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Introduction: Causal inference of athletic injuries provides the critical 
foundations for the development of effective prevention strategies. In recent 
years, the directed acyclic graph model (DAG) has established itself as an 
indispensable tool in the study of athletic injuries. 
Methods: This study proposes a quantile threshold function (QTF) and integrates 
it with the causal inference framework within the latent DAG model for ordinal 
variables. This process begins by transforming continuous variables into ordinal 
variables to construct a DAG, which is analyzed using the latent causal inference 
framework to estimate ordinal causal effects (OCE). 
Results: Testing this approach on real-world data showed clear differences 
between groups (F > 52,000, P < 0.05). The analysis also revealed three direct 
paths and two indirect paths related to athletic injuries, based on the DAG. 
Discussion: We obtained the OCE by intervening on variables that directly or 
indirectly influence athletic injuries. DAG path analysis further elucidated the 
impact of causal pathways on the risk of injury. The approach proposed in this 
study provides novel theoretical and methodological insights into athletic injuries 
and serves as a crucial basis for optimizing training programs and mitigating 
injury risk. 
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causal effects 

1 Introduction 

Sports science research is fundamentally causal (1, 2), focusing on the mechanisms 
of physical activity to optimize training and strategy. Identifying determinants of athletic 
or team success informs performance improvement, while in health research, physical 
activity interventions improve fitness and well-being. Data in sports science are often 
highly discrete. This characteristic can be addressed through the use of scientific methods 
that categorize the data into distinct levels, enabling it to be treated as ordinal variables. 
Ordinal variables, characterized by categorical values with an inherent ranking order, are 
prevalent in various research fields (3). Examples include training intensity (A, B, C) and 
training frequency (low, medium, high). Considering the widespread occurrence of ordinal 
variables in sports data, investigating methods of causal effect analysis for these variables 
has considerable practical significance. 
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Causal inference aims to uncover these underlying 
relationships. Epidemiological research is a key area of causal 
inference in sports science (4). Although some advocate causal 
models in injury prevention (5, 6), practical applications remain 
limited (7). Early studies introduced graphical causal models (6, 8), 
but limitations in presentation and scope constrained their impact. 
(9) emphasized causal reasoning in strength training, although 
their work focused on specific issues rather than a systematic 
introduction. The van Mechelen sequence of prevention (10) and 
the Finch TRIPP framework (11) introduce measures that are 
likely to reduce the future risk and/or severity of athletic injuries 
based on causal and mechanistic understandings. However, 
the development of causal knowledge represents a significant 
challenge. To estimate a causal effect, researchers must control 
all major baseline variables that could influence both exposure 
and outcome (12, 13). However, fulfilling these conditions in 
real-world settings can be exceptionally challenging. Failure to 
control a confounding variable can lead to inaccurate conclusions 
about the causal relationship between variables. Randomized 
controlled trials (RCTs), which are considered the gold standard 
for causal inference, were later proposed by researchers but are 
challenging to implement in sports science (14), particularly 
in elite sports (15). Therefore, inference of causal relationships 
often relies on observational studies, which are prone to selection 
bias. The reliance on such studies, combined with the lack of 
robust tools and frameworks for causal inference, has hindered 
the advancement of causal knowledge on sports injuries and the 
development of effective prevention strategies. Competitive sports 
training often involves a high risk of sports injuries, not only 
affecting the overall volume of training, but may also alter training 
patterns and recovery strategies (16, 17). 

To address some of the issues mentioned above, recent efforts 
have emphasized the adoption of graphical causal models in 
injury prevention and advocated for greater participation in causal 
inference research (18). Causal diagrams, including frameworks 
(19), models (20, 21), causal directed acyclic graphs (DAG) (22, 
23), and other types of diagrams (24, 25), serve as valuable tools 
for organizing ideas, guiding future research, and supporting 
causal inference efforts. These diagrams, particularly DAG, are 
of significant importance in statistical analysis. In most practical 
situations, an appropriate causal diagram is rarely known, so 
methods that can learn both a network structure and its parameters 
from data are required. A Bayesian network is the most commonly 
used method for causal graph problems. When using Bayesian 
methods for learning, the observed data only determine the DAG 
describing their joint distribution up to its Markov equivalence 
class (26). It is crucial that each Markov equivalence class 
can be uniquely represented by a completed partially directed 
acyclic graph(CPDAG). The learning of Bayesian networks relies 
fundamentally on the type of data, with existing approaches focused 
primarily on continuous and categorical data (27, 28). However, 
in the field of sports training, the variables involved often include 
both continuous data and ordinal data. Existing methods do not 
fully consider the inherent ordinal nature of the data when handling 
ordinal data. Therefore, specialized methods are needed to calculate 
the causal effects between ordinal variables while fully accounting 
for their ordinal characteristics. Luo et al. (29) proposed an 

Ordinal Structural Expectation-Maximization (OSEM) algorithm 
based on a latent Gaussian model. This algorithm can construct 
an appropriate causal graph framework for ordinal data (29), 
providing support for a subsequent analysis of causal effects. 

Realizing the existing gaps in the theoretical and practical 
aspects of this field, this study proposes a quantile threshold 
function (QTF) that transforms continuous variables into ordinal 
variables and ensures the consistency of the classification results 
while effectively preserving the ordered nature of the data. Based 
on data transformation, this study applies the method designed 
by Luo et al. (29) to construct a causal Directed Acyclic Graph 
(DAG). Then, using the ordinal data causal analysis algorithm 
proposed by (30), ordinal causal effects (OCE) between ordered 
variables are calculated within the framework of the latent Gaussian 
DAG model. These findings offer valuable insights for optimizing 
rehabilitation strategies and provide the critical foundations for 
the development of effective prevention strategies. The rest of the 
article is structured as follows. In Section 2, we present a summary 
of previous approaches, including both Gaussian DAG models and 
the do-operator. In Section 3, we present our original contribution 
with the quantile threshold function and how to evaluate ordinal 
causal effects by combining the algorithm of OSEM and the Latent 
Causal Inference Framework. In Section 4, we use real-world data 
to illustrate the performance of causal effect estimation with latent 
DAG structures. Lastly, in Section 5, we discuss the potential 
prospects and limitations of the research and highlight possible 
directions for expanding the current work. 

