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Introduction: Causal inference of athletic injuries provides the critical
foundations for the development of effective prevention strategies. In recent
years, the directed acyclic graph model (DAG) has established itself as an
indispensable tool in the study of athletic injuries.

Methods: This study proposes a quantile threshold function (QTF) and integrates
it with the causal inference framework within the latent DAG model for ordinal
variables. This process begins by transforming continuous variables into ordinal
variables to construct a DAG, which is analyzed using the latent causal inference
framework to estimate ordinal causal effects (OCE).

Results: Testing this approach on real-world data showed clear differences
between groups (F > 52,000, P < 0.05). The analysis also revealed three direct
paths and two indirect paths related to athletic injuries, based on the DAG.
Discussion: We obtained the OCE by intervening on variables that directly or
indirectly influence athletic injuries. DAG path analysis further elucidated the
impact of causal pathways on the risk of injury. The approach proposed in this
study provides novel theoretical and methodological insights into athletic injuries
and serves as a crucial basis for optimizing training programs and mitigating
injury risk.

KEYWORDS

causal inference, athletic injury, directed acyclic graph, latent graphical model, ordinal
causal effects

1 Introduction

Sports science research is fundamentally causal (1, 2), focusing on the mechanisms
of physical activity to optimize training and strategy. Identifying determinants of athletic
or team success informs performance improvement, while in health research, physical
activity interventions improve fitness and well-being. Data in sports science are often
highly discrete. This characteristic can be addressed through the use of scientific methods
that categorize the data into distinct levels, enabling it to be treated as ordinal variables.
Ordinal variables, characterized by categorical values with an inherent ranking order, are
prevalent in various research fields (3). Examples include training intensity (A, B, C) and
training frequency (low, medium, high). Considering the widespread occurrence of ordinal
variables in sports data, investigating methods of causal effect analysis for these variables
has considerable practical significance.
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these
relationships. Epidemiological research is a key area of causal

Causal inference aims to uncover underlying
inference in sports science (4). Although some advocate causal
models in injury prevention (5, 6), practical applications remain
limited (7). Early studies introduced graphical causal models (6, 8),
but limitations in presentation and scope constrained their impact.
(9) emphasized causal reasoning in strength training, although
their work focused on specific issues rather than a systematic
introduction. The van Mechelen sequence of prevention (10) and
the Finch TRIPP framework (11) introduce measures that are
likely to reduce the future risk and/or severity of athletic injuries
based on causal and mechanistic understandings. However,
the development of causal knowledge represents a significant
challenge. To estimate a causal effect, researchers must control
all major baseline variables that could influence both exposure
and outcome (12, 13). However, fulfilling these conditions in
real-world settings can be exceptionally challenging. Failure to
control a confounding variable can lead to inaccurate conclusions
about the causal relationship between variables. Randomized
controlled trials (RCTs), which are considered the gold standard
for causal inference, were later proposed by researchers but are
challenging to implement in sports science (14), particularly
in elite sports (15). Therefore, inference of causal relationships
often relies on observational studies, which are prone to selection
bias. The reliance on such studies, combined with the lack of
robust tools and frameworks for causal inference, has hindered
the advancement of causal knowledge on sports injuries and the
development of effective prevention strategies. Competitive sports
training often involves a high risk of sports injuries, not only
affecting the overall volume of training, but may also alter training
patterns and recovery strategies (16, 17).

To address some of the issues mentioned above, recent efforts
have emphasized the adoption of graphical causal models in
injury prevention and advocated for greater participation in causal
inference research (18). Causal diagrams, including frameworks
(19), models (20, 21), causal directed acyclic graphs (DAG) (22,
23), and other types of diagrams (24, 25), serve as valuable tools
for organizing ideas, guiding future research, and supporting
causal inference efforts. These diagrams, particularly DAG, are
of significant importance in statistical analysis. In most practical
situations, an appropriate causal diagram is rarely known, so
methods that can learn both a network structure and its parameters
from data are required. A Bayesian network is the most commonly
used method for causal graph problems. When using Bayesian
methods for learning, the observed data only determine the DAG
describing their joint distribution up to its Markov equivalence
class (26). It is crucial that each Markov equivalence class
can be uniquely represented by a completed partially directed
acyclic graph(CPDAG). The learning of Bayesian networks relies
fundamentally on the type of data, with existing approaches focused
primarily on continuous and categorical data (27, 28). However,
in the field of sports training, the variables involved often include
both continuous data and ordinal data. Existing methods do not
fully consider the inherent ordinal nature of the data when handling
ordinal data. Therefore, specialized methods are needed to calculate
the causal effects between ordinal variables while fully accounting
for their ordinal characteristics. Luo et al. (29) proposed an
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Ordinal Structural Expectation-Maximization (OSEM) algorithm
based on a latent Gaussian model. This algorithm can construct
an appropriate causal graph framework for ordinal data (29),
providing support for a subsequent analysis of causal effects.

Realizing the existing gaps in the theoretical and practical
aspects of this field, this study proposes a quantile threshold
function (QTF) that transforms continuous variables into ordinal
variables and ensures the consistency of the classification results
while effectively preserving the ordered nature of the data. Based
on data transformation, this study applies the method designed
by Luo et al. (29) to construct a causal Directed Acyclic Graph
(DAG). Then, using the ordinal data causal analysis algorithm
proposed by (30), ordinal causal effects (OCE) between ordered
variables are calculated within the framework of the latent Gaussian
DAG model. These findings offer valuable insights for optimizing
rehabilitation strategies and provide the critical foundations for
the development of effective prevention strategies. The rest of the
article is structured as follows. In Section 2, we present a summary
of previous approaches, including both Gaussian DAG models and
the do-operator. In Section 3, we present our original contribution
with the quantile threshold function and how to evaluate ordinal
causal effects by combining the algorithm of OSEM and the Latent
Causal Inference Framework. In Section 4, we use real-world data
to illustrate the performance of causal effect estimation with latent
DAG structures. Lastly, in Section 5, we discuss the potential
prospects and limitations of the research and highlight possible
directions for expanding the current work.

