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The value of unsupervised
machine learning algorithms
based on CT and MRI for
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Objectives: This study aims to investigate the efficacy of unsupervised machine
learning algorithms, specifically the Gaussian Mixture Model (GMM), K-means
clustering, and Otsu automatic threshold partitioning, in predicting sarcopenia
based on computed tomography (CT) and magnetic resonance imaging (MRI)
data.

Methods: A retrospective analysis was conducted on a dataset comprising
191 patients diagnosed with sarcopenia and 327 control patients. Participants
were randomly assigned to training and validation cohorts in a 6:4 ratio. The
paravertebral muscles at the lumbar 3/4 intervertebral disc level were manually
delineated as the region of interest (ROI) on non-enhanced CT and axial T2-
weighted MRIimages. Muscle and adipose tissues were automatically segmented
from the ROl using GMM, K-means, and Otsu algorithms at the cohort level.
Quantitative metrics such as mean, volume, and volume percentage were
computed, and these parameters were compared between the sarcopenia and
non-sarcopenia groups. Logistic regression analysis was employed to develop
predictive models for sarcopenia, with model performance evaluated using the
area under the curve (AUC). The stability of the models was assessed through
five-fold cross-validation.

Results: The study demonstrates that three unsupervised clustering algorithms
utilizing CT data surpassed those employing MRI data. Notably, the CT-based
Otsu model exhibited the highest predictive performance in both training and
validation datasets, with AUC values of 0.986 and 0.958, respectively. This was
followed by the CT-based GMM, which achieved AUC values of 0.990 and 0.903,
and the K-means model, with AUC values of 0.727 and 0.772. Furthermore, the
CT-based GMM model demonstrated superior stability upon five-fold cross-
validation, yielding an average AUC of 0.990.

Conclusion: The findings indicate that CT-based unsupervised machine
learning models outperform their MRI-based counterparts, with the CT-based
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Otsu and GMM models showing exceptional efficacy in sarcopenia prediction,
as evidenced by AUC values exceeding 0.95.

KEYWORDS

sarcopenia, computed tomography, magnetic resonance imaging, unsupervised
machine learning, Gaussian mixture model

Introduction

The European Working Group on Sarcopenia in Older People
(EWGSOP) currently defines sarcopenia as “a syndrome characterized
by progressive and generalized loss and change in skeletal muscle
quality and strength” (1). It is an age-related disease characterized by
a decline in muscle quality, strength, and function (2). From a clinical
standpoint, the SARC-F questionnaire is a straightforward and well-
established tool endorsed by the EWGSOP for identifying patients
with compromised physical function and sarcopenia (3). However,
diagnosing sarcopenia requires a variety of assessments, including
muscle strength tests and more accurate imaging methods, often
utilizing bioelectrical impedance analysis (BIA) or dual-energy X-ray
absorptiometry (DXA) to evaluate muscle quality (4, 5). Dual-energy
X-ray and bioelectrical impedance may underestimate the degree of
muscle quality reduction, and factors such as hydration and water
retention (such as heart, liver, or kidney failure) can affect the accuracy
of these methods (6, 7). Additionally, many older population
individuals experience conditions that lead to water retention, which
can limit the applicability of certain assessment methods.

Accurate diagnosis of sarcopenia requires precise quantification
of muscle including muscle quantity and quality. Computed
tomography (CT) and magnetic resonance imaging (MRI) are
considered the gold standards for non-invasive assessment of muscle
(1, 8, 9). CT can directly analyze body composition and quantify
muscle mass (10). Given that muscle density is associated with the
extent of fat infiltration, CT can evaluate both muscle quantity and
quality by accurately differentiating between fat and muscle tissues
based on their specific attenuation characteristics, thereby providing
detailed anatomical information (11). Over the past 25 years, the
reliability of CT in assessing quantitative and qualitative changes in fat
and muscle quality has been well demonstrated (12, 13). MRI also
demonstrates high accuracy in assessing muscle and fat areas or
volumes and in segmenting muscle on CT cross-sectional images (14).
In addition to providing information on fatty infiltration similar to
CT, MRI can also offer data on muscle edema, fiber infiltration, fiber
contractility, and elasticity (15). However, these methods cannot
provide precise measurements for evaluating changes over time, and
no studies have compared CT and MRI for predicting sarcopenia. The
majority of existing research predominantly employs supervised
learning techniques, which necessitate substantial annotated datasets
and exhibit high sensitivity to shifts in data distribution. In contrast to
the prevalent focus on a single imaging modality (such as CT or MRI)
in previous studies, this research uniquely integrates the strengths of
both CT and MRI. CT is particularly effective for quantitative analyses
of muscle density and fat infiltration, while MRI provides superior soft
tissue contrast and detailed visualization of muscle fiber architecture.

