal distribution. The spatial autocorrelation is tested based on 
the standardized Z value and p value. The specific test rule is as 
follows: If |Z| ≤ 1.96, p > 0.05, that is, there is no spatial autocorrelation 
of RBCE among regional units. If |Z| ≥ 1.96 and p ≤ 0.05, the spatial 
autocorrelation of RBCE among regional units is significant. If 
|Z| ≥ 2.58 and p ≤ 0.01, the spatial autocorrelation of RBCE among 
regional units is extremely significant. When the Z value is greater 
than 0 and reaches the significance level, it indicates that the RBCE 
among regional units present an aggregated distribution, that is, the 
high (low) RBCE areas are adjacent to the high (low) RBCE areas. 
When the Z value is less than 0 and reaches the significance level, it 
indicates that the RBCE among regional units present a dispersed 
distribution, that is, high (low) RBCE zones and low (high) RBCE 
zones are distributed alternately. The measurement method of the Z 
value are defined as follows (Equations 7, 6):

 
( ) ( )

( )
−

=
I E I

Z I
VAR I  

(7)

 
( ) =

−
1
1

E I
n  

(8)

Where ( )E I  represents the expected value of the global Moran’s I, 
and ( )VAR I  represents the theoretical variance of the global 
Moran’s I.

Global spatial autocorrelation analysis explores the spatial 
agglomeration degree of RBCE from the perspective of the overall 
study area and determines whether there is spatial correlation of 
RBCE. However, to a certain extent, it ignores the atypical spatial 
characteristics existing in the study area. Local spatial autocorrelation 

analysis can effectively fill this research gap. The local spatial 
autocorrelation analysis divides the four quadrants of HH (high-high 
agglomeration area), HL (high-low agglomeration area), LL (low-low 
agglomeration area), and LH (low-high agglomeration area) through 
the Moran scatter plot. Among them, HH (LL) represents that the 
adjacent spatial units have spatial homogeneity, and HL (LH) 
represents that the adjacent spatial units have spatial heterogeneity. 
The Moran scatter plot clearly and intuitively presents the correlation 
of local Spaces in the form of quadrants.

2.3.5 Random Forest model
The Random Forest model, proposed by Breiman, is a machine 

learning algorithm based on classification trees. The Random Forest 
model consists of multiple decision trees, and the overall accuracy and 
stability are improved by combining the prediction results of these 
decision trees. The Random Forest model performs well in dealing 
with both classification and regression problems, and can handle large 
amounts of data and high-dimensional features. Several key 
characteristics of the Random Forest model: (1) Ensemble learning 
Random Forest is a type of ensemble learning method. It makes the 
final decision by constructing multiple decision trees and summarizing 
their results; (2) Random selection of features. When training each 
decision tree, the Random Forest model does not examine all possible 
features at each node, but randomly selects some features. This 
method can increase the diversity among trees and improve the 
generalization ability of the model; (3) Anti-overfitting performance. 
Because multiple decision trees are integrated, Random Forests 
usually have better anti-overfitting performance than a single decision 
tree and (4) Evaluation of variable importance. Random Forest can 
provide a ranking of which features are more important for the 
predictor variables, which is achieved by observing the contribution 
of feature splitting in the tree nodes to the model performance. The 
typical characteristics of Random Forest indicate that they are suitable 
for dealing with the carbon emissions of residential blocks with many 
characteristic variables and complex variable relationships.

Random Forest model can be implemented by using a variety of 
software programs, including Matlab, Python, and R languages. This 
study chose to build a Random Forest model based on Matlab 
according to data characteristics. Taking RBCE as the dependent 
variable and BEF at each spatial scale as the independent variable, K 
Bootstrap sampling was conducted on the sample set. The data was 
divided into the training set and the test set in a ratio of 3:7 (30% for 
the test set and 70% for the training set). The training set and test set 
are randomly allocated by the Random Forest package to ensure that 
the data is evenly distributed in all regions. Calculate the importance 
of each variable using the model accuracy (R2) of the test set.

3 Results

3.1 Characteristics of RBCE

3.1.1 Quantitative characteristics
The results of RBCE and RBCEI conducted in Arcgis10.2 are 

shown in Table 3. In terms of RBCE, the average values of RBCE from 
2021 to 2023 were 1,480,108.283, 1,676,179.839, and 156,555.401 
kgCO2, respectively. Compared with 2021, the average RBCE in 2022 
increased by 196,071.556 kgCO2, accounting for 13.25% of the average 
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RBCE in 2021. Compared with 2022, the average RBCE in 2023 
decreased by 111,124.438 kgCO2. It accounted for 6.63% of the average 
RBCE in 2022. Overall, the RBCE in 2023 increased by 84,947.118 kg 
of CO2 compared to the average RBCE in 2021, accounting for 5.74% 
of the average RBCE in 2021. Additionally, from 2021 to 2023, the 
highest RBCE was achieved by Jie Yuan (ranked 99th), with carbon 
emissions of 5,833,847.875, 6,533,121.082, and 6,043,520.427 kgCO2, 
respectively. It is located in Jieyuan Sub-district in the south of 
Hongqiao District. It is an apartment complex with tower-like 
buildings and was completed and put into use in 2013. Therefore, it 
has a relatively high FAR and is also the RB with the largest FAR 
among all the samples. Meanwhile, from 2021 to 2023, the lowest 
RBCE was achieved by Yuxing Xili (ranked 40th), with carbon 
emissions of 84,669.935, 86,149.958, and 85,819.314 kgCO2, 
respectively. It is located in Dingzigu Sub-district in the northern part 
of Hongqiao District, belonging to the old urban area. It was 
completed and put into use in 1990 and is a multi-story old 
residential area.