2 Background
2.1 Gaussian DAG-models

Probabilistic graphical models, which integrate graphical
structures into probabilistic inference, are widely used and effective
frameworks for studying these complex systems. The concept is
to factorize the joint probability distribution p for the variables
X = X, Xm) " concerning a graph G = (V, &), where V
is the set of vertices representing the variables and £ the set of
edges encoding the independence relationships (31, 32). Bayesian
networks are a special class of probabilistic graphical models, where
G isadirected acyclic graph (DAG) or named DAG models (33, 34).
The joint probability distribution p can be specified by a set of
parameters 6 and factorizes based on G as:

Px160,G)=p 1, sxm [0,6) =[] (% | Xpai05G). (1)

i=1

Where 6 =
that the subsets {6;}/, are disjoint. Denote the parents of node i

U;’; 16i, x is a realization of X, and we assume

by pa(i)), where there is a directed edge from j to i if j € pa(i).
Thus, Equation (1) can also be interpreted as stating that a variable
x; is conditionally independent of its non-descendants, given its
parents Xp,(;) in G. This is the Markov property (31).5 = (G,0)
denotes a Bayesian network. Given a data sample X, learning a
Bayesian network, therefore, involves estimating both the network

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1647200
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Xie et al.

Xi Xo

FIGURE 1
The outcome variable X, resulting from a deterministic intervention
on the intervention variable X;.

structure G and 6. If the joint distribution of X is a Gaussian
distribution, then

X ~N(u,X). (2)

In the case of Gaussian data, to address the uncertainty regarding
the graphical structure, Maathuis et al. (35) provided lower bounds
for causal effects after identifying a Markov equivalence class that
is consistent with the data. By using a Bayesian approach, one can
combine structure learning and effect estimation into a process that
produces the posterior distribution of causal effects. A significant
advantage is that this method accounts for both graphical and
parameter uncertainty, as first proposed and demonstrated in a
psychology application by Moffa et al. (36) for binary data.

where the matrix = X! is symmetric, positive
definite, and Markov relative to G. Under the assumption of
normality, the Gaussian DAG model is almost always faithful
to the DAG within the parameter space, which means that the
conditional independence relationships implied by the distribution
are precisely the same as those represented by the DAG through
the Markov property (37). For a Gaussian DAG model, we can
rewrite the factorization in Equation 1 as Equation (3): (¢ denotes
the normal univariate density function) (33).

m

px1GunX)= H(/) (xi | Mi(xpa(i))’aiz)' ©)

i=1

2.2 Do-operator

The do-operator is a fundamental concept in causal inference,
proposed by Pearl (37). Provides a theoretical framework for
quantifying the effects of interventions in a system. By modifying
the observed probability distribution, the do-operator helps
distinguish between correlation and causation. It is a core tool
in causal inference and decision theory, allowing researchers to
systematically answer the question “What would happen if?”

DAG provides an alternative approach to causal inference.
Using DAG to describe the data generation process is appealing
because the edges of the graph naturally represent the causal
relationships between variables. Under a known DAG, the do-
operator determines the causal effect of one variable on another.
We have discussed the DAG model obtained by the Gaussian
model, but we are interested in the causal relationships between the
nodes, as shown in Figure 1.

Our goal is to determine the causal effect of variable X;
on the variable X,. We use Pearl’s do-operator to describe
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the effects of intervention (37), where the distribution of
X, under an intervention in X; is generally indicated as
PP (X, = k | do (X; = )). Changes in the distribution or shifts in
the distribution of the outcome variable across different levels
of the intervention variable often serve as target estimands with
practical significance (38). Evaluating and contrasting the change
in the probability of X, belonging to level k, when the intervention
variable X; is set to level I’ versus level I offers a measure of the
distribution shift:

P[Xo=k|do(X;i=I)]-P[X, =k|do(X;i=1)]. (4)

foreachl % I'and ,I' € {1,...,Li} and k € {1,...,L,}. We can
evaluate ordinal causal effects (OCE) as represented by the target
causal estimands in Equation (4).

3 Materials and methods

3.1 Quantile threshold function

In the data X = (Xy,--- ,Xm)T, the random variable X; =
(x1, %2, - - L2,
continuous data and ordinal data. Before causal analysis, data must

,Xn), where k = ,m, often includes both
be organized and optimized to ensure precision and reliability of
the results. Inconsistent data types can have a significant impact on
analysis results. For example, in regression analysis, it is necessary
to standardize the data to ensure consistent units of measurement.
The objective of this paper is to analyze ordinal data, so the first step
is to properly transform unordered data into ordinal data, which
supports the subsequent analysis. Therefore, we propose a quantile
threshold function (QTF) that transforms continuous variables into
ordinal variables and ensures the consistency of the classification
results while effectively preserving the ordered nature of the data.

In this paper, we apply the kernel density estimation to fit the
probability density of the continuous variable X} in Equation 5.
A Gaussian kernel function is chosen as the smoothing kernel in
Equation 6, which has the advantage of not requiring a predefined
data distribution shape. Through bandwidth adjustment, it
effectively approximates unknown distributions. This method
overcomes the dependence on distributional assumptions inherent
in traditional parametric methods.