To advance the exploration of sarcopenia, there is a pressing need
for the development of precise quantitative assessment methodologies.
Artificial intelligence (AI) holds potential to facilitate the integration
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of sarcopenia research, particularly concerning low muscle quantity
and quality, into clinical practice (16). In recent years, the rapid
advancement of AI technology has led to the increased application of
unsupervised machine learning algorithms in the medical field,
providing innovative strategies for sarcopenia prediction. Our
preliminary investigations have demonstrated that unsupervised
algorithms utilizing cohort-level clustering surpass those employing
case-level clustering (17). In contrast to traditional radiomics, which
necessitates large sample sizes for robust analysis, unsupervised
machine learning algorithms exhibit reduced dependency on sample
size. In the realm of medical image analysis, particularly in the
assessment of muscle composition, there are significant challenges
associated with acquiring large, high-quality labeled datasets due to
financial and logistical constraints. Unsupervised learning algorithms
address this limitation by identifying intrinsic data structures and
patterns without the need for extensive annotations. This
methodological approach is especially advantageous for studies on
muscle composition where labeled data is scarce, as it reduces the
dependency on annotations, lowers costs, and facilitates tissue
segmentation and classification. These algorithms are capable of
autonomously segmenting and classifying muscle tissues, as well as
performing feature extraction and dimensionality reduction, thereby
offering significant advantages. K-means clustering has been
successfully applied to the automatic segmentation of muscle and fat
(18). Although common unsupervised machine learning algorithms
like the Gaussian mixture model (GMM) and Otsu thresholding are
employed, there is limited literature on their application in
muscle assessment.

This study aims to investigate the utility of unsupervised machine
learning algorithms, such as Gaussian mixture modeling, K-means
clustering, and Otsu thresholding, utilizing cohort-level CT and MRI
data to predict sarcopenia.

Materials and methods
Study population

The study was conducted in accordance with the Declaration of
Helsinki, and approved by the Institutional Review Board (or Ethics
Committee) of the First People’s Hospital of Yunnan Province
(reference number KHLL2023-KY209); date of approval 23 December
2024. The data are anonymous, and therequirement for informed
consent was therefore waived. We consecutively reviewed 518 patients
admitted to our hospital between August 2019 and October 2023,
including 327 non-sarcopenia patients and 191 sarcopenia patients.
And its validity was verified using prospectively collected data (65
non-sarcopenia patients and 36 sarcopenia patients) from our hospital
between November 2023 and December 2024. Inclusion criteria: (1)
patients diagnosed with sarcopenia or non-sarcopenia according to
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the Asian Working Group on Sarcopenia (AWGS) 2019 guidelines:
Low Appendicular skeletal muscle mass (Dual-energy X-ray
absorptiometry: male < 7.0 kg/m? female: < 5.4 kg/m’ or Bioelectrical
impedance analysis: male < 7.0 kg/m?, female < 5.7 kg/m?) and low
muscle strength (Handgrip strength: male < 28 kg, female < 18 kg) or
Low physical performance (6-metre walk: < 1.0 m/s or 5-time chair
stand test: > 12 s or Short Physical Performance Battery: < 9); (2) age
between 18 and 90 years old; (3) all patients had routine MRI and CT
scans of the lumbar spine at our hospital within 14 days before
treatment. Exclusion criteria: (1) patients who did not undergo lumbar
non-enhanced CT or axial non-fat-suppressed T2-weighted imaging
(T2WI) scanning; (2) patients who had undergone surgical treatment
(pedicle screw fixation, vertebroplasty, and kyphoplasty); (3) poor-
quality CT or MRI images, making evaluation impossible; (4)
incomplete display of paraspinal muscles at the level of the L3/4
intervertebral disc. A total of 383 patients were finally enrolled,
including 257 non-sarcopenia patients and 126 patients with
sarcopenia. Clinical and laboratory data were retrospectively collected,