2 Background 

2.1 Gaussian DAG-models 

Probabilistic graphical models, which integrate graphical 
structures into probabilistic inference, are widely used and effective 
frameworks for studying these complex systems. The concept is 
to factorize the joint probability distribution p for the variables 
X = (X1, · · ·  , Xm) concerning a graph G = (V , E), where V 
is the set of vertices representing the variables and E the set of 
edges encoding the independence relationships (31, 32). Bayesian 
networks are a special class of probabilistic graphical models, where 
G is a directed acyclic graph (DAG) or named DAG models (33, 34). 
The joint probability distribution p can be specified by a set of 
parameters θ and factorizes based on G as: 

p(x | θ , G) = p (x1, . . . , xm | θ ,G) = 
m  

i=1 

p 
 
xi | x pa(i), θi, G 

 
. (1) 

Where θ = ∪m
i=1θi, x is a realization of X, and we assume 

that the subsets {θi}mi=1 are disjoint. Denote the parents of node i 
by pa(i)), where there is a directed edge from j to i if j ∈ pa(i). 
Thus, Equation (1) can also be interpreted as stating that a variable 
xi is conditionally independent of its non-descendants, given its 
parents Xpa(i) in G. This is the Markov property (31).B = (G, θ) 
denotes a Bayesian network. Given a data sample X , learning a 
Bayesian network, therefore, involves estimating both the network 
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FIGURE 1 

The outcome variable Xo resulting from a deterministic intervention 
on the intervention variable Xi . 

structure G and θ . If the joint distribution of X is a Gaussian 
distribution, then 

X ∼ N (μ, ). (2) 

In the case of Gaussian data, to address the uncertainty regarding 
the graphical structure, Maathuis et al. (35) provided lower bounds 
for causal effects after identifying a Markov equivalence class that 
is consistent with the data. By using a Bayesian approach, one can 
combine structure learning and effect estimation into a process that 
produces the posterior distribution of causal effects. A significant 
advantage is that this method accounts for both graphical and 
parameter uncertainty, as first proposed and demonstrated in a 
psychology application by Moffa et al. (36) for binary data. 

where the matrix  = −1 is symmetric, positive 
definite, and Markov relative to G. Under the assumption of 
normality, the Gaussian DAG model is almost always faithful 
to the DAG within the parameter space, which means that the 
conditional independence relationships implied by the distribution 
are precisely the same as those represented by the DAG through 
the Markov property (37). For a Gaussian DAG model, we can 
rewrite the factorization in Equation 1 as Equation (3): (φ denotes 
the normal univariate density function) (33). 

p(x | G, μ, ) = 
m  

i=1 

φ 
 
xi | μi(x pa(i)), σ 2 

i 
 
. (3) 

2.2 Do-operator 

The do-operator is a fundamental concept in causal inference, 
proposed by Pearl (37). Provides a theoretical framework for 
quantifying the effects of interventions in a system. By modifying 
the observed probability distribution, the do-operator helps 
distinguish between correlation and causation. It is a core tool 
in causal inference and decision theory, allowing researchers to 
systematically answer the question “What would happen if?” 

DAG provides an alternative approach to causal inference. 
Using DAG to describe the data generation process is appealing 
because the edges of the graph naturally represent the causal 
relationships between variables. Under a known DAG, the do-
operator determines the causal effect of one variable on another. 
We have discussed the DAG model obtained by the Gaussian 
model, but we are interested in the causal relationships between the 
nodes, as shown in Figure 1. 

Our goal is to determine the causal effect of variable Xi 
on the variable Xo. We use Pearl’s do-operator to describe 

the effects of intervention (37), where the distribution of 
Xo under an intervention in Xi is generally indicated as 
P 

 
Xo = k | do 

 
Xi = l 

 
. Changes in the distribution or shifts in 

the distribution of the outcome variable across different levels 
of the intervention variable often serve as target estimands with 
practical significance (38). Evaluating and contrasting the change 
in the probability of Xo belonging to level k, when the intervention 
variable Xi is set to level l versus level l offers a measure of the 
distribution shift: 

P 
 
Xo = k | do 


X i = l

 − P 

Xo = k | do 


X i = l

 
. (4) 

for each l = l and l, l ∈ {1, . . . , Li} and k ∈ {1, . . . , Lo}. We can  
evaluate ordinal causal effects (OCE) as represented by the target 
causal estimands in Equation (4). 

3 Materials and methods 

3.1 Quantile threshold function 

In the data X = (X1, · · ·  , Xm) , the random variable Xk = 
(x1, x2, · · ·  , xn), where k = 1, 2, · · ·  , m, often includes both 
continuous data and ordinal data. Before causal analysis, data must 
be organized and optimized to ensure precision and reliability of 
the results. Inconsistent data types can have a significant impact on 
analysis results. For example, in regression analysis, it is necessary 
to standardize the data to ensure consistent units of measurement. 
The objective of this paper is to analyze ordinal data, so the first step 
is to properly transform unordered data into ordinal data, which 
supports the subsequent analysis. Therefore, we propose a quantile 
threshold function (QTF) that transforms continuous variables into 
ordinal variables and ensures the consistency of the classification 
results while effectively preserving the ordered nature of the data. 