~ 1 < X — Xj
f(x):nh;K< — (5)

K(u) =

exp (— luz . (6)

Where j‘ (x) represents the probability density function, K(u) is
the Gaussian kernel function, and h is the bandwidth, which is a
key smoothing factor in kernel density estimation. We adopt the
bandwidth selection method proposed by Ripley (39) in his book
Modern Applied Statistics with S as the criterion (page 127) (39).
The definition of the quantile threshold function is as follows:

Definition 1 (quantile threshold function). The random variable

X = (x1,%2,- -+ ,X,) has a probability density function f(x) and a
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distribution function F(x). If there exists a non-negative real-valued
function g(x) such that:

0, ifx<Q,
g) =11, ifQ; <x =< Qi - (7)
2, ifx> Qit1,

where Q; satisfies F(Q;) = f?;of(x)dx = i,i € {1,2}, then, the
function g(x) is called quantile threshold function

g(x) is also a random variable. The value of x < Q; in X is defined
as the lower level (assigned a value of 0), and within the Q; < x <
Qit1 interval is defined as a medium level (assigned a value of 1),
and we classify values of x > Qj4 as a high level (assigned a value
of 2). Based on the above definition, we can naturally deduce the
following conclusion.

Proposition 1. The sum of the probabilities of the three categories
equals 1, that is, ij:o Plglx) =jl=1

Proof. See the Supplementary material: Proof of Proposition 1. [

Definition 1 extends to multiple classification scenarios, as shown
in the following Definition 2.

Definition 2. The random variable X = (x1,%2,--,x,) has a
probability density function f(x) and a distribution function F(x).

If there exists a non-negative real-valued function g(x) such that:

0, ifx <Q;
L, ifQi <x =< Qiy1s
g =12 fQip1 <x=Qi. (8)

() ()

n, ifx > Qitn-1,
where Q; satisfies F(Q;) = f?;of(x)dx = r#—Z’i €{1,2,---,n}.

Proposition 2. The sum of the probabilities of the categories n + 1
is equal to 1, that is, } T Plg(x) = j] = 1.

Proof. See the Supplementary material: Proof of Proposition 2. [J
Proposition 3. lim, o P [g(x) = n] =0.
Proof. See the Supplementary material: Proof of Proposition 3. [J

From Proposition 3, we know that when performing ordered
classification on random variables, the classification must be finite.
Therefore, the function g(x) achieves a smooth transition from
continuous variables to ordinal variables. g(x) provides a structured
data representation that maintains both information retention and
interpretability for subsequent analysis.

In this paper, we use n = i = 2 as the classification criterion.
After the classification is completed, we conduct hypothesis testing
on the results. This study employs the Analysis of Variance
(ANOVA) method to verify the significance of differences between
groups for reconstructed ordinal variables (40). Specifically, our
objective is to determine whether the differences among the three
groups are significant, which can be achieved by testing whether the
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means of each group are the same. We set the significance level at
a = 0.05. Let

Ho:po = p1 = p2

Hy:3i,j€{0,1,2} st i #pu

Where po, 41, and p, are the means of the three groups. If
p < 0.05, then H; holds, indicating that there are significant
differences among the three groups, which suggests that the above
classification is effective. Conversely, if Hy holds, it indicates that
the classification levels are not significant.

3.2 Latent Gaussian DAG model

We obtained ordinal data X* = (X3, -+ , X)) " by the function
g(x). What we are interested in is the DAG that represents the
relationships between ordinal variables. We introduce the Gaussian
DAG-models in Subsection 2.1, but this model is built under the
assumption that the data follow a Gaussian distribution. Therefore,
for the construction of the DAG model for ordered data, we have
used the OSEM algorithm proposed by Luo et al. (29). By assuming
that each ordinal variable is obtained by marginally discretising a
set of Gaussian variables, we can get the ordinality amongst the
categories. And Gaussian variables jointly follow a DAG structure
G = (V,&). The OSEM algorithm provides a new framework that
effectively learns Bayesian networks from ordinal data and captures
the orderliness among categories.

Let X* be a set of m ordinal variables, where X} takes values
in the collection of {r(k, 1),t(k,2),...,T (k,Lk)} and 7(k,1) <
(k2 < --- < 1 (k,Lk), k = 1,...,m. We assume that the
number of levels L, > 2, therefore, each variable should at least
be binary. It is typical to set 7(k,]) = I —1forall1 < I < L,
ie. 7(k,1) = 0,7(k,2) = 1, and so on. Further, we assume that
each X is obtained by discretising an underlying Gaussian variable
Yy using the thresholds —oo = :a(k,0) < a(k1l) < -+ <
o (k, L, — 1) <o (k,Lk) : = o0. Leta; = (oe(k, 0),...,a (k,Lk))T
and & = {ox}}L . Thus X} is defined by the following rule:

t(k, 1) if Yy € (—o0,a(k, 1))
X = : ©)
T (k Ly) if Yy € [ (kL — 1) ,+00)

Of course, Y = (Y,---, Ym)T are unobservable, and
we observe Xj obtained from the continuous variables by
discretisation. The diagram in Figure 2 offers a visual depiction of
the setup in an example case with a few variables.

Formally, Luo et al. (29) proposed a DAG model for ordinal
variables based on latent Gaussian variables. The model makes

the following optimization definition based on Equation 2. The
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FIGURE 2

Example of latent Gaussian four-nodes DAG. Variables X,k =0,...3
are ordinal, each obtained by discretising a latent variable Yj with
associated Gaussian parameters 6. Ordinal nodes are dashed for
clarity.

detailed derivation process can be found in the paper (29).