In terms of RBCEI, the average values of RBCEI from 2021 to 
2023 were 60.573, 68.547, and 63.585 kgCO2/m2, respectively. 
Compared with 2021, the average value of RBCEI increased by 7.974 
kgCO2/m2 in 2022, accounting for 13.16% of the average RBCEI in 
2021. Compared with 2022, the average value of RBCEI decreased by 
4.962 kgCO2/m2 in 2023. It accounted for 7.24% of the average RBCEI 
in 2022. Overall, the RBCEI in 2023 increased by 3.012 kgCO2/m2 
compared to the average RBCEI in 2021, accounting for 4.97% of the 
average RBCEI in 2021. From 2021 to 2023, the highest RBCEI was 
achieved by Jie Yuan (ranked 99th), with RBCEI of 1,251.721, 
1,401.759, and 1,296.709 kgCO2/m2, respectively. Dingfa Home 
(ranked 90th) has the smallest RBCEI, which were 5.066, 5.805, and 
5.316 kgCO2/m2, respectively, from 2021 to 2023. It is located in the 
southern part of Hongqiao District, Shaogongzhuang Sub-district, 
and was completed and put into use in 2002. It is mainly composed of 
7-story slab residential buildings.

In terms of RBCE-AH, the highest values of RBCE-AH from 2021 
to 2023 were all in Jieyuan (ranked 99th), with RBCE-AH of 
28,597.290, 32,025.100, and 29,625.100 kgCO2/h, respectively. Jieyuan 
is located in Jieyuan Sub-district in the south of Hongqiao District. It 
was completed and put into use in 2013. It is an apartment-style RB 
with a tower-style building form and a relatively high FAR. There are 
204 households in the RB. Meanwhile, the lowest RBCE-AH values 
from 2021 to 2023 were all for Dingfa Jiayuan (ranked 90th), with 
RBCE-AH values of 511.060, 585.650, and 536.250 kgCO2/h, 
respectively. Dingfa Jiayuan is located in the southern part of the study 
area in Shaogongzhuang Sub-district. It was completed and put into 
use in 2002. It is an old-style RB with a slab building form, 7 floors 
high, and a relatively low FAR. There are 492 households in the 
RB. Overall, the RBCE-AH was the highest in 2022 from 2021 to 2023, 
and the RBCE-AH has generally shown an upward trend. The RBs 
with higher RBCE-AH are concentrated in the western and southern 
parts of the study area, and the RBs with RBCE-AH increasing from 
low to high show an upward trend.

3.1.2 Spatial characteristics
The spatial distribution of RBCE and RBCEI in 99 RBs within the 

study area from 2021 to 2023 is shown in Figure 3. Among them, 
regarding the RBCE, the RBs with relatively high carbon emissions 
from 2021 to 2023 are mainly concentrated in Shuimutiancheng 

Central Garden in the east, Caifengli in the northeast, and Longchunli 
in the southeast. High-carbon emissions RBs are mostly concentrated 
and contiguous residential blocks. The RBs with relatively low carbon 
emissions are mainly concentrated in Qingcheng, Yongmingli, Dingfa 
Home and Caoyuanlou. Secondly, regarding RBCEI, the RBs with 
relatively strong carbon emissions intensity from 2021 to 2023 are 
mainly concentrated in the northern 12th Section, Shengchailou, 
Xingchengli, and Fanyang Building, while in the southern part, 
Hongliyuan, Kanghuali, Jinfeng Apartment, and Jieyuan. The RBs 
with relatively low carbon emissions intensity are mainly concentrated 
in Shuimutiancheng Central Garden, Shuixiyuan, Tianguili, Beikai 
Garden, Hehai Garden, Xinkaidongli, Changpingxili, Changpingli, 
Feiyuelou, Suizhonglou, Sanjiangli, Renheli, etc. Most of the low- 
carbon emissions intensity RBs are located in the peripheral areas of 
Hongqiao District, far from the center of the district. Thirdly, 
regarding RBCE-AH, The RBs with relatively high RBCE-AH from 
2021 to 2023 are mainly concentrated in Jieyuan, Jinfeng Apartment, 
and Yifu Li in the south of Hongqiao District. Most of the RBs 
buildings with high RBCE-AH are high-rise RBs. The RBs with 
relatively low RBCE-AH are mainly concentrated in Dingfa Home, 
Jianshe Li, Cuishanlou, and Donglou in the north of Hongqiao 
District. They are mainly continuous multi-storey RBs, which are 
somewhat related to the development and construction model of 
Hongqiao District.

In this study, referring to the life circle theory, three spatial weight 
matrices with distances of 500, 1,000 and 1,500 m were constructed, 
and the Moran’ I  of RBCE under different spatial distances was 
compared. Through comparison, the spatial weight matrix with a 
distance of 1,000 m is selected. From 2021 to 2023, the Moran’ I was 
0.275, 0.291, and 0.288, respectively. The Z scores were all greater than 
1.96 and P was all less than 0.01 (Table 4). The results indicate that 
RBCE shows a significant spatial positive correlation. Taking the 
spatial weight matrix with a distance of 1,000 m as an example, it can 
be  seen from Figure  4 that, except for the not Significant and 
Neighborless types, the RBCE distribution in the four quadrants is not 
uniform. The spatial aggregation of RBCE is mainly high, mainly 
distributed on the west and south sides of Hongqiao District.

3.2 Characteristics of BEF

3.2.1 Quantitative characteristics
The descriptive statistics of the 14 BEF proposed in this study are 

shown in Table 5. All variables contain 99 samples with no missing 
values, reflecting BEF characteristics at different scales. The mean, 
standard deviation, minimum and maximum values of each BEF 
indicate that there are significant differences in the range of values and 
the degree of dispersion among different BEF. For example, the 
standard deviation of the LA (34,496.825) is close to its mean 
(38,367.342), and the minimum and maximum values are 1,291.262 
and 188,360.035 respectively, indicating a significant difference in LA 
among different RBs. Similarly, the EFA, PCPA, and PGSA also show 
significant dispersion (with standard deviations reaching 51, 59, and 
49% of the mean, respectively). In contrast, the variations in BD and 
LUMD were relatively small (standard deviations were only 9 and 
7.8% of the mean, respectively) (Table  5). These statistical 
characteristics suggest that some variables may have skewed 
distributions or extreme values. In subsequent analyses, data 
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transformation (such as logarithmic transformation) and 
standardization processing need to be  carried out to meet the 
assumptions of the regression model.