In this paper, we apply the kernel density estimation to fit the 
probability density of the continuous variable Xk in Equation 5. 
A Gaussian kernel function is chosen as the smoothing kernel in 
Equation 6, which has the advantage of not requiring a predefined 
data distribution shape. Through bandwidth adjustment, it 
effectively approximates unknown distributions. This method 
overcomes the dependence on distributional assumptions inherent 
in traditional parametric methods. 

f̂ (x) = 
1 

nh 

n  

i=1 

K 

 
x − xi 
h 

. (5) 

K(u) = 
1 √ 
2π 

exp 

 

− 
1 

2 
u 2 . (6) 

Where f̂ (x) represents the probability density function, K(u) is  
the Gaussian kernel function, and h is the bandwidth, which is a 
key smoothing factor in kernel density estimation. We adopt the 
bandwidth selection method proposed by Ripley (39) in his book 
Modern Applied Statistics with S as the criterion (page 127) (39). 
The definition of the quantile threshold function is as follows: 

Definition 1 (quantile threshold function). The random variable 
X = (x1, x2, · · ·  , xn) has a probability density function f (x) and a 
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distribution function F(x). If there exists a non-negative real-valued 
function g(x) such that: 

g(x) = 

⎧ ⎪⎪⎨ 

⎪⎪⎩ 

0, if x ≤ Qi, 

1, if Qi < x ≤ Qi+1, 

2, if x > Qi+1, 

. (7) 

where Qi satisfies F(Qi) = 
 Qi 
−∞ f (x)dx = i 

4 , i ∈ {1, 2}, then, the 
function g(x) is called quantile threshold function 

g(x) is also a random variable. The value of x ≤ Qi in X is defined 
as the lower level (assigned a value of 0), and within the Qi < x ≤ 
Qi+1 interval is defined as a medium level (assigned a value of 1), 
and we classify values of x > Qi+1 as a high level (assigned a value 
of 2). Based on the above definition, we can naturally deduce the 
following conclusion. 

Proposition 1. The sum of the probabilities of the three categories 
equals 1, that is, 

2
j=0 P[g(x) = j] = 1 

Proof. See the Supplementary material: Proof of Proposition 1. 

Definition 1 extends to multiple classification scenarios, as shown 
in the following Definition 2. 

Definition 2. The random variable X = (x1, x2, · · ·  , xn) has  a  
probability density function f (x) and a distribution function F(x). 
If there exists a non-negative real-valued function g(x) such that: 

g(x) = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0, if x ≤ Qi, 

1, if Qi < x ≤ Qi+1, 

2, if Qi+1 < x ≤ Qi+2, 
. . ., 

. . ., 

n, if  x > Qi+n−1, 

. (8) 

where Qi satisfies F(Qi) = 
 Qi 
−∞ f (x)dx = i 

n+2 , i ∈ {1, 2, · · ·  , n}. 

Proposition 2. The sum of the probabilities of the categories n + 1 
is equal to 1, that is, 

n 
j=0 P[g(x) = j] = 1. 

Proof. See the Supplementary material: Proof of Proposition 2. 

Proposition 3. limn→∞ P 
 
g(x) = n 

 = 0. 

Proof. See the Supplementary material: Proof of Proposition 3. 

From Proposition 3, we know that when performing ordered 
classification on random variables, the classification must be finite. 
Therefore, the function g(x) achieves a smooth transition from 
continuous variables to ordinal variables. g(x) provides a structured 
data representation that maintains both information retention and 
interpretability for subsequent analysis. 

In this paper, we use n = i = 2 as the classification criterion. 
After the classification is completed, we conduct hypothesis testing 
on the results. This study employs the Analysis of Variance 
(ANOVA) method to verify the significance of differences between 
groups for reconstructed ordinal variables (40). Specifically, our 
objective is to determine whether the differences among the three 
groups are significant, which can be achieved by testing whether the 

means of each group are the same. We set the significance level at 
α = 0.05. Let 

H0 : μ0 = μ1 = μ2 

H1 : ∃ i, j ∈ {0, 1, 2} s.t. μi = μj 

Where μ0, μ1, and μ2 are the means of the three groups. If 
p < 0.05, then H1 holds, indicating that there are significant 
differences among the three groups, which suggests that the above 
classification is effective. Conversely, if H0 holds, it indicates that 
the classification levels are not significant. 

3.2 Latent Gaussian DAG model 

We obtained ordinal data X∗ = (X1, · · ·  , Xm) by the function 
g(x). What we are interested in is the DAG that represents the 
relationships between ordinal variables. We introduce the Gaussian 
DAG-models in Subsection 2.1, but this model is built under the 
assumption that the data follow a Gaussian distribution. Therefore, 
for the construction of the DAG model for ordered data, we have 
used the OSEM algorithm proposed by Luo et al. (29). By assuming 
that each ordinal variable is obtained by marginally discretising a 
set of Gaussian variables, we can get the ordinality amongst the 
categories. And Gaussian variables jointly follow a DAG structure 
G = (V , E). The OSEM algorithm provides a new framework that 
effectively learns Bayesian networks from ordinal data and captures 
the orderliness among categories. 

Let X∗ be a set of m ordinal variables, where Xk takes values 
in the collection of 

 
τ (k, 1), τ (k, 2), . . . , τ 

 
k, Lk 

 
and τ (k, 1)  < 

τ (k, 2)  < · · ·  < τ  
 
k, Lk 

 
, k = 1, . . . , m. We assume that the 

number of levels Lk ≥ 2, therefore, each variable should at least 
be binary. It is typical to set τ (k, l) = l − 1 for all 1 ≤ l ≤ Lk, 
i.e. τ (k, 1)  = 0, τ (k, 2)  = 1, and so on. Further, we assume that 
each Xk is obtained by discretising an underlying Gaussian variable 
Yk using the thresholds −∞ = : α(k, 0)  < α(k, 1)  < · · ·  < 
α 

 
k, Lk − 1 

 
< α  

 
k, Lk 

 
: = ∞. Let αi = 

 
α(k, 0), . . . , α 

 
k, Lk 

 

and α = {αk}mk=1. Thus Xk is defined by the following rule: 

Xk = 

⎧ ⎪⎪⎨ 

⎪⎪⎩ 

τ (k, 1)  if  Yk ∈ (−∞, α(k, 1)) 
. . . 

τ 
 
k, Lk 

 
if Yk ∈ 

 
α 

 
k, Lk − 1 

 
, +∞ 

 
(9) 

Of course, Y = (Y1, · · ·  , Ym) are unobservable, and 
we observe Xk obtained from the continuous variables by 
discretisation. The diagram in Figure 2 offers a visual depiction of 
the setup in an example case with a few variables. 