Y | ypa(k)’l?k’g ~N |k + Z bjk ()/j — Mj) Ve s
jepa(k)

P (Xg =tk ) | Yi = yo ) = ¥ (g € (kI — 1), a(k, D)),
I=1,....L

Py 16.9) =16 (3 | Ppator 2:9) 2 (55 | yio i)
k=
1 (10)

The OSEM combines the multinomial probit model (41) and
the structural EM algorithm of (42) to solve the problem of learning
Bayesian networks from ordinal data. Specifically, the method
proposes an iterative scoring and search strategy - the Ordinal
Structural EM (OSEM) algorithm for learning Bayesian networks
from ordinal data.

3.3 Causal effects in the latent Gaussian
DAG model

Consider the general latent Gaussian DAG-model of Section
3.2. We are interested in computing the target causal estimand
in Equation 4. For example, in Figure 2, the intervention variable
X; is X1, and the outcome variable X, is Xo. The Equation 4 can
be written as Equation 11, representing the OCE on X, of an
intervention on X;. When the intervention variable X; is set to level
I’ versus level [ offers a measure of the distribution shift (37):

P [Xo =1(0,k) | do (Xi =1 (i, l/))] - P [Xo = 1(0,k)
ldo(X;=1(0)] (1)
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The direct computation of Equation 11 would result in 0 for
each level of the intervention and outcome variables because there
is no causal path between the ordinal X; and X,, in the DAG. But itis
evident that they are causally related to each other by Y. Therefore,
we can consider that if we intervene on the latent variable Y; in a
way that changes the level of its ordinal child variable Xj, and then
compute the effect of this intervention on the latent parent Y, of X,,,
it is possible that the level of X, could also change as a result. The
potential change in the level of X,, resulting from an intervention
on the latent parent of Xj is the OCE studied in article (30). Using
the &« = {oy )L, the target causal estimand in Equation 11 on
the ordinal variables can be equivalently computed as the following
[(30); Definition 1,page9]:

OCEj, (k1 — I') =P [Y, € [a(0,k — 1), (0, k)]
[do(Yi€[a(il —1),a(il)])]
—P[Y, € [a(o,k—1),(0,k)]
[ do (Y € [a(i,!— 1),a(,D])]

(12)

for each 1 < k < Lo, 1 < LI' < L with [ # [I'. The
definition of OCE is anti-symmetric for the initial and end level of
the intervention variable, implying that

OCEj, (k,1 — I') = —OCEjo (k,I' — 1) (13)

Based on the above Equation 12, the Latent Gaussian DAG-
model establishes a relationship for calculating the intervention
effect between ordinal variables. This allows for the computation
of the OCE between variables X*, which is equivalent to the
intervention effect between variables Y. The (30) provides a detailed
proof and derivation of Equation 12 in both the main text and
the Appendix. Building on this result, Scauda et al. (30) proposed
Proposition 5 - a method for computing OCE. The specific details
can be found in Proposition 5 (Computation of the Ordinal Causal
Effect) on page 12 of the (30). According to Proposition 5, we can
calculate the OCE efficiently. Figure 3 illustrates the flowchart of the
proposed algorithm.

4 Results
4.1 Data

Maintaining an injury-free condition is a crucial factor for
success in sports. Although injuries are difficult to predict,
the application of emerging technologies and data science
can offer valuable insights. Even with a well-specified model,
inaccurate data can compromise causal analysis. Data quality
is often more critical than sample size (43), particularly in
sports science, where physiological measures (e.g., maximal
oxygen uptake, gene transcription activity) are inherently noisy
due to biological and technical variability. Additionally, exercise
intervention studies face challenges such as participant dropout,
missing data, measurement errors, and inconsistencies in data
processing, all of which hinder reliable causal interpretation
(44).

This study utilizes a comprehensive training log dataset from
Kaggle (45, 46) collected by a Dutch team in 2012-2019. This
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Output
Input DAG
l H ¢
Data: X Quantile Threshold Ordinal data : X Latent Gaussian DAG Output
: Function : Eq. (7) or (8) Model : Eg. (10) l

FIGURE 3

Flowchart of the algorithm: after inputting the initial data X, the QTF is applied to obtain the ordinal data X*. The Latent Gaussian DAG Model (29)
identifies the latent data Y and the DAG. Then, we compute the causal effects in the Latent Gaussian DAG Model (30) to obtain the ordinal causal

effect.

VU,
""It%te Causal Effects in the Ordinal Causal Eff
g Latent Gaussian DAG ———» rina (O::? ect

Model : Eqg. (12)

TABLE 1 List of Variables and Descriptions.

ID  Variable Description

1 Sessions Number of trainings completed

2 Totalkm Number of kilometers covered by running

3 Kmmidlle Number of kilometers covered in intensity
zones 3 and 4

4 Kmhigh Number of kilometers covered in intensity
zone 5

5 Kmsprinting Number of kilometers covered with sprints

6 Strengthtraining Whether the day included a strength training
session

7 PerceivedtrainingSuccess | Athlete’s self-rating of how well the session
went.

8 Hoursalternative Number of hours spent on cross training

9 Perceivedexertion Athlete’s self-rating of fatigue after the
session.

10 Perceivedrecovery Athlete’s self-rating of restfulness before the
session.

11 Injury Whether injured

Dataset from Kaggle: Lovdal et al. (45), Injury Prediction Dataset (45).

dataset, developed by Lovdal et al., employs machine learning
to predict injuries based on data that focuses on middle- and
long-distance events (800m to the marathon), with detailed
performance records for 74 athletes (27 females and 47 males).
The dataset adhered to the ethical principles of the Declaration of
Helsinki and received formal approval from the ethics committee
(45). This study follows the data structure established in (45),
utilizing the Day approach [(45), page 1523, Table 1], with
this research focusing exclusively on the data from a single
day to analyze the causal effects. This dataset contains a total
of 42,766 samples. Table | presents detailed characteristics of
the variables. Variables 1, 6, and 11 are directly considered
ordinal, while the remaining variables require ordinal classification
using QTF.