3.2.2 Spatial characteristics
Through data collection, the BEF of the case RBs in Hongqiao 

District, Tianjin were quantitatively calculated and visually expressed 
in Arcgis10.2. As shown in Figures 5a–c, in terms of the spatial layout 
of residential buildings, the BSC difference is small and evenly 
distributed. The difference in BD mainly lies between the north and 
the south. Moreover, there are a large number of high-density RBs. 
The BG are mostly combined and row types, and the distribution of 
single-family buildings is relatively small. As shown in Figures 5d–f, 
at the land use level, there are obvious differences in the BEF 
characteristics of the case RBs between the north and the south. The 
FAR, LA, and LMD show different performances between the north 
and the south. As shown in Figures 5g,h, there are relatively obvious 
east–west differences in the configuration of RBs facilities. The 
configuration of PFD performs better in the northern center and the 
western part of the south. The distribution of EFA is relatively 
balanced. Among them, the accessibility along the southeast-
northwest direction is poor, and there are more high values in the 
southern area. As shown in Figures 5i–k, at the level of low-carbon 
transportation, the classification within RBs is relatively obvious. The 
PCPA, RND, and PTSD vary in different regions. Overall, the PTSD 
within the study area is relatively high near Metro Line 1. As shown 
in Figures 5l-n, there is a phenomenon that the ecological construction 
of RBs is stronger in the south than in the north. Residents in the 
southern RBs can obtain more green space resources in a shorter time, 
and the ecological construction within the RBs is also relatively better. 
Overall, there are significant differences in land use and low-carbon 
transportation among RBs within the study zone. The internal balance 
between the southern and northern regions is relatively balanced, but 
the contrast between the south and the north is more obvious.

3.3 The impact of BEF on RBCE

3.3.1 Correlation analysis of BEF and RBCE
Based on the carbon emission data and BEF data of 99 RBs in 

2023, the Pearson correlation coefficient was selected to represent the 
correlation intensity between RBCE and BEF, and it was determined 
that there was a significant correlation between BEF and different 

types of RBs. Among them, in the ASL, the correlation coefficients of 
the BSC, BD, BG, and RBCE are −0.115, −0.287** and −0.361**, 
respectively. The significance levels of BD and BG have passed the 
0.000 test, while the significance level of the BSC has not passed the 
0.05 test, indicating that There was a significant negative correlation 
between BD, BG and RBCE, while the correlation of the BSC was not 
strong. In LU, the correlation coefficients of FAR, LA, LMD and RBCE 
were 0.199, 0.738** and 0.183, respectively. The significance level of 
LA passed the 0.000 test, while the significance levels of FAR and LMD 
did not pass the 0.05 test, indicating that there is a significant positive 
correlation between LA and RBCE. Meanwhile, the FAR is positively 
correlated with LMD, but the significance is not strong. In the FC, the 
correlation coefficients between the PFD, EFA and RBCE were 0.011 
and −0.099, respectively. Neither of the significance levels passed the 
0.05 test, indicating that there were positive and negative correlations, 
respectively, between the PFD, EFA and RBCE, but the significance 
was not strong. In terms of RT, the correlation coefficients between 
PCPA, RND, PTSD, and RBCE were 0.045, −0.017, and 0.081, 
respectively. None of the significance levels passed the 0.05 test, 
indicating that there were positive correlations, negative correlations 
and positive correlations between PCPA, PCPA, PTSD and RBCE, 
respectively. But it is not significant. In terms of EC, the correlation 
coefficients of GSR, TCR, PGSA, and RBCE were −0.463**, −0.248**, 
and 0.11, respectively. The significance levels of GSR and TCR passed 
the 0.000 test, while the significance level of PGSA did not pass the 
0.05 test. This indicates that there are significant negative correlations 
between GSR, TCR, PGSA and RBCE, while the correlation of PGSA 
is not strong. In terms of correlation, the correlation between LA and 
RBCE is the strongest, followed by GSR, BG, TCR, BD, FAR, LMD, 
BSC, PGSA, EFA, PTSD, PCPA, RND, and PFD. At the scale of RBs, 
the GSR has a significant impact on UBCE (Figure 6).

The Pearson correlation coefficient can only reflect the degree of 
linear association between two variables and cannot reveal the 
complex relationship under the joint action of multiple variables. 
Moreover, weak correlation is indeed difficult to fully describe the 
connection between variables. To further explore the comprehensive 
influence mechanism of BEF on RBCE, the study conducted a more 
rigorous multiple linear regression analysis as a supplement. The 
results show that the overall explanatory power of the regression 
model including all 14 BEF has significantly improved (R2 = 0.80), 
indicating that these factors jointly explain 80% of the variation in 
RBCE. The model has a high degree of goodness of fit, far superior to 
the previously observed simple pairwise correlations (Table  6). 

TABLE 3 The value of RBCE, RBCEI, and RBCE-AH.

Year Variables Sample size Mean SD Minimum Maximum

2021 RBCE 99 2916252.930 14489653.960 84,670 146,530,720

RBCEI 99 60.573 124.419 5.066 1251.721

RBCE-AH 99 1640.379 7824093.122 511.063 28597.294

2022 RBCE 99 3302572.160 16409410.664 86,150 165,941,804

RBCEI 99 68.547 139.497 5.805 1401.759

RBCE-AH 99 1859.728 9860030.865 585.646 32025.103

2023 RBCE 99 3083624.030 15322419.826 85,819 154,940,485

RBCEI 99 63.585 128.962 5.316 1296.709

RBCE-AH 99 1726.470 8416393.897 536.248 29625.100
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Meanwhile, the variance inflation factor (VIF) diagnoses for each 
factor were all below the critical threshold, which strongly confirmed 
the low degree of multicollinearity among these factors and ensured 
the stability and interpretability of the regression coefficient estimation 
(Table 7). This rigorous regression analysis result not only significantly 
enhanced the model’s explanatory power for RBCE, but also fully 
verified the independent contribution potential of the selected BEF in 
driving RBCE, providing a more reliable and in-depth statistical basis 
for understanding the complex relationship between the BEF 
and RBCE.