Formally, Luo et al. (29) proposed a DAG model for ordinal 
variables based on latent Gaussian variables. The model makes 
the following optimization definition based on Equation 2. The  
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FIGURE 2 

Example of latent Gaussian four-nodes DAG. Variables Xk , k = 0, . . .3 
are ordinal, each obtained by discretising a latent variable Yk with 
associated Gaussian parameters θk. Ordinal nodes are dashed for 
clarity. 

detailed derivation process can be found in the paper (29). 

Yk | ypa(k), ϑk, G ∼ N 

⎛ 

⎝μk + 
 

j∈pa(k) 
bjk 

 
yj − μj 

 
, vk 

⎞ 

⎠ , 

P 
 
Xk = τ (k, l) | Yk = yk, αk 

 =  
 
yk ∈ [α(k, l − 1), α(k, l)] 

 
, 

l = 1, . . . , Lk, 

p(x, y | θ , G) = 
n  

k=1 

φ 
 
yk | ypa(k), ϑk, G 

 
p 
 
xk | yk, αk 

 
, 

(10) 
The OSEM combines the multinomial probit model (41) and 

the structural EM algorithm of (42) to solve the problem of learning 
Bayesian networks from ordinal data. Specifically, the method 
proposes an iterative scoring and search strategy - the Ordinal 
Structural EM (OSEM) algorithm for learning Bayesian networks 
from ordinal data. 

3.3 Causal effects in the latent Gaussian 
DAG model 

Consider the general latent Gaussian DAG-model of Section 
3.2. We are interested in computing the target causal estimand 
in Equation 4. For example, in Figure 2, the intervention variable 
Xi is X1, and the outcome variable Xo is X0. The  Equation 4 can 
be written as Equation 11, representing the OCE on Xo of an 
intervention on Xi. When the intervention variable Xi is set to level 
l versus level l offers a measure of the distribution shift (37): 

P 
 
Xo = τ (o, k) | do 

 
Xi = τ 

 
i, l

 − P 
 
Xo = τ (o, k) 

| do 
 
X i = τ (i, l) 

 
(11) 

The direct computation of Equation 11 would result in 0 for 
each level of the intervention and outcome variables because there 
is no causal path between the ordinal Xi and Xo in the DAG. But it is 
evident that they are causally related to each other by Y . Therefore, 
we can consider that if we intervene on the latent variable Yi in a 
way that changes the level of its ordinal child variable Xi, and then 
compute the effect of this intervention on the latent parent Yo of Xo, 
it is possible that the level of Xo could also change as a result. The 
potential change in the level of Xo resulting from an intervention 
on the latent parent of Xi is the OCE studied in article (30). Using 
the α = {αk}mk=1, the target causal estimand in Equation 11 on 
the ordinal variables can be equivalently computed as the following 
[(30); Definition 1,page9]: 

OCEio 
 
k, l → l

 =P 
 
Yo ∈ [α(o, k − 1), α(o, k)] 

| do 
 
Yi ∈ 

 
α 

 
i, l − 1 

 
, α 

 
i, l

 
− P 

 
Yo ∈ [α(o, k − 1), α(o, k)] 

| do 
 
Yi ∈ [α(i, l − 1), α(i, l)] 

 
. (12) 

for each 1 ≤ k ≤ Lo, 1  ≤ l, l ≤ Li, with l = l. The  
definition of OCE is anti-symmetric for the initial and end level of 
the intervention variable, implying that 

OCEio 
 
k, l → l

 = −OCEio 
 
k, l → l 

 
. (13) 

Based on the above Equation 12, the Latent Gaussian DAG-
model establishes a relationship for calculating the intervention 
effect between ordinal variables. This allows for the computation 
of the OCE between variables X∗ , which is equivalent to the 
intervention effect between variables Y . The (30) provides a detailed 
proof and derivation of Equation 12 in both the main text and 
the Appendix. Building on this result, Scauda et al. (30) proposed 
Proposition 5 - a method  for  computing OCE. The specific details 
can be found in Proposition 5 (Computation of the Ordinal Causal 
Effect) on page 12 of the (30). According to Proposition 5, we can 
calculate the OCE efficiently. Figure 3 illustrates the flowchart of the 
proposed algorithm. 

4 Results 

4.1 Data 

Maintaining an injury-free condition is a crucial factor for 
success in sports. Although injuries are difficult to predict, 
the application of emerging technologies and data science 
can offer valuable insights. Even with a well-specified model, 
inaccurate data can compromise causal analysis. Data quality 
is often more critical than sample size (43), particularly in 
sports science, where physiological measures (e.g., maximal 
oxygen uptake, gene transcription activity) are inherently noisy 
due to biological and technical variability. Additionally, exercise 
intervention studies face challenges such as participant dropout, 
missing data, measurement errors, and inconsistencies in data 
processing, all of which hinder reliable causal interpretation 
(44). 

This study utilizes a comprehensive training log dataset from 
Kaggle (45, 46) collected by a Dutch team in 2012–2019. This 
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FIGURE 3 

Flowchart of the algorithm: after inputting the initial data X, the QTF is applied to obtain the ordinal data X∗ . The Latent Gaussian DAG Model (29) 
identifies the latent data Y and the DAG. Then, we compute the causal effects in the Latent Gaussian DAG Model (30) to obtain the ordinal causal 
effect. 

TABLE 1 List of Variables and Descriptions. 