Frontiersin Public Health

4.2 Analysis

We simulated the probability density function for continuous
variables and classified the variables based on QTF. The graph of the
probability density function and its corresponding quantile ranges
are presented in the Supplementary Figure 1. Taking variable 2 as
an example, from Supplementary Figure 1 we can observe that Q,
and Qs divide the range of the values of the variable into three
parts. The portion less than Q; is defined as low level and assigned
a value of 0. The values between Q, and Qs are categorized as
medium level and assigned a value of 1. Finally, values greater
than Qs are defined as high level and assigned a value of 2. From
Supplementary Figure 1, we can see that the probability of values
at the low level (green) is 0.5, the probability at the medium level
(orange) is 0.25, and the probability at the high level (purple)
is also 0.25. Through this method, we transform the variable
from a continuous variable to an ordinal variable. Subsequently,
we perform ANOVA on the three groups levels and conduct a
significance test (Table 2) (40).

The mean values of the variable increase monotonically
from group “0” to group “2”, and the standard deviations also
progressively increase. For variable 2, the means and standard
deviations at different levels are as follows: In group “0”, the mean
is 3.186, the standard deviation is 3.991, and the sample size is
30,437; in group “1”, the mean is 12.882, the standard deviation
is 0.98, and the sample size is 5,996; in group “2”, the mean is
20.016, the standard deviation is 5.2547, and the sample size is
6,333. Other variables exhibit similar patterns, where the mean in
group “0” is relatively small, while the means in groups “1” and
“2” are significantly higher (e.g., for variable 5, the mean increases
from 0.017 to 2.536). Several variables have extremely high F-values
(e.g., 156,092 for the variable), showing that the between-group
variance is far greater than the within-group variance. The ANOVA
results indicate that the differences in means across groups are
statistically significant (p < 0.05), suggesting that the distribution
of the variable differs significantly across levels and shows a clear
gradient pattern (group “0” < “1” < “2”). This result implies that the
method used can effectively distinguish differences between levels,
leading to the rejection of the null hypothesis Hy and the acceptance
of the alternative hypothesis Hj.
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TABLE 2 ANOVA for the three group levels and significance testing based on the QTF.

Group (mean =+ SD),,

10.3389/fpubh.2025.1647200

Ordinal “1"

Variable 2 3.186 & 3.99150437 12.882 =+ 0985096 20.016 & 5.25474333 55364 0.001
Variable 3 0.269 =+ 1.088,4076 7.281 % 0.621 008 11.298 = 4.24400 52351 0.001
Variable 4 0.178 = 0.69740071 5299 4 0.611 176 8.781 & 323704 77658 0
Variable 5 0.017 & 0.0844;315 0.899 % 0.113744 2.536 % 2.666457 19913 0.001
Variable 7 0.087 4 0.190,6234 0.689 + 0.050g540 0.850 4 0.063799, 102575 0.001
Variable 8 0.050 4 0.0204915; 1.345 + 0158560 2514 4 1.155,3;¢ 61170 0
Variable 9 0.047 = 0.067250; 0.293 =+ 0.083 0255 0.639 % 0.12910220 156092 0
Variable 10 0.055 & 0074844 0.234 % 0.0430g) 0477 + 01173011, 96383 0

P < 0.001; The three groups of data (“0”, “1”, “2”) are presented as mean =+ standard deviation (Mean = SD),, with n representing the sample size, and the F, p values are also listed.

In the Supplementary material, we present the ANOVA results
for the three discretization methods: equal-width, equal-frequency,
and k-means. Supplementary Table I shows the ANOVA results
for equal-width. This method uses intervals of the same width,
making it simple and intuitive. However, the ANOVA results
indicate that its F-value is lower, suggesting the between-group
differences are less significant than with the QTF method.
Moreover, for outlier variables (such as Variable 4 or Variable
5), equal-width fails to reflect the data distribution accurately.
Supplementary Table 2 shows the ANOVA results for equal-
frequency. This method ensures that each interval contains roughly
the same number of samples. When sample values are highly
concentrated and repeated, the resulting zero mean and standard
deviation for some groups reduces the interpretability of the data.
Supplementary Table 3 presents the results of k-means clustering.
The ANOVA shows large F-values for the three clusters, suggesting
significant between-group differences. However, k-means is a
typical data-driven method with unfixed boundaries. If clusters
are ordered by their mean values to define “low,” “medium,” and
“high” levels, the boundaries will change with the data because
cluster centers are randomly initialized. This randomness weakens
theoretical interpretability.

We followed the approach described in Luo et al. to derive DAG
estimates from 500 bootstrap samples of the data (29, 30), utilizing
the OSEM algorithm with a Monte Carlo sample size of K = 5 and
a penalty coefficient of A = 6. And the resulting CPDAG is shown
in Figure 4.

Figure 4 illustrates the causal relationships between different
variables, highlighting both direct and indirect variables
surrounding the Injury variable. The direct influencing variable
for Injury is Kmsprinting, which has a significant impact on
the occurrence of Injury. Kmsprinting training typically places
high stress on muscles, joints, and ligaments, especially when
the intensity is excessive or recovery is insufficient, making it
prone to cause tissue damage or excessive fatigue. Kmsprinting
may lead to rapid muscle contraction and high load in a short
period, thereby increasing the risk of exercise-related injuries.
Perceivedrecovery and Perceivedtrainingsuccess are also direct
variables influencing Injury. Perceivedrecovery plays a critical role
in injury risk. When perceived recovery is poor, muscles and joints
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may not withstand higher loads, potentially leading to improper
movement and decreased endurance, thus increasing the risk of
injury. Perceivedtrainingsuccess directly affects injury risk. If an
athlete perceives training success as high, it may indicate good
physical condition and effective recovery, thereby reducing the risk
of injury. Conversely, a lower perception of training success may
indirectly reflect accumulated fatigue and insufficient recovery,
increasing the probability of injury.