3.3.2 Random Forest analysis
This study selects 14 BEF as characteristic data and uses RBCE as 

output data. The Random Forest model is built via Matlab software. 
In model parameter settings, the original sample data is split into 80 
training set entries and 19 testing set entries. The decision tree count 
is set to 85, and the minimum leaf tree size to 3. After multiple 
trainings, a well fitted Random Forest model is obtained. The model 
with an R2 of 0.91754 is chosen as the final model due to its good 
fitting performance (Figure 7).

Based on the constructed Random Forest model, the significance 
of the impact of 14 BEF on the RBCE in Hongqiao District, Tianjin, 
was determined, as shown in Figure 8. The fitting results indicate that 
these BEF can be divided into four groups based on their importance. 
The most critical factor is LA, which has the greatest impact on 
RBCE. Second are the LMD and GSR, with an importance of around 
0.35, signifying a substantial influence. The importance of eight BEF, 
including BG, BSC, PFD, EFA, PCPA, RND, PTSD, and TCR, is 
basically distributed between 0.1 and 0.3. Their importance is relatively 
low, that is, the impact on the RBCE is also relatively low. Finally, there 
are three indicators: BD, FAR, and PGSA. Their importance is all 
below 0.1, and they have the least impact on the RBCE.

Overall, among the BEF in Hongqiao District, Tianjin, the factors 
at the LU level have the greatest impact on the RBCE, with a total 
importance of 1.9815. Secondly, at the EC level and the RT level, their 
total importance is 0.6607 and 0.5116 respectively, and they have a 
greater impact on the RBCE. The total importance at the FC level is 
0.375. The impact on the RBCE is relatively small. Among the five 
levels, the overall importance of the ASL level is the lowest, and its 
impact on the RBCE in Hongqiao District, Tianjin is the least.

FIGURE 3

Spatial distribution of RBCE, RBCEI and RBCE-AH in 2021–2023.
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4 Discussion

4.1 Comparison with existing methods

4.1.1 Comparison with existing carbon emissions 
measurement method

Based on the RBCE measurement method proposed in this study, the 
electricity consumption of RB is calculated through information such as 
user names, electricity usage locations, electricity consumption, and 
voltage in AMI data, and then the RBCE is calculated. Due to the accurate 

positioning, high timeliness and high coverage of AMI data, it can well 
make up for the shortcomings of traditional data collection that consume 
a lot of human and material resources, and overcome the problems of low 
data accuracy, poor timeliness, lack of representativeness and lack of 
authenticity in traditional methods (33). Compared with the traditional 
RBCE measurement methods, this study proposes a RBCE measurement 
method framework based on AMI data, which has the advantages of 
strong representativeness, accurate scale and wide scope. In 2024, the 
spatial allocation model was used to study urban construction land 
carbon emissions (34). Compared with the RBCE measurement method 
framework based on AMI data proposed in this paper, this study can 
achieve the accuracy of RBCE at the block level and greatly improve the 
timeliness, representativeness and realism. The remaining studies, based 
on the statistics of energy consumption and population in the statistical 
yearbook, were used to estimate the RBCE (35). Questionnaire survey 
data, and energy consumption simulation data all have the same problem 
(36). Therefore, compared with traditional carbon emission estimation 
methods, this method has the advantages of strong representativeness, 
accurate scale and wide range.

FIGURE 4

Local spatial autocorrelation of RBCE. (a) Local spatial autocorrelation of RBCE in 2021. (b) Local spatial autocorrelation of RBCE in 2022. (c) Local 
spatial autocorrelation of RBCE in 2023.

TABLE 5 The value of BEF.

BEF Sample size Mean SD Minimum Maximum

BSC 99 0.333 0.030 0.226 0.425

BD 99 0.286 0.086 0.104 0.607

BG 99 3.727 1.052 1.000 5.000

FAR 99 1.897 0.721 0.8. 5.240

LA 99 38367.342 34496.825 1291.262 188360.035

LUMD 99 2.289 0.178 1.922 2.556

PFD 99 714.017 254.518 268.255 1408.560

EFA 99 1264.586 645.615 27.000 3258.000

PCPA 99 621.586 366.709 10.000 1954.000

RND 99 9.506 2.001 6.617 14.532

PTSD 99 4.516 1.585 1.151 8.256

GSR 99 23.970 8.299 10.000 50.000

TCR 99 0.531 0.120 0.255 0.890

PGSA 99 875.949 430.863 7.000 2192.000

TABLE 4 Moran’I of RBCE.

Year Moran’I Variance Z score P-value

2021 0.275 0.002631 5.565831 0.000

2022 0.291 0.002636 5.858769 0.000

2023 0.288 0.002635 5.82356 0.000

https://doi.org/10.3389/fpubh.2025.1645402
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1645402

Frontiers in Public Health 13 frontiersin.org

FIGURE 5

Spatial distribution of BEF. (a) Spatial distribution of Building Southward Coefficient. (b) Spatial distribution of Building Density. (c) Spatial distribution of 
Building Group. (d) Spatial distribution of Floor Area Ratio. (e) Spatial distribution of Land Area. (f) Spatial distribution of Land Use Mixing Degree. (g) 
Spatial distribution of Public Facilities Diversity. (h) Spatial distribution of Educational Facilities Accessibility. (i) Spatial distribution of Public Charging 
Piles Accessibility. (j) Spatial distribution of Road Network Density. (k) Spatial distribution of Public Transportation Station Density. (l) Spatial distribution 
of Green Space Ratio. (m) Spatial distribution of Tree Coverage Rate. (n) Spatial distribution of Park Green Spaces Accessibility.
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FIGURE 6

Pearson correlation coefficient between BEF and RBCE in 2023.

TABLE 6 The fitting of multiple regression model.

Model R R2 Adjusted 
R2

Error in 
standard 

estimation

Durbin 
Watson

1 0.848a 0.718 0.671 790.8010629519 2.274

aAdjusted coefficient of determination (Adjusted R).