10.3389/fpubh.2025.1649400

encompassing variables such as age, gender, height, weight, body mass
index (BMI), occupation, hypertension, diabetes, coronary heart
disease, smoking history, preoperative red blood cell count, white
blood cell count, serum albumin (ALB), hemoglobin, neutrophil
count, (NLR),
concentration. Figure 1 shows the flow chart of patient inclusion and

neutrophil-to-lymphocyte ratio and calcium

exclusion criteria.

Imaging data acquisition

All retrospective patients MRI scans were performed using 1.5 T
scanner (MAGNETOM Aera, Siemens Healthineers Ltd., Erlangen,
Germany) and 1.5 T scanner (Ingenia, Philips, Netherlands) with 6-
and 8-channel body coils, respectively. All patients underwent routine
supine lumbar spine MRI scanning with the following sequences:
lumbar spine sagittal T2/T1-weighted fast spin—echo sequences and
lumbar intervertebral disc axial T2-weighted fast spin-echo sequences.

Including 518 patients who visited orthopaedics
department of our hospital between 2019 and 2023

Diagnosed as sarcopenia or non-sarcopenia according to
the Asian Working Group for Sarcopenia (AWGS) in 2019

A\ 4

Including 327 patients without sarcopenia and 191
patients with sarcopenia

Exclude Patients without lumbar CT and MRI performed in our
hospital prior to treatment within 14 days:

non-sarcopenia (n=57) and sarcopenia (n=47)

\ 2
Patients with lumbar CT and MRI performed in our
hospital prior to treatment within 14 days:
non-sarcopenia (n=270) and sarcopenia (n=144)

Exclude Patients with a history of spinal surgery such as pedicle
screw fixation, vertebroplasty, and kyphoplasty:

non-sarcopenia (n=6) and sarcopenia (n=10)

\ 4

Patients with no history of spinal surgery:
non-sarcopenia (n=264) and sarcopenia (n=134)

Incomplete display of the paraspinal muscles at the
level of the L3/4 intervertebral disc:
non-sarcopenia (n=7) and sarcopenia (n=8)

Exclude

L

Patients with clear CT and MRI image quality at the
level of the L3/4 intervertebral disc:
non-sarcopenia (n=257) and sarcopenia (n=126)

FIGURE 1
Flowchart of the patient collection process.
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The scan parameters are shown in Table 1. CT scans were performed
using Somatom Definition, Aquilion One, Somatom Force, and
Somatom Emotion 16 scanners with the following parameters: tube
voltage = 100-120 kV, tube current = 20-500 mA,
degree = 40 mm, slice thickness = 3 mm, and pitch = 0.984:1. Some

collimation

parameters were adjusted according to patients” individual differences.
All lumbar MRI scans of prospective patients were performed using a
Siemens Aera 1.5 T MRI scanner (Germany), and all CT scans were
conducted with a Siemens Somatom Force scanner, following
standardized imaging protocols with identical scanning parameters as
previously described.

Image quantitative measurement

To preserve the original information from CT and MRI scans,
images were stored in a lossless DICOM format. 3D Slicer software
(version 5.6.2) and Python (version 3.11.4) were used to preprocess
the images. The Resample Image (BRAINS) module resampled the
DICOM images to a voxel size of 1 x 1 x 1 mm’, and N4 bias field
correction reduced nonuniformity caused by different scanner
magnetic fields. A radiologist with 2 years of experience in
musculoskeletal imaging utilized MRI axial T2-weighted imaging
(T2WI) sequences and CT axial images for anatomical segmentation
at the L3-4 intervertebral disc level. The regions of interest (ROIs) for
the studied muscles, including the bilateral paraspinal muscles and the
psoas major muscle, were manually segmented. Prior to training any
algorithm, a series of preprocessing steps were carried out on the ROIs
within the training set. In this study, three unsupervised clustering
methods—Otsu method, K-means, and GMM—were employed to
distinguish muscle and fat tissues in the paraspinal muscles of the
lumbar spine. The Otsu method maximized the inter-class variance to
classify voxel intensity values into two categories and determine the
optimal intensity threshold. K-means clustering used k-means++
initialization and iterative centroid optimization to assign voxels into
two clusters representing muscle and fat. GMM was initialized based
on the results of K-means and updated using the Expectation-
Maximization (EM) algorithm. After clustering, we analyzed the
intensity distribution to determine the thresholds for muscle and fat
and generated histograms of intensity values to identify peak positions.
The Otsu method was then used to optimize these thresholds. Finally,
the obtained thresholds were applied to classify voxels in the test set
ROIs. Subsequently, after the clustering process, the intensity
distributions were analyzed to establish threshold values for muscle