Injury’s indirect influencing variables, Pathway 1 is Totalkm —
Sessions — Perceivedrecovery— Injury: Increasing total running
distance can lead to higher training intensity and frequency. A
rise in total distance is often accompanied by increased training
frequency, which may result in insufficient recovery time. Excessive
training frequency and load can compromise recovery quality,
leading to poor perceived recovery and indirectly increasing the
risk of injury. If increases in running distance and frequency are not
balanced with adequate recovery and proper load management, the
perceived recovery level may decline, significantly elevating the risk
of injury.

Pathway 2 is Strengthtraining — Perceivedtrainingsuccess
— Injury: Strengthtraining enhances muscle strength, joint
stability, and exercise efficiency, thereby improving athletic
performance and training outcomes. It also increases athletes
confidence and perception of training success, which may
indirectly indicate improved physical adaptation and recovery
levels. Perceivedtrainingsuccess can reduce the risk of injury, as
the body is in better physical condition, movements are more
precise, and energy distribution is more eflicient. Conversely, a
lower perception of training success may have the opposite effect.
Based on the above analysis, it is recommended to control the
intensity and frequency of Strengthtraining to prevent muscle
injuries caused by overtraining. Attention should be placed on
athletes Perceivedrecovery and sense of Perceivedtrainingsuccess,
and by adjusting the training plan, recovery outcomes can be
effectively improved.

To visually represent the bootstrapped estimates, we present the
adjacency matrices of the DAG derived using OSEM, converted
to CPDAG, as a heatmap in Supplementary Figure 2 of the
Supplementary material. The intensity of each cell corresponds to
the frequency with which each edge appears in the bootstrapped
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CPDAG of the hidden network structure estimated via the OSEM algorithm (29) for the ordinal data of Section 4.1.

samples. The shade in the grid indicates the proportion of times
a directed edge occurs in the 500 bootstrapped CPDAG, with
an undirected edge being split equally between both directions.
Darker shading corresponds to a higher frequency of the respective
directed edge. Additionally, we examine the causal relationship
along the most frequently observed directed edge in the 500
bootstrapped CPDAG by estimating the ordinal causal direct effects
of Kmsprinting (variable 5) on Injury (variable 11) within the
sample’s DAG. Raincloud plots, which incorporate histograms and
boxplots of the estimated effects, are displayed in Figure 5.

Figure 5 shows the ordinal causal direct effects of Kmsprinting
(variable 5) on Injury (variable 11). “Injury=1” indicates no injury,

»

while the level of “Injury=2” indicates injury. We use the do-
operator to describe this result.
When the “Injury=1”, and the level of variable
from 1 — 2, the OCE < 0. That
P [injury = 1 | do (kmsprinting = 2)] -
P [injury = 1 | do (kmsprinting = 1)] < 0. This result suggests

5 changes
means

that increasing the intensity of sprint training significantly
increases the injury risk for uninjured athletes. High-intensity
sprint training may lead to excessive load on muscles and joints,
exceeding the body’s ability to adapt, thereby increasing the
likelihood of injury. Therefore, for uninjured athletes, maintaining
a lower level of sprint training helps to minimize the injury risk. If
the sprint training level changes from 1 — 3, or from 2 — 3, the
OCE value remains negative. This finding indicates that increasing
the intensity of sprint training has a significant impact on the injury
probability for uninjured athletes, especially during the transitions
from 1 — 2 and from 1 — 3. Among these three intervention
levels, the absolute value of the OCE mean is largest for the
intervention from 1 — 3, suggesting that transitioning directly
from low to high intensity training is particularly dangerous for
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uninjured athletes. Therefore, training plans need to be carefully

designed.

When the “Injury=2", and the level of wvariable
5 changes from 1 — 2, the OCE > 0. That
means P [injury = 2 | do (kmsprinting = 2)] —

PP [injury = 2 | do (kmsprinting = 1)] > 0. When the sprint
training level increases from 1 — 2 or 1 — 3, the probability
of injury significantly increases. For injured athletes, continuing
to increase the sprint training intensity before full recovery
can worsen the existing injury or lead to incomplete recovery,
which significantly increases the risk of injury. During this stage,
athletes should avoid increasing sprint training intensity and
prioritize basic training and recovery. When the sprint training
level changes from 2 — 3, the OCE for both injured groups is
more concentrated, with the mean close to 0, indicating that
the impact of increasing from medium to high-intensity sprint
training on injury is relatively small. This limited effect may be
due to the athletes’ adaptation to medium-intensity training and
their more stable physical condition. Therefore, after sufficient
medium-intensity training, gradually increasing high-intensity
sprint training does not significantly increase the injury risk.

In summary, the transition from low to medium intensity (1
— 2) is a critical period for injury risk, requiring close monitoring
of an athlete’s physical condition and recovery. After reaching
medium intensity, transitioning to high intensity is relatively safe,
as the body has developed some level of adaptation, resulting in
a lower injury risk. For uninjured athletes, it is recommended
to prioritize a progressive increase in training load and avoid a
direct jump from low to high intensity (1 — 3). For injured
athletes, high-intensity sprint training should be strictly limited
during the recovery period, and priority should be given to recovery
training. High-intensity sprint training requires a focus on recovery

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1647200
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Xie et al.