4.1.2 Comparison with existing research
For the ranking results of the BEF of the Random Forest analysis, the 

analysis results of this study were compared with the standardized 
coefficient method of multiple regression. The detailed differences 
between the two methods are shown in Figure 9. The comparison shows 
that the influence patterns of 14 BEF on RBCE present a certain degree of 
consistency. The key driving factors, such as LA, FAR, and LMD, rank 
among the top few in terms of their impact on RBCE in both methods, 
while PGSA and TCR rank among the bottom two in terms of their 
impact on RBCE, verifying the robustness of the core influence 
mechanism. However, Random Forests demonstrate more refined 
resolution in the identification of nonlinear relationships. For example, 
the importance ranking of the core variable GSR in the Random Forest 
(2nd place) is significantly higher than its position in the regression model 
(5th place), suggesting that this factor may have a threshold effect or 
interaction with other variables. Meanwhile, the analysis results in this 
study are more consistent with those in existing studies. However, the area 
density index RND showed low statistical significance in the regression 

(ranked 13th), but its Random Forest importance was relatively high 
(ranked 6th), reflecting that the linear model might have overestimated 
its independent contribution. Relevant studies have also confirmed this. 
This difference essentially stems from the Random Forest’s ability to 
capture complex interaction effects and asymmetric relationships, 
complementing the limitations of traditional regression in explaining 
high-dimensional nonlinear systems. The estimation results of this study 
are more accurate at the plaque level and can better support urban 
planning at medium and small scales.

4.2 Robustness assessment

Despite the limitations of the time scale, this study adopted the 
following methods to evaluate and enhance the robustness of the research 
results. Firstly, cross-year model consistency check. This study calculated 
the spatial distribution of RBCE and the regression coefficients of key 
driving factors for each year of 2021, 2022, and 2023, respectively. Analysis 
shows that despite annual fluctuations, core findings such as the spatial 
agglomeration characteristics of high-emission areas, the position of LA 
as the primary driving factor, the significant inhibitory effect of GSR, and 
the positive emission reduction value of LMD remain relatively consistent 
in the 3 years. In addition, the Moran’s I value of the spatial autocorrelation 
index is significant and stable, which is 0.275, respectively. 0.291 and 
0.288. Secondly, verification of model stability. When constructing a high-
precision Random Forest model, the study strictly adopted cross-
validation, especially time series cross-validation or annual validation 
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techniques, to evaluate the predictive performance and stability of the 
model. The model performs stably and has controllable errors on the 
validation set, with R2 all greater than 0.9, indicating that the relationships 
captured by the model are reliable during the observation period. Thirdly, 
the degree of conformity with existing theories and literature. Based on 
the comparative analysis in 4.1, it can be known that the driving factors 
discovered in this study are highly consistent with the theoretical basis of 
urban morphology, environmental science, and energy geography, as well 
as the conclusions of many related empirical studies. For example, based 
on the measured data of spatial morphological parameters of six local 
climate zones in Guangzhou, Liu et al. proposed a parametric optimization 
design technology for high-density residential communities based on the 
Dynamic Local Energy Balance (DLEB) model, and formed a perimetry 
oriented spatial optimization strategy for high-density residential 
communities. The suggested building density is 0.45–0.5, and the number 
of building floors is 10–20. The contribution rates of building floors and 
density to the comprehensive indicators are 48 and 43% respectively, 
thereby providing theoretical and technical guidance for the construction 
of dense residential areas (37). This consistency also indirectly supports 
the credibility of the findings of this study. Finally, data quality and 
granularity. The research utilized high-precision AMI data from State 
Grid (rather than estimated data) and conducted analyses on fine micro-
scale RBs (99 blocks), which helped reduce data errors and the uncertainty 
brought about by scale effects, thereby providing more reliable basic 
information within the available data range.

4.3 Effects of BEF

4.3.1 Effects of the overall block-scale
Based on the spatial distribution characteristics and the results of 

autocorrelation analysis, this study found that the high-emission areas 
show significant spatial agglomeration and infectivity, and are mainly 
distributed in the west-south direction of the study area. Based on the 
analysis of key driving factors, we believe that the formation of this 
spatial pattern is the result of the combined effect of BEF at the block 
scale. On one hand, the west-south area is home to mature RBs with 
relatively high FAR and LA, but low GSR and LMD. The BD and 
activity intensity in these areas may be higher, leading to concentrated 
energy demand and a lack of effective ecological buffers. At the same 
time, a single function may increase indirect emissions such as 
commuting. The peripheral low-carbon zones may benefit from 
relatively loose development densities, higher GSR, and possible 
mixed functions, or represent newer development projects that have 
adopted certain energy-saving standards. On other hand, the observed 
spatial accumulation of high-emission areas indicates the mutual 
influence among blocks, not only intensifying climate risks but also 
threatening residents’ health through an “exposure chain reaction,” 
triggering multiple health crises. This might stem from: (1) Similar 

development models and eras. Adjacent blocks may adopt similar 
planning standards and building codes, resulting in similar energy 
demand structures. (2) Infrastructure sharing and spillover effects. 
High-emission RBs may concentrate high-energy-consuming public 
facilities or commercial activities, and their impact may radiate to 
adjacent RBs. (3) Proximity of socio-economic characteristics. 
Residents’ income, consumption habits, commuting patterns, etc. may 
have spatial continuity, leading to similarities in energy usage patterns. 
(4) Local climate effects. Such as the urban heat island effect, may 
be  more significant in high-density built-up areas and affect the 
surrounding areas. This contagiousness emphasizes that block 
planning cannot be carried out in isolation and needs to consider the 
impact of neighboring areas and regional collaborative emission 
reduction and health strategies.