ID Variable Description 

1 Sessions Number of trainings completed 

2 Totalkm Number of kilometers covered by running 

3 Kmmidlle Number of kilometers covered in intensity 
zones 3 and 4 

4 Kmhigh Number of kilometers covered in intensity 
zone 5 

5 Kmsprinting Number of kilometers covered with sprints 

6 Strengthtraining Whether the day included a strength training 
session 

7 PerceivedtrainingSuccess Athlete’s self-rating of how well the session 
went. 

8 Hoursalternative Number of hours spent on cross training 

9 Perceivedexertion Athlete’s self-rating of fatigue after the 
session. 

10 Perceivedrecovery Athlete’s self-rating of restfulness before the 
session. 

11 Injury Whether injured 

Dataset from Kaggle: Lovdal et al. (45), Injury Prediction Dataset (45). 

dataset, developed by Lövdal et al., employs machine learning 
to predict injuries based on data that focuses on middle- and 
long-distance events (800m to the marathon), with detailed 
performance records for 74 athletes (27 females and 47 males). 
The dataset adhered to the ethical principles of the Declaration of 
Helsinki and received formal approval from the ethics committee 
(45). This study follows the data structure established in (45), 
utilizing the Day approach [(45), page 1523, Table 1], with 
this research focusing exclusively on the data from a single 
day to analyze the causal effects. This dataset contains a total 
of 42,766 samples. Table 1 presents detailed characteristics of 
the variables. Variables 1, 6, and 11 are directly considered 
ordinal, while the remaining variables require ordinal classification 
using QTF. 

4.2 Analysis 

We simulated the probability density function for continuous 
variables and classified the variables based on QTF. The graph of the 
probability density function and its corresponding quantile ranges 
are presented in the Supplementary Figure 1. Taking variable 2 as 
an example, from Supplementary Figure 1 we can observe that Q2 

and Q3 divide the range of the values of the variable into three 
parts. The portion less than Q2 is defined as low level and assigned 
a value of 0. The values between Q2 and Q3 are categorized as 
medium level and assigned a value of 1. Finally, values greater 
than Q3 are defined as high level and assigned a value of 2. From 
Supplementary Figure 1, we can see that the probability of values 
at the low level (green) is 0.5, the probability at the medium level 
(orange) is 0.25, and the probability at the high level (purple) 
is also 0.25. Through this method, we transform the variable 
from a continuous variable to an ordinal variable. Subsequently, 
we perform ANOVA on the three groups levels and conduct a 
significance test (Table 2) (40). 

The mean values of the variable increase monotonically 
from group “0” to group “2”, and the standard deviations also 
progressively increase. For variable 2, the means and standard 
deviations at different levels are as follows: In group “0”, the mean 
is 3.186, the standard deviation is 3.991, and the sample size is 
30, 437; in group “1”, the mean is 12.882, the standard deviation 
is 0.98, and the sample size is 5, 996; in group “2”, the mean is 
20.016, the standard deviation is 5.2547, and the sample size is 
6, 333. Other variables exhibit similar patterns, where the mean in 
group “0” is relatively small, while the means in groups “1” and 
“2” are significantly higher (e.g., for variable 5, the mean increases 
from 0.017 to 2.536). Several variables have extremely high F-values 
(e.g., 156, 092 for the variable), showing that the between-group 
variance is far greater than the within-group variance. The ANOVA 
results indicate that the differences in means across groups are 
statistically significant (p < 0.05), suggesting that the distribution 
of the variable differs significantly across levels and shows a clear 
gradient pattern (group “0” < “1” < “2”). This result implies that the 
method used can effectively distinguish differences between levels, 
leading to the rejection of the null hypothesis H0 and the acceptance 
of the alternative hypothesis H1. 
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TABLE 2 ANOVA for the three group levels and significance testing based on the QTF. 

Group (mean ± SD)n F p 

Ordinal “0” “1” “2” 

Variable 2 3.186 ± 3.99130437 12.882 ± 0.985996 20.016 ± 5.25476333 55364 0.001 

Variable 3 0.269 ± 1.08840762 7.281 ± 0.6211008 11.298 ± 4.244996 52351 0.001 

Variable 4 0.178 ± 0.69740071 5.299 ± 0.6111726 8.781 ± 3.237969 77658 0 

Variable 5 0.017 ± 0.08441315 0.899 ± 0.113764 2.536 ± 2.666687 19913 0.001 

Variable 7 0.087 ± 0.19026234 0.689 ± 0.0508540 0.850 ± 0.0637992 102575 0.001 

Variable 8 0.050 ± 0.02040181 1.345 ± 0.1581269 2.514 ± 1.1551316 61170 0 

Variable 9 0.047 ± 0.06722291 0.293 ± 0.08310255 0.639 ± 0.12910220 156092 0 

Variable 10 0.055 ± 0.07422844 0.234 ± 0.0439811 0.477 ± 0.11710111 96383 0 

p < 0.001; The three groups of data (“0”, “1”, “2”) are presented as mean ± standard deviation (Mean ± SD)n , with n representing the sample size, and the F, p values are also listed. 

In the Supplementary material, we present the ANOVA results 
for the three discretization methods: equal-width, equal-frequency, 
and k-means. Supplementary Table 1 shows the ANOVA results 
for equal-width. This method uses intervals of the same width, 
making it simple and intuitive. However, the ANOVA results 
indicate that its F-value is lower, suggesting the between-group 
differences are less significant than with the QTF method. 
Moreover, for outlier variables (such as Variable 4 or Variable 
5), equal-width fails to reflect the data distribution accurately. 
Supplementary Table 2 shows the ANOVA results for equal-
frequency. This method ensures that each interval contains roughly 
the same number of samples. When sample values are highly 
concentrated and repeated, the resulting zero mean and standard 
deviation for some groups reduces the interpretability of the data. 
Supplementary Table 3 presents the results of k-means clustering. 
The ANOVA shows large F-values for the three clusters, suggesting 
significant between-group differences. However, k-means is a 
typical data-driven method with unfixed boundaries. If clusters 
are ordered by their mean values to define “low,” “medium,” and 
“high” levels, the boundaries will change with the data because 
cluster centers are randomly initialized. This randomness weakens 
theoretical interpretability. 

We followed the approach described in Luo et al. to derive DAG 
estimates from 500 bootstrap samples of the data (29, 30), utilizing 
the OSEM algorithm with a Monte Carlo sample size of K = 5 and 
a penalty coefficient of λ = 6. And the resulting CPDAG is shown 
in Figure 4. 