10.3389/fpubh.2025.1647200

Intervention
s 1-2 1-3 253
on kmsprinting . . '
0.02 1

o 0.01 1
(©)
e

-—

o
2
L
© 0.004

%]

=

©
(@)
©
=
©

S
O _0.011
~0.02 1 o
5
1 2
Ordinal Levels of injury

FIGURE 5

Ordinal Causal Effect of Kmsprinting (variable 5) on Injury (variable 11). The solid line connects the means of the OCEs (represented by diamond

points) across different levels of the outcome variable, for each possible shift of the intervention variable.

quality after training to ensure athletes maintain a good recovery
state during the gradual increase in intensity, minimizing fatigue
accumulation and injury risk. The Kmsprinting has a significant
causal effect on Injury. The risk from medium to high intensity (2
— 3) is relatively small, suggesting that training upgrades should
be based on the athlete’s adaptation. Scientifically planning sprint
training intensity and pace, combined with recovery training, helps
reduce injury probability while improving training effectiveness
and safety.

Figure 6 shows the ordinal causal direct effects of Kmsprinting
(variable 5) on Kmmiddle (variable 3) and Kmhigh (variable
4). The change of variable 5 from low level to medium level (1
— 2) shows that for low-level Kmmiddle athletes, an increase
in sprinting results in a positive OCE value, indicating that
improvements in sprinting may indirectly help these athletes
enhance their middle-distance running ability. However, for
medium and high-level Kmmiddle athletes, the OCE value is
negative, suggesting that an increase in sprinting may decrease
their performance in middle-distance running. A similar pattern
applies to Kmhigh athletes. For low-level Kmhigh athletes, an
increase in sprinting may improve their high-intensity running
ability. In contrast, for medium and high-level athletes, an increase
in sprinting may limit their high-intensity running ability.
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It is worth noting that the OCE for Kmhigh is more scattered,
indicating significant variation in the impact of sprinting on high-
intensity running. The change of variable 5 from medium level to
high level (2 — 3) shows that for both Kmmiddle and Kmhigh,
the OCE are close to 0. This result suggests that once athletes have
adapted to a certain level of sprinting load, further increases in
sprint intensity have minimal effect on middle-distance running
and high-intensity running performance. For athletes with weaker
middle-distance and high-intensity running abilities, increasing
sprint training can indirectly enhance their running abilities by
improving neuromuscular adaptation and rapid power output. For
athletes who already possess strong middle-distance and high-
intensity running capabilities, increasing sprint training may lead
to overloading or accumulation of fatigue, thereby affecting other
running abilities. Once sprinting has reached a high level, athletes’
bodies gradually adapt to the high-intensity load, and further
increases in sprinting have limited intervention effects on other
running abilities.

Therefore, we can conclude that for low-level athletes,
appropriately increasing sprint training can help improve their
middle-distance and high-intensity running abilities. For medium
and high-level athletes, the ratio of sprinting to other running
training must be balanced to avoid excessive sprint loads that
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0.025

Intervention
0020 on kmsprinting . 1552 . Ll ' 238

0015

0010 ¥ " ;

0.005 : : )

-0.005 " | % 3
S o|E

-0.010

Ordinal Causal Effect (OCE)

13
T
—0—

i
ks
RS RS -
AR A

-0.015

2
Ordinal Levels of kmhigh

may affect overall running performance. Regularly monitoring
athletes’ performance in different running abilities and adjusting
the sprinting load based on data feedback will ensure maximized
training effects while preventing fatigue accumulation. As sprint
load increases from medium to high intensity (2 — 3), gradual
adaptation should be emphasized to avoid sudden increases in
training intensity that could negatively impact middle-distance or
high-intensity running abilities. Through reasonable design and
adjustment of sprint training, coaches and athletes can enhance
specific abilities while minimizing the risk of injuries caused by
overtraining, ultimately achieving comprehensive optimization of
athletic performance.

effects  of
other variables on Injury (variable 11). From Figure7, we
can observe that the OCE of Kmmiddle(variable 3)
Hoursalternative(variable 8) on injury are close to zero across

Figure 7 shows the ordinal causal direct

and

various levels of change. This finding indicates that these two
variables have a minimal impact on injury risk. Kmmiddle
typically involves moderate-intensity training, and athletes’ bodies
are generally more adaptable, so it does not significantly increase
or decrease injury risk. Hoursalternative mainly refers to low-
intensity recovery exercises, which place minimal stress on the
body, thus limiting their impact on injury risk. These two variables
can be part of a stable training load to alleviate the physical stress
from high-intensity training, thereby improving the overall safety
of the training program.

In contrast, the changes in Strengthtraining(variable 6) show
the most significant fluctuations in the OCE for injury, indicating
a significant causal intervention effect. This finding suggests that
strength training can enhance athletic performance but may also
increase injury risk if the intensity is too high or the progression
is too rapid. High-intensity strength training places a heavy load
on muscles and joints, and without adequate recovery or adaptive
training, it can lead to muscle strains, ligament injuries, and other
issues. Additionally, Strengthtraining’s effects vary significantly
among individuals, as different athletes have differing capacities
to tolerate intensity and recover. This further amplifies its impact
on injury risk. Therefore, strength training programs must strictly
control intensity and progression, prioritizing the development
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of foundational strength and movement stability. This approach
helps mitigate injury risk caused by excessive or improperly
planned training.