4.3.2 Effects of synergy of multiple factors
LA is the most significant positive driver of RBCE, while GSR 

is the most significant negative inhibitory factor. It is worth 
noting that the inhibitory effect of GSR exceeds the traditional 
high-intensity development indicators, highlighting the crucial 
role of ecological spaces in reducing emissions in micro-scale 
RBs. More importantly, there may be a strong antagonistic effect 
between LA and GSR. In larger RBs in LA, there is usually more 
building coverage and hardened surfaces, which weakens the 
space available for greening and thus limits the emission 
reduction benefits of GSR. Conversely, in RBs where LA is 
restricted, enhancing GSR through meticulous design, such as 
vertical greening and pocket parks, may become a key strategy to 
counteract the negative effects of high-density development, and 
may even generate a synergistic effect. For example, high GSR can 
not only squeeze carbon and release oxygen, but also alleviate the 
heat island effect through cooling, indirectly reducing the energy 
consumption for building cooling. In densely populated areas, 
this indirect emission reduction benefit may be magnified and 
can significantly promote the health of residents. For instance, it 
significantly reduces the risks of asthma, ischemic heart disease 
and stroke. The visibility and accessibility of this green space also 
significantly lower the levels of anxiety and depression, etc. 
Secondly, LMD also demonstrates value in reducing emissions. 
Its mechanism of action may lie in reducing residents’ reliance on 
motor vehicles, shortening commuting distances, and thereby 
lowering indirect emissions related to transportation. The role of 
LMD may complement or coordinate with that of LA and 
GSR. For example, in a neighborhood with a certain LA, a higher 
LMD can optimize the internal travel structure. A better GSR can 
enhance the livability of the mixed-function environment, attract 
residents to move more within the block, and further strengthen 
the emission reduction effect of LMD. Future research needs to 
quantify the interaction effects among multiple elements more 

TABLE 7 Analysis of variance for multiple regression model.

Model Sum of squares Degree of 
freedom

Mean square F Significance

Regression 134012877.229 14 9572348.373 15.307 0.000a

Residual error 52530770.978 84 625366.321

Total 186543648.207 98

aIt means that p < 0.05 level.

https://doi.org/10.3389/fpubh.2025.1645402
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1645402

Frontiers in Public Health 16 frontiersin.org

precisely, for instance, by introducing interaction terms or more 
complex model structures. Based on the above analysis, it is 
helpful to propose more targeted and integrated planning 
strategies. When controlling the expansion of LA, it is necessary 

to enhance GSR in conjunction. In the planning of new districts, 
emphasis should be placed on the collaborative design of LMD 
and GSR. Formulate regional coordinated emission reduction 
plans for high-emission clusters, etc. It is suggested that future 

FIGURE 7

Fitting diagram of the Random Forest model. (a) Comparison of prediction results between training sets in 2021. (b) Error curves in 2021. (c) 
Comparison of prediction results between training sets in 2022. (d) Error curves in 2022. (e) Comparison of prediction results between training sets in 
2023. (f) Error curves in 2023.
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research should use models containing interaction terms, 
structural equation models or machine learning interpretability 
tools (such as SHAP value interaction analysis) to quantitatively 
reveal these complex combined effects.

4.3.3 Effects of single-dimensional factors
The above results indicate that different types of BEF lead to 

significant differences in RBCE. However, based on the quantitative 
results, the influence mechanism of BEF on RBCE still needs to 
be  further explored to provide effective and scientific planning 
suggestions at the urban design level. The study conducted a separate 
analysis of the impact of 14 BEF on RBCE from 2021 to 2023 
(Figure 10).

4.3.3.1 Architectural spatial layout
The BSC, BD, and BG are the three main factors describing the 

ASL. Among them, the significance of the impact of BG on the RBCE 
is 0.18, which is higher than that of BD and the BSC. Different forms 
of BG not only have a direct impact on the energy consumption of 
buildings within the region, but also affect the energy consumption 
behavior of individual buildings within the region through changes in 
the external physical environment of the buildings, thereby achieving 
the influence on the energy consumption of buildings within the 
region. These intermediary channels mainly include the influence of 
urban spatial forms on the urban heat island effect, urban wind 
environment, and building lighting. Although limited by data, the 
study recognizes that the heterogeneity of mixed building types is 
crucial. High-rise buildings usually have lower per capita energy 
consumption for heating and cooling, but they may have higher 
energy consumption in public areas (38). The per capita energy 
consumption for heating and cooling in low-rise buildings is usually 
higher, but the public energy consumption is lower. In mixed RBs, the 
proportion and spatial layout of different types of buildings can affect 
the overall energy demand structure of the block, microclimate, and 
residents’ behaviors. Future studies need to integrate detailed data on 
building types and spatial distribution to more precisely quantify the 
impact of this heterogeneity on carbon emissions (39). Similarly, there 
exists the same logical correspondence between the BSC, BD and 
RBCE. Some studies have also proved this point. In this study, BD was 

significantly negatively correlated with RBCE. On one hand, BD 
specifically reflects the spatial distribution characteristics of building 
entities on the unit residential block, as it affects the formation of the 
wind, heat and light environment on the residential block and further 
has an important impact on carbon emissions (40). On other hand, 
high BD means an increase in building coverage, which will increase 
the mutual occlusion between buildings to a certain extent, thereby 
affecting the utilization of solar energy in winter and increasing the 
energy consumption for building heating (41).

4.3.3.2 Land use
The FAR, LA, and LMD are the three main factors describing 

LU. Among them, the significance of LA on the RBCE is 1.66, which 
is higher than that of FAR and LMD. This is because as LA increases, 
the building area of RBs also increases accordingly. Building area, as 
a symbol of urban spatial intensity, is usually proportional to it (42). 
Liu et al. conducted an empirical study on the relationship between 
RBCE and LA in Changxing, China, using the simulation data of 
ENVI-met. The results show that in the larger suburbs of LA, the 
RBCE is higher, while in the smaller central urban area of LA, the 
RBCE is lower (43). The LMD mainly refers to the proportion of 
mixed building areas of other functions on a single type of 
construction land. The influence of LMD on RBCE is mainly reflected 
in the energy consumption usage of different types of buildings such 
as lighting, heating, and cooling in residential buildings, as well as the 
energy consumption usage of lighting, heating, cooling, and office 
equipment in public buildings. Due to the significant differences in 
the intensity and density of internal personnel activities among 
buildings with different functions, there are considerable variations in 
building energy consumption (44). FAR is an important BEF that 
affects RBCE. Although it was not directly included as a three-
dimensional morphological indicator in this study, many literatures 
have confirmed its key role. For example, the FAR directly affects the 
volume ratio of building surface area, and thereby influences the heat 
exchange efficiency. High-intensity development is usually associated 
with a lower sky view factor (SVF), which limits the sky view, affects 
long-wave radiative cooling and natural lighting, and may increase the 
demand for artificial lighting and air conditioning. Additionally, the 
intensity of building development directly affects the wind 

FIGURE 8

The importance of the impact of BEF on RBCE in 2021–2023.
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environment and shading, which in turn influences the overall energy 
consumption performance of the building complex. Based on these 
theoretical mechanisms, we  can speculate that a larger FAR may 
be  associated with higher development intensity and potentially 
higher building volume, and its underlying physical mechanism is 
likely to be achieved through changes in three-dimensional form and 
microclimate. For example, the promoting effect of FAR may partly 
stem from its ability to allow for larger building volumes and more 
compact layouts (45). Future research must prioritize the integration 
of precise three-dimensional morphological data to more 
comprehensively reveal the multi-dimensional path by which BEF 
affects RBCE.