Figure 4 illustrates the causal relationships between different 
variables, highlighting both direct and indirect variables 
surrounding the Injury variable. The direct influencing variable 
for Injury is Kmsprinting, which has a significant impact on 
the occurrence of Injury. Kmsprinting training typically places 
high stress on muscles, joints, and ligaments, especially when 
the intensity is excessive or recovery is insufficient, making it 
prone to cause tissue damage or excessive fatigue. Kmsprinting 
may lead to rapid muscle contraction and high load in a short 
period, thereby increasing the risk of exercise-related injuries. 
Perceivedrecovery and Perceivedtrainingsuccess are also direct 
variables influencing Injury. Perceivedrecovery plays a critical role 
in injury risk. When perceived recovery is poor, muscles and joints 

may not withstand higher loads, potentially leading to improper 
movement and decreased endurance, thus increasing the risk of 
injury. Perceivedtrainingsuccess directly affects injury risk. If an 
athlete perceives training success as high, it may indicate good 
physical condition and effective recovery, thereby reducing the risk 
of injury. Conversely, a lower perception of training success may 
indirectly reflect accumulated fatigue and insufficient recovery, 
increasing the probability of injury. 

Injury’s indirect influencing variables, Pathway 1 is Totalkm → 
Sessions → Perceivedrecovery→ Injury: Increasing total running 
distance can lead to higher training intensity and frequency. A 
rise in total distance is often accompanied by increased training 
frequency, which may result in insufficient recovery time. Excessive 
training frequency and load can compromise recovery quality, 
leading to poor perceived recovery and indirectly increasing the 
risk of injury. If increases in running distance and frequency are not 
balanced with adequate recovery and proper load management, the 
perceived recovery level may decline, significantly elevating the risk 
of injury. 

Pathway 2 is Strengthtraining → Perceivedtrainingsuccess 
→ Injury: Strengthtraining enhances muscle strength, joint 
stability, and exercise efficiency, thereby improving athletic 
performance and training outcomes. It also increases athletes 
confidence and perception of training success, which may 
indirectly indicate improved physical adaptation and recovery 
levels. Perceivedtrainingsuccess can reduce the risk of injury, as 
the body is in better physical condition, movements are more 
precise, and energy distribution is more efficient. Conversely, a 
lower perception of training success may have the opposite effect. 
Based on the above analysis, it is recommended to control the 
intensity and frequency of Strengthtraining to prevent muscle 
injuries caused by overtraining. Attention should be placed on 
athletes Perceivedrecovery and sense of Perceivedtrainingsuccess, 
and by adjusting the training plan, recovery outcomes can be 
effectively improved. 

To visually represent the bootstrapped estimates, we present the 
adjacency matrices of the DAG derived using OSEM, converted 
to CPDAG, as a heatmap in Supplementary Figure 2 of the 
Supplementary material. The intensity of each cell corresponds to 
the frequency with which each edge appears in the bootstrapped 
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FIGURE 4 

CPDAG of the hidden network structure estimated via the OSEM algorithm (29) for the ordinal data of Section 4.1. 

samples. The shade in the grid indicates the proportion of times 
a directed edge occurs in the 500 bootstrapped CPDAG, with 
an undirected edge being split equally between both directions. 
Darker shading corresponds to a higher frequency of the respective 
directed edge. Additionally, we examine the causal relationship 
along the most frequently observed directed edge in the 500 
bootstrapped CPDAG by estimating the ordinal causal direct effects 
of Kmsprinting (variable 5) on Injury (variable 11) within the 
sample’s DAG. Raincloud plots, which incorporate histograms and 
boxplots of the estimated effects, are displayed in Figure 5. 

Figure 5 shows the ordinal causal direct effects of Kmsprinting 
(variable 5) on Injury (variable 11). “Injury=1” indicates no injury, 
while the level of “Injury=2” indicates injury. We use the do-
operator to describe this result. 

When the “Injury=1”, and the level of variable 
5 changes from 1 → 2, the OCE < 0. That 
means P 

 
injury = 1 | do 

 
kmsprinting = 2 

 − 
P 

 
injury = 1 | do 

 
kmsprinting = 1 

 
< 0. This result suggests 

that increasing the intensity of sprint training significantly 
increases the injury risk for uninjured athletes. High-intensity 
sprint training may lead to excessive load on muscles and joints, 
exceeding the body’s ability to adapt, thereby increasing the 
likelihood of injury. Therefore, for uninjured athletes, maintaining 
a lower level of sprint training helps to minimize the injury risk. If 
the sprint training level changes from 1 → 3, or from 2 → 3, the 
OCE value remains negative. This finding indicates that increasing 
the intensity of sprint training has a significant impact on the injury 
probability for uninjured athletes, especially during the transitions 
from 1 → 2 and from 1 → 3. Among these three intervention 
levels, the absolute value of the OCE mean is largest for the 
intervention from 1 → 3, suggesting that transitioning directly 
from low to high intensity training is particularly dangerous for 

uninjured athletes. Therefore, training plans need to be carefully 
designed. 

When the “Injury=2”, and the level of variable 
5 changes from 1 → 2, the OCE > 0. That 
means P 

 
injury = 2 | do 

 
kmsprinting = 2 

 − 
P 

 
injury = 2 | do 

 
kmsprinting = 1 

 
> 0. When the sprint 

training level increases from 1 → 2 or 1  → 3, the probability 
of injury significantly increases. For injured athletes, continuing 
to increase the sprint training intensity before full recovery 
can worsen the existing injury or lead to incomplete recovery, 
which significantly increases the risk of injury. During this stage, 
athletes should avoid increasing sprint training intensity and 
prioritize basic training and recovery. When the sprint training 
level changes from 2 → 3, the OCE for both injured groups is 
more concentrated, with the mean close to 0, indicating that 
the impact of increasing from medium to high-intensity sprint 
training on injury is relatively small. This limited effect may be 
due to the athletes’ adaptation to medium-intensity training and 
their more stable physical condition. Therefore, after sufficient 
medium-intensity training, gradually increasing high-intensity 
sprint training does not significantly increase the injury risk. 