The Pathway 2 analysis of the CPDAG in Figure 4 shows
that Strengthtraining(variable 6) indirectly influences injury risk
through Perceived Perceivedtrainingsuccess(variable 7), which
supports the conclusion that their impact on injury risk is
relatively limited. In practical sports, this result suggests that
strength training should pay particular attention to intensity
management. Proper planning of load progression is key
to avoiding sports injuries, especially during high-intensity
strength training, where it is important to incorporate restorative
training [such as extending Hoursalternative(variable 8) ].
kmmiddle(variable 3) and Hoursalternative(variable 8) can serve
as transition phases for high-intensity training, helping athletes
gradually adapt to higher loads and reduce fatigue accumulation.
Combining feedback from Perceivedrecovery(variable 10) and
Perceivedtrainingsuccess(variable 7) allows for the real-time
optimization of training plans, ensuring a balance between
performance enhancement and injury risk. Through careful design
and dynamic adjustment of training plans, athletes can not only
reduce the risk of training-induced injuries but also improve overall
training quality. Additionally, we provide the causal direct effects of
other variables in the Supplementary Figure 3 for further reference.

5 Discussion

In this work, we propose a quantile threshold function
(QTF) that transforms continuous variables into ordinal variables,
and ensures the consistency of the classification results while
effectively preserving the ordered nature of the data. Based on
data transformation, this study applies the method designed
by Luo et al. (29) to construct a causal Directed Acyclic
Graph (DAG). Then, using the ordinal data causal analysis
algorithm proposed by Scauda et al. (30), the ordinal causal
effects (OCE) between ordered variables are calculated within the
framework of the latent Gaussian DAG model. These findings
offer valuable insights for optimizing rehabilitation strategies
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and provide the critical foundations for the development of
effective prevention strategies. The use of causal diagrams
will facilitate the organization of key concepts and ideas
related to athletic injury causation within a well-defined causal
framework. This approach enables the exploration of specific
causal links and underlying assumptions through appropriate
scientific methods. The findings not only advance methodological
understanding but also provide a robust theoretical foundation for
optimizing rehabilitation protocols and designing effective injury
prevention strategies, ultimately contributing to a more precise
and thorough understanding of the mechanisms driving sports
injury occurrence.

The results highlight several critical factors influencing
injury risk, encompassing both measurable training loads
and athlete-reported perceptions. Elevated training demands-
particularly high-intensity sprinting distances—can substantially
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increase musculoskeletal stress and, when paired with insufficient
recovery, raise the likelihood of injury. At the same time, athlete
perceptions of recovery quality and training success emerged
as strong indicators of physical readiness and resilience; lower
scores in these measures often reflect accumulated fatigue and
compromised movement control. Variations in total running
volume, session frequency, and strength training intensity were
also found to influence these perceptions, thereby indirectly
shaping injury risk. Practical applications of these insights include
regulating sprinting distances and intensities to prevent acute
overload, progressively adjusting total running volume and
session frequency, and structuring strength training to maximize
performance benefits without inducing overtraining. Athlete-
reported measures of recovery and training success can serve as
low-cost, real-time indicators for fine-tuning training plans before
injuries occur.
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From a policy perspective, integrating both objective load
metrics and subjective perception measures into institutional
injury surveillance systems would enhance early detection and
prevention. Sports organizations could define evidence-based
thresholds for key indicators, implement mandatory periodic
monitoring, and foster a training culture that prioritizes recovery
alongside performance goals. The quantile threshold framework
used in this study also offers practical training load monitoring
guidance. By determining safe ranges for load-related variables
and coupling them with perceptual feedback, coaches can detect
emerging imbalances between workload and recovery, enabling
timely adjustments that maintain athletes in optimal performance
zones while minimizing injury risk. Finally, the findings have
important implications for recovery strategies. Structured recovery
programs should address both physiological restoration-through
rest intervals, active recovery, sleep optimization, and nutrition—
and psychological readiness, by enhancing athletes confidence and
perceived training success. A dual focus on physical and perceptual
recovery can improve resilience to high-intensity demands and
contribute to sustained performance with lower injury incidence.

This study proposes a quantile threshold function (QTF) that
transforms continuous variables into ordinal variables. Although
this method offers simplicity and effectiveness, it is essential to
recognize that various alternative approaches exist for converting
continuous variables into ordinal variables. Methods like decision
tree binning and K-Means clustering can capture complex
relationships between continuous variables and other features
more precisely. However, they require higher computational power
and suffer from poor theoretical interpretability. Future studies
could explore hybrid discretization schemes that combine the
advantages of multiple methods. For example, integrating statistical
techniques with machine learning algorithms may yield more
flexible and efficient discretization strategies. Investigating the
impact of different discretization methods on subsequent tasks,
such as predictive modeling or clustering, could also provide
valuable insights for practical applications. By addressing these
limitations and broadening the analytical perspective, future
research is expected to explore optimal strategies for transforming
continuous variables into ordinal categories, thereby advancing
the development of more comprehensive data preprocessing
frameworks and improving model performance.

This study examines a single-day subset of the dataset,
which limits the generalizability of the findings. Future work
will extend the analysis to weekly datasets and employ time-
series methods to capture temporal dynamics better. Moreover,
although the current study focuses on single interventions, it is
crucial to acknowledge that, in real-world scenarios, any exogenous
intervention can simultaneously influence multiple target variables.
Therefore, predicting the impact of joint interventions on an
outcome variable becomes a relevant consideration. The methods
proposed by (47) can be readily extended to address multiple
interventions. Consequently, under the latent Gaussian model,
incorporating joint interventions-similar to the approach of (48)
represents a natural progression within the latent space framework.
In the main text, we also mentioned that some datasets contain both
ordinal and non-ordinal data. Naturally, this leads us to consider
the problem of Bayesian network learning with mixed data. In
particular, one may obtain a dataset with both continuous and
ordinal variables by first generating a Gaussian dataset according to
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a DAG structure and then discretizing some of the variables while
keeping others continuous. A similar learning framework may be
applicable in this context. Therefore, future research could explore
using such learning frameworks for causal analysis of data.
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