4.3.3.3 Facility configuration
The PFD and EFA are two main factors for describing FC. Among 

them, the importance of the EFA on the RBCE is 0.09, which is higher 
than that of the PFD. This is because the distribution of EFA is an 
important factor in urban planning. Both the layout of urban 
residential block and the planning of road systems will be influenced 
by the layout of educational facilities. For example, the suburbanization 
development model of cities in the United  States has led to the 
disorderly spread of cities along highways, mainly manifested in 
aspects such as excessively low urban construction density, scattered 
population residence, inconvenient life, residents’ excessive reliance 
on private cars for travel leading to the deterioration of environmental 
problems, the lack of community culture, and the waste of land 
resources. This suburban sprawling development pattern has had a 
negative impact on students’ school enrollment, resulting in an 
increase in the service radius of primary schools. More and more 
parents use private cars to pick up and drop off their children at 
school, which increases the carbon emissions of cars during the 
process of picking up and dropping off students. Some studies have 
also proved this point. Furthermore, as an important BEF, the PFD is 
also closely related to the RBCE. Apart from education, the PFD 
covers multiple aspects such as transportation, energy supply, medical 

care, and leisure and entertainment. The richness and layout 
rationality of these facilities have a profound impact on residents’ daily 
life behavior patterns and carbon emission levels. If the layout of 
public service facilities is unreasonable, overly concentrated or 
scattered, it may also lead to residents having to walk a longer distance 
when using these facilities, thereby increasing carbon emissions.

4.3.3.4 Road traffic
The PCPA, RND, and PTSD are the three main factors describing 

RT. Among them, the importance of the impact of PTSD on the RBCE 
is 0.29, which is higher than that of PCPA and RND. On one hand, the 
higher the density of PTSD is, the shorter the walking distance for 
residents to reach the stops will be, and the convenience of travel will 
be  significantly improved. When the PTSD is high enough, the 
possibility for residents to choose public transportation in their daily 
trips will increase significantly. For instance, in areas with a high 
density of bus stops, residents can walk to the nearest bus stop or 
subway station in a short time without relying on high carbon 
emissions vehicles such as private cars or motorcycles. This shift in 
travel mode directly reduces carbon emissions caused by individual 
driving. Studies show that for every increase in the density of stations 
by a certain proportion, the proportion of residents choosing public 
transportation for travel will also increase accordingly, thereby 
effectively reducing the per capita carbon emission level. On other 
hand, the increase in the PTSD also has a positive impact on the urban 
spatial structure, and thereby indirectly affect carbon emissions. A 
public transportation network with dense stations can guide the 
rational layout of urban space and promote the compact development 
of the city. Additionally, the indicators for measuring road traffic also 
include PCPA and RND. In a certain area, the higher the RND and the 
smaller the block size, the smaller the LA. Small scale land can offer a 
variety of travel options, increase pedestrian accessibility, and reduce 
carbon emissions from transportation energy consumption. The 
increase in the number of PCPA can encourage residents to use more 
new energy vehicles for travel, thereby reducing carbon emissions.

FIGURE 9

Comparison between Random Forest model and multiple regression standardized coefficient method.
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FIGURE 10

The impact of 14 BEF on RBCE from 2021 to 2023.
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4.3.3.5 Ecological construction
The GSR, TCR, and PGSA are the three main factors describing 

EC. Among them, the significance of the GSR on the RBCE is 0.403, 
which is higher than that of the TCR and the PGSA. The GSR refers 
to the proportion of the area of various types of green spaces 
(including parks, squares, street green Spaces, protective green Spaces, 
affiliated green Spaces, etc.) to the total area of a certain region. The 
level of GSR has a significant impact on RBCE. On one hand, green 
spaces are important carbon sink resources in urban ecosystems. 
Plants absorb CO2 and release O2 through photosynthesis. This 
process can effectively reduce the concentration of CO2 in the 
atmosphere, thereby lowering carbon emissions. Trees, grasslands, 
and other vegetation in green spaces absorb a large amount of CO2 
during their growth process and fix it in their bodies, forming carbon 
sinks. For example, the research conducted by Vaccari in Italy on the 
city of Florence shows that within the 102.3 km2 of the city, 29.1 km2 
of green space offset 6.2% of the direct carbon emissions, and proposes 
a low carbon model for spatial organization based on suburban green 
rings (46). On other hand, in terms of TCR and PGSA, the carbon 
sink capacity of green spaces not only depends on their area but is also 
closely related to the type and quality of vegetation. For example, the 
carbon sink capacity of forest green spaces is usually higher than that 
of grasslands, and the carbon absorption capacity of trees is higher 
than that of shrubs and herbaceous plants. Therefore, while increasing 
the GSR, optimizing the vegetation structure and improving the 
quality of vegetation can further enhance the carbon sink function of 
green spaces and effectively reduce carbon emissions.

4.4 Limitations and further improvements

In recent years, how accurately analyzing the effects of BEF on 
RBCE has been a great concern. The results obtained in this study can 
be used to supplement and improve the control index system of the 
existing urban planning at the medium and micro scales. This is of 
great significance for guiding policymakers to formulate targeted 
emission reduction policies or helping urban planners to formulate 
low-carbon urban planning schemes that are more targeted to 
control RBCE.