TABLE 1 The details of MRI parameters of different sequences.

Echo time
(ms)

MRI scanning

Repetition time
equipment and (ms)

parameters

10.3389/fpubh.2025.1649400

and fat. Histograms of intensity values were generated to pinpoint
peak positions, and these thresholds were further refined using
Otsu’s method.

Based on population-level clustering involves accumulating voxel
matrices from all patients’ GMM, K-means, and Otsu clustering results
into a global matrix. Using Python (3.9.12) for consistent clustering,
we obtain voxel consistency patterns at the population level. Ultimately,
habitat images for each patient based on population-level clustering are
obtained. The open-source software FeAture Explorer (FAE, v0.5.16)
is used to extract habitat parameters, including the volume, percentage,
and voxel mean across for each habitat.

To evaluate the reliability of intra-observer and inter-observer
delineation of the ROI, a second independent delineation was
performed 3 months later on a randomly selected cohort of 50
patients. This task was executed by two radiologists: one who had
previously delineated the ROI and another with 15 years of expertise
in musculoskeletal diagnostics.

Model building

Initially, univariate analysis was employed to compare the
characteristics of patients with and without sarcopenia within the
training cohort, aiming to identify parameters with statistically
significant differences. Subsequently, individual predictors for
sarcopenia were selected based on univariate logistic regression
analysis. A predictive model was then developed using multivariate
logistic regression, incorporating efficient predictive parameters.
Various models were constructed to predict sarcopenia utilizing three
unsupervised machine learning algorithms: CT-based GMM,
K-means, and Otsu models, as well as MRI-based GMM, K-means,
and Otsu models. Additionally, a separate clinical model was
developed. A flowchart of the research process is shown in Figure 2.

Statistical analysis

The study population was randomly divided into training and
retrospective validation sets in a 6:4 ratio using Python (version
3.12.4). Data were analyzed using SPSS statistical software (version
26.0 for Windows, IBM) and GraphPad Prism 9.5. A p-value less than
0.05 was considered statistically significant. A two-way random effects
model, along with the Intraclass Correlation Coefficient (ICC), was
utilized to assess the consistency of intra-observer and inter-observer

Field of
view (mm>)

Slice thickness
(mm)

Matrix Slice gap

(mm)

Siemens Aera Axial T2WI 3,100 94 210 % 210 384 x 288 4 0.4
15T Sagittal T2ZWI 3,820 86 400 x 400 384 x 288 4 0.4
Sagittal TIWI 644 9.5 400 x 400 384 x 288 4 0.4
Philips Ingenia Axial T2WI 1,181 100 180 x 300 180 x 193 4 04
15T Sagittal T2WT 180 100 180 x 300 200 x 248 4 0.4
Sagittal TIWI 692 9 180 x 300 200 x 248 4 0.4

T2WI, T2-weighted image; TIWI, T1-weighted image.
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lustering methods Segmentation of
muscles and fat

Quantification of Model building
muscles and fat and validation

Otsu algorithm cT

FIGURE 2
The overall workflow of this study.