In summary, the transition from low to medium intensity (1 
→ 2) is a critical period for injury risk, requiring close monitoring 
of an athlete’s physical condition and recovery. After reaching 
medium intensity, transitioning to high intensity is relatively safe, 
as the body has developed some level of adaptation, resulting in 
a lower injury risk. For uninjured athletes, it is recommended 
to prioritize a progressive increase in training load and avoid a 
direct jump from low to high intensity (1 → 3). For injured 
athletes, high-intensity sprint training should be strictly limited 
during the recovery period, and priority should be given to recovery 
training. High-intensity sprint training requires a focus on recovery 
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FIGURE 5 

Ordinal Causal Effect of Kmsprinting (variable 5) on Injury (variable 11). The solid line connects the means of the OCEs (represented by diamond 
points) across different levels of the outcome variable, for each possible shift of the intervention variable. 

quality after training to ensure athletes maintain a good recovery 
state during the gradual increase in intensity, minimizing fatigue 
accumulation and injury risk. The Kmsprinting has a significant 
causal effect on Injury. The risk from medium to high intensity (2 
→ 3) is relatively small, suggesting that training upgrades should 
be based on the athlete’s adaptation. Scientifically planning sprint 
training intensity and pace, combined with recovery training, helps 
reduce injury probability while improving training effectiveness 
and safety. 

Figure 6 shows the ordinal causal direct effects of Kmsprinting 
(variable 5) on Kmmiddle (variable 3) and Kmhigh (variable 
4). The change of variable 5 from low level to medium level (1 
→ 2) shows that for low-level Kmmiddle athletes, an increase 
in sprinting results in a positive OCE value, indicating that 
improvements in sprinting may indirectly help these athletes 
enhance their middle-distance running ability. However, for 
medium and high-level Kmmiddle athletes, the OCE value is 
negative, suggesting that an increase in sprinting may decrease 
their performance in middle-distance running. A similar pattern 
applies to Kmhigh athletes. For low-level Kmhigh athletes, an 
increase in sprinting may improve their high-intensity running 
ability. In contrast, for medium and high-level athletes, an increase 
in sprinting may limit their high-intensity running ability. 

It is worth noting that the OCE for Kmhigh is more scattered, 
indicating significant variation in the impact of sprinting on high-
intensity running. The change of variable 5 from medium level to 
high level (2 → 3) shows that for both Kmmiddle and Kmhigh, 
the OCE are close to 0. This result suggests that once athletes have 
adapted to a certain level of sprinting load, further increases in 
sprint intensity have minimal effect on middle-distance running 
and high-intensity running performance. For athletes with weaker 
middle-distance and high-intensity running abilities, increasing 
sprint training can indirectly enhance their running abilities by 
improving neuromuscular adaptation and rapid power output. For 
athletes who already possess strong middle-distance and high-
intensity running capabilities, increasing sprint training may lead 
to overloading or accumulation of fatigue, thereby affecting other 
running abilities. Once sprinting has reached a high level, athletes’ 
bodies gradually adapt to the high-intensity load, and further 
increases in sprinting have limited intervention effects on other 
running abilities. 

Therefore, we can conclude that for low-level athletes, 
appropriately increasing sprint training can help improve their 
middle-distance and high-intensity running abilities. For medium 
and high-level athletes, the ratio of sprinting to other running 
training must be balanced to avoid excessive sprint loads that 
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FIGURE 6 

Ordinal causal effect of Kmsprinting (variable 5) on Kmmiddle (variable 3) and Kmhigh (variable 4). 

may affect overall running performance. Regularly monitoring 
athletes’ performance in different running abilities and adjusting 
the sprinting load based on data feedback will ensure maximized 
training effects while preventing fatigue accumulation. As sprint 
load increases from medium to high intensity (2 → 3), gradual 
adaptation should be emphasized to avoid sudden increases in 
training intensity that could negatively impact middle-distance or 
high-intensity running abilities. Through reasonable design and 
adjustment of sprint training, coaches and athletes can enhance 
specific abilities while minimizing the risk of injuries caused by 
overtraining, ultimately achieving comprehensive optimization of 
athletic performance. 

Figure 7 shows the ordinal causal direct effects of 
other variables on Injury (variable 11). From Figure 7, we  
can observe that the OCE of Kmmiddle(variable 3) and 
Hoursalternative(variable 8) on injury are close to zero across 
various levels of change. This finding indicates that these two 
variables have a minimal impact on injury risk. Kmmiddle 
typically involves moderate-intensity training, and athletes’ bodies 
are generally more adaptable, so it does not significantly increase 
or decrease injury risk. Hoursalternative mainly refers to low-
intensity recovery exercises, which place minimal stress on the 
body, thus limiting their impact on injury risk. These two variables 
can be part of a stable training load to alleviate the physical stress 
from high-intensity training, thereby improving the overall safety 
of the training program. 

In contrast, the changes in Strengthtraining(variable 6) show 
the most significant fluctuations in the OCE for injury, indicating 
a significant causal intervention effect. This finding suggests that 
strength training can enhance athletic performance but may also 
increase injury risk if the intensity is too high or the progression 
is too rapid. High-intensity strength training places a heavy load 
on muscles and joints, and without adequate recovery or adaptive 
training, it can lead to muscle strains, ligament injuries, and other 
issues. Additionally, Strengthtraining’s effects vary significantly 
among individuals, as different athletes have differing capacities 
to tolerate intensity and recover. This further amplifies its impact 
on injury risk. Therefore, strength training programs must strictly 
control intensity and progression, prioritizing the development 

of foundational strength and movement stability. This approach 
helps mitigate injury risk caused by excessive or improperly 
planned training. 