There are also some uncertainties in this study. Firstly, although 
the research methods we proposed provide a new possibility to explore 
the effects of BEF on RBCE under the condition of limited statistical 
samples, there are only 99 residential blocks samples, which will affect 
the accuracy of the results. Secondly, compared with other studies, the 
RBCE is represented by electricity consumption carbon emissions in 
this study, without considering the gas, transportation, and waste 
transfer. Although it is feasible, it will also have errors. Thirdly, the 
time series of building energy consumption data needs to be expanded. 
The robustness of the results of this study can be  enhanced by 
analyzing the changes in panel data over the years. As a long-term 
study, with the continuous update of subsequent data, observations 
from 2024 and beyond will be included to further verify the long-term 
resilience of BEF on RBCE. However, the driving mechanisms and 
spatial differentiation patterns discovered in this study provide 
immediate evidence for the low-carbon renewal of residential blocks. 
Finally, due to the limitations of the current studies data foundation, 
the BEF system adopted in this study mainly focuses on the 
two-dimensional land use and planar morphological characteristics at 
the block scale, and fails to deeply depict the spatial distribution 

heterogeneity of building types within the block (for example, the 
mixed proportion and spatial combination pattern of low-rise villas 
and high-rise apartments) and the quantitative characterization of 
three-dimensional morphological characteristics. It is only to conduct 
in-depth explanations from the perspectives of theoretical 
mechanisms and existing literature evidence during the discussion. 
This heterogeneity and three-dimensional elements also affect to a 
certain extent the solar radiation acquisition, natural ventilation 
potential and thermal environment comfort within the block, 
resulting in significant differences in energy consumption intensity 
and carbon emission patterns among different building units within 
the same block, thereby influencing the accuracy of the overall 
emission assessment of the block and the depth of 
mechanism explanation.

Future studies on low carbon RBs can become more detailed, refined 
and goal-oriented, and clearly incorporate health risk mitigation targets. 
Conduct targeted research and assessment for each RB type or individual 
area. Based on the influencing factors of carbon emissions related to 
residential electricity usage and the local BEF situation, provide targeted 
strategic suggestions. Firstly, low carbon RB planning research is adopting 
more methods, which demand more of research data. Internet of Things 
and big data technologies can fill this gap. In future research, more 
accurate and timely data will be obtained from multiple sources, and 
artificial intelligence will be utilized to process and analyze the data. If 
higher-resolution data (such as building census data, street view image 
recognition, LiDAR point cloud classification) are integrated, and the 
heterogeneity of building types and more three-dimensional 
morphological indicators (such as building height, volume, SVF, H/W 
and other key three-dimensional parameters) are incorporated into the 
BEF indicator system, Combined with more refined coupling models 
(such as combining microclimate simulation ENVI-met and energy 
consumption simulation), quantitatively analyze its influence path. Clarify 
the complete impact pathways of BEF on the microenvironment, carbon 
emissions, and residents’ exposure to air pollutants and health risks (such 
as cardiopulmonary diseases and neurological impacts). Secondly, factors 
in low carbon RB studies should extend beyond material and spatial 
BEF. Explore and analyze the living habits and concepts of people with 
different regional and cultural characteristics, as well as their impact on 
carbon emissions and indoor and outdoor environmental health risks 
(such as increased emissions and heat-related disease risks due to 
excessive reliance on air conditioning). Thirdly, Strengthen the promotion 
of low-carbon concepts, enhance residents’ awareness and participation, 
and guide the formation of daily behavioral patterns that not only reduce 
carbon footprints but also improve micro-environmental health (such as 
encouraging natural ventilation and reducing the use of highly polluting 
fuels). Additionally, the government should establish and improve 
technical standards, policies and regulations for low-carbon residential 
areas, and clearly incorporate the health synergy benefits such as reducing 
local pollution exposure and alleviating the heat island effect as core goals 
into the norms and assessment system. Standardize its construction and 
optimization to provide strong technical and policy support for the 
low-carbon development of residential buildings. Ensure the technical 
feasibility of the policy and maximize the health benefits.

5 Conclusion

This study took 99 RBs in Hongqiao District, Tianjin as the 
research objects, systematically analyzed the temporal evolution and 
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spatial distribution characteristics of RBCE during the period from 
2021 to 2023, and constructed an index evaluation system. The 
evaluation indicators were fitted through the Random Forest model, 
revealing the impact of the BEF on the RBCE. The main conclusions 
are as follows:

(1) The study proposed a fine analytical framework for the 
microscale of RBCE. This study focuses on the micro-spatial unit of 
RBs, systematically revealing the uniqueness of Hongqiao District, 
Tianjin in terms of temporal dynamics (relatively stable but fluctuating 
from 2021 to 2023) and spatial patterns. Not only were the high-value 
and low-value areas of total RBCE and RBCEI identified, but more 
importantly, through spatial autocorrelation analysis, it was confirmed 
at the block scale that RBCE has a significant global spatial positive 
correlation agglomeration pattern (agglomeration on the west and 
south sides).

(2) Accurately identify and quantify the key driving factors of 
the BEF and their hierarchical relationships. Using the high-
precision Random Forest model (with a goodness of fit R2 as high as 
0.91754), the impact intensity of up to 14 BEF on RBCE was 
systematically quantified and evaluated, and their importance levels 
were clearly ranked. The LA has been identified as the absolute 
primary driver influencing RBCE, and its significance far exceeds 
that of all other factors. This indicates that merely focusing on the 
architectural form or density might be biased. Controlling the overall 
land expansion of the block is the most crucial entry point for 
emission reduction. Most importantly, the GSR, as a core indicator 
characterizing the ecological attributes of a block, ranks second in 
importance, significantly higher than traditional high-intensity 
development indicators, as well as BG and RND. This strongly 
confirms that EC elements have a prominent and independent 
negative impact on reducing RBCE at the micro scale, providing 
direct empirical support for the application of the “ecological carbon 
sequestration” concept in block planning. Furthermore, LMD has 
also been identified as a key factor with significant potential for 
emissions reduction.

This study not only provides a more powerful methodological 
toolkit for understanding the complex interactions between humans 
and the land system, but also offers evidence-based precise 
intervention strategies for low-carbon and public health-oriented 
residential block planning, and provides clear, actionable and 
prioritized practical guidelines for low-carbon planning and 
renovation at the RBs level, considering mental health, respiratory and 
cardiovascular protection.
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