The Pathway 2 analysis of the CPDAG in Figure 4 shows 
that Strengthtraining(variable 6) indirectly influences injury risk 
through Perceived Perceivedtrainingsuccess(variable 7), which 
supports the conclusion that their impact on injury risk is 
relatively limited. In practical sports, this result suggests that 
strength training should pay particular attention to intensity 
management. Proper planning of load progression is key 
to avoiding sports injuries, especially during high-intensity 
strength training, where it is important to incorporate restorative 
training [such as extending Hoursalternative(variable 8) ]. 
kmmiddle(variable 3) and Hoursalternative(variable 8) can serve 
as transition phases for high-intensity training, helping athletes 
gradually adapt to higher loads and reduce fatigue accumulation. 
Combining feedback from Perceivedrecovery(variable 10) and 
Perceivedtrainingsuccess(variable 7) allows for the real-time 
optimization of training plans, ensuring a balance between 
performance enhancement and injury risk. Through careful design 
and dynamic adjustment of training plans, athletes can not only 
reduce the risk of training-induced injuries but also improve overall 
training quality. Additionally, we provide the causal direct effects of 
other variables in the Supplementary Figure 3 for further reference. 

5 Discussion 

In this work, we propose a quantile threshold function 
(QTF) that transforms continuous variables into ordinal variables, 
and ensures the consistency of the classification results while 
effectively preserving the ordered nature of the data. Based on 
data transformation, this study applies the method designed 
by Luo et al. (29) to construct a causal Directed Acyclic 
Graph (DAG). Then, using the ordinal data causal analysis 
algorithm proposed by Scauda et al. (30), the ordinal causal 
effects (OCE) between ordered variables are calculated within the 
framework of the latent Gaussian DAG model. These findings 
offer valuable insights for optimizing rehabilitation strategies 
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FIGURE 7 

Ordinal causal effect of variable on Injury (variable 11). 

and provide the critical foundations for the development of 
effective prevention strategies. The use of causal diagrams 
will facilitate the organization of key concepts and ideas 
related to athletic injury causation within a well-defined causal 
framework. This approach enables the exploration of specific 
causal links and underlying assumptions through appropriate 
scientific methods. The findings not only advance methodological 
understanding but also provide a robust theoretical foundation for 
optimizing rehabilitation protocols and designing effective injury 
prevention strategies, ultimately contributing to a more precise 
and thorough understanding of the mechanisms driving sports 
injury occurrence. 

The results highlight several critical factors influencing 
injury risk, encompassing both measurable training loads 
and athlete-reported perceptions. Elevated training demands– 
particularly high-intensity sprinting distances–can substantially 

increase musculoskeletal stress and, when paired with insufficient 
recovery, raise the likelihood of injury. At the same time, athlete 
perceptions of recovery quality and training success emerged 
as strong indicators of physical readiness and resilience; lower 
scores in these measures often reflect accumulated fatigue and 
compromised movement control. Variations in total running 
volume, session frequency, and strength training intensity were 
also found to influence these perceptions, thereby indirectly 
shaping injury risk. Practical applications of these insights include 
regulating sprinting distances and intensities to prevent acute 
overload, progressively adjusting total running volume and 
session frequency, and structuring strength training to maximize 
performance benefits without inducing overtraining. Athlete-
reported measures of recovery and training success can serve as 
low-cost, real-time indicators for fine-tuning training plans before 
injuries occur. 
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From a policy perspective, integrating both objective load 
metrics and subjective perception measures into institutional 
injury surveillance systems would enhance early detection and 
prevention. Sports organizations could define evidence-based 
thresholds for key indicators, implement mandatory periodic 
monitoring, and foster a training culture that prioritizes recovery 
alongside performance goals. The quantile threshold framework 
used in this study also offers practical training load monitoring 
guidance. By determining safe ranges for load-related variables 
and coupling them with perceptual feedback, coaches can detect 
emerging imbalances between workload and recovery, enabling 
timely adjustments that maintain athletes in optimal performance 
zones while minimizing injury risk. Finally, the findings have 
important implications for recovery strategies. Structured recovery 
programs should address both physiological restoration–through 
rest intervals, active recovery, sleep optimization, and nutrition– 
and psychological readiness, by enhancing athletes confidence and 
perceived training success. A dual focus on physical and perceptual 
recovery can improve resilience to high-intensity demands and 
contribute to sustained performance with lower injury incidence. 

This study proposes a quantile threshold function (QTF) that 
transforms continuous variables into ordinal variables. Although 
this method offers simplicity and effectiveness, it is essential to 
recognize that various alternative approaches exist for converting 
continuous variables into ordinal variables. Methods like decision 
tree binning and K-Means clustering can capture complex 
relationships between continuous variables and other features 
more precisely. However, they require higher computational power 
and suffer from poor theoretical interpretability. Future studies 
could explore hybrid discretization schemes that combine the 
advantages of multiple methods. For example, integrating statistical 
techniques with machine learning algorithms may yield more 
flexible and efficient discretization strategies. Investigating the 
impact of different discretization methods on subsequent tasks, 
such as predictive modeling or clustering, could also provide 
valuable insights for practical applications. By addressing these 
limitations and broadening the analytical perspective, future 
research is expected to explore optimal strategies for transforming 
continuous variables into ordinal categories, thereby advancing 
the development of more comprehensive data preprocessing 
frameworks and improving model performance. 

This study examines a single-day subset of the dataset, 
which limits the generalizability of the findings. Future work 
will extend the analysis to weekly datasets and employ time-
series methods to capture temporal dynamics better. Moreover, 
although the current study focuses on single interventions, it is 
crucial to acknowledge that, in real-world scenarios, any exogenous 
intervention can simultaneously influence multiple target variables. 
Therefore, predicting the impact of joint interventions on an 
outcome variable becomes a relevant consideration. The methods 
proposed by (47) can be readily extended to address multiple 
interventions. Consequently, under the latent Gaussian model, 
incorporating joint interventions–similar to the approach of (48) 
represents a natural progression within the latent space framework. 
In the main text, we also mentioned that some datasets contain both 
ordinal and non-ordinal data. Naturally, this leads us to consider 
the problem of Bayesian network learning with mixed data. In 
particular, one may obtain a dataset with both continuous and 
ordinal variables by first generating a Gaussian dataset according to 

a DAG structure and then discretizing some of the variables while 
keeping others continuous. A similar learning framework may be 
applicable in this context. Therefore, future research could explore 
using such learning frameworks for causal analysis of data. 
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