Muscle_mean

Muscle_volume

Fat_mean

Fat_volume

Fat_percent

Muscle_percent

measurement outcomes. The normality of the data was evaluated
using the Kolmogorov-Smirnov test, with continuous variables
reported as mean + standard deviation. To compare differences in
quantitative parameters such as age, height, weight, and BMI between
the non-sarcopenia and sarcopenia groups in both the training and
validation datasets, independent sample t-tests (for normally
distributed data with homogeneity of variance) or Mann-Whitney U
tests, along with chi-square and Fisher’s exact tests (for categorical
variables), were employed. Statistically significant indicators were
identified. In the training dataset, univariate logistic regression
analysis and multivariate logistic regression with backward stepwise
selection were conducted to identify independent predictors and to
develop a predictive model for sarcopenia. The predictive performance
of the models was evaluated and compared using the area under the
receiver operating characteristic (ROC) curve (AUC), from which the
corresponding AUC, optimal cutoff value, sensitivity, specificity, and
accuracy were derived. The stability of each model was assessed with
a five-fold cross-validation ROC curve. The calculation formulas for
part of the data in this study are as follows: Sensitivity: Alias: True
Positive Rate (TPR). The sensitivity formula is: Sensitivity = TP/
(TP + FN). Specificity: Alias: True Negative Rate (TNR). The
specificity formula is: Specificity = TN/(TN + FP). The accuracy
formula is: Accuracy = (TP + TN)/(TP + TN + FP + FN). TP (true
positive); FP (false positive); FN (false negative); TN (true negative).
The workflow of this study is illustrated in Supplementary Figure S1.

Results
Clinical parameters

The clinical characteristics of the subjects in the training and
retrospective validation sets are summarized in Table 2. A total of 383
patients were divided into a training set (228 patients) and a
retrospective validation set (155 patients). In the training set, 149
(65.35%) were non-sarcopenia patients and 79 (34.65%) were
sarcopenia patients. In the retrospective validation set, there were 108
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non-sarcopenia patients (69.68%) and 47 sarcopenia patients
(30.32%). The mean age of the sarcopenia group in the training set
(71.65 + 7.01 years) was greater than that of the non-sarcopenia group
(68.13 + 6.88 years). The statistical analysis revealed no significant
differences between the non-sarcopenia and sarcopenia groups
concerning variables such as gender, occupation, hypertension,
diabetes mellitus, coronary heart disease, pulmonary disease, smoking
history, preoperative white blood cell count, neutrophil count, NLR,
and calcium ion concentration, with all p-values exceeding 0.05.
However, significant differences were observed in age, BMI,
preoperative RBC, hemoglobin, and serum albumin (all p < 0.05).
According to univariate and multivariate logistic regression analysis,
age, BMI, and preoperative serum albumin were effective predictive
parameters, as shown in Table 3.

Intra- and inter-observer consistency of
quantitative parameters

The quantitative parameters derived from a single radiologist
delineating the ROI twice demonstrated strong intra-observer reliability,
while those obtained from two radiologists independently delineating
the ROI exhibited robust inter-observer reliability. Specifically, for ROI
delineation in CT images, the intra-observer and inter-observer ICCs
were 0.976 and 0.928, respectively. For ROI delineation in MRI images,
the intra-observer and inter-observer ICCs were 0.994 and 0.945,
respectively. Detailed results are presented in Supplementary Figure S2.

Image analysis

Within the training set, the differences in mean, volume, and
percentage of fat, as well as in volume and percentage of muscle,
between the non-sarcopenia and sarcopenia groups were statistically
significant (p <0.05) in the CT-based GMM. Similar significant
differences were observed in the CT-based Otsu models. The
differences in mean, and percentage of fat and in volume, and
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TABLE 2 Demographic and clinical characteristics of the training and validation groups.

Training group (n = 228)

Retrospective validation group Prospective validation group

(n = 155) (n =101)
nea Non- Non- Non-
fSattires sarcopenia Sa(rnc2p7egr)1la sarcopenia Sa(rncc=>p4e7r;|a Jo) sarcopenia Sa(;cgp;esr)ua P
(n = 149) (n =108) (n = 65)

Age (years) 68.13 + 6.88 71.65 + 7.01 <0.001% 67.20 + 5.81 70.77 +5.90 0.001% 67.43 + 591 7128 +7.22 0.015%
Gender (Female/ 35/12 0.026* 24/12 0.140
Male) 88/61 45/34 0.760 60/48 34/31
Career

Worker 23 7 0.681 35 7 0.077 13 12 0.011%

Retired 22 13 14 12 11 1

Farmer 27 13 32 12 27 14

Freelance 3 2 5 2 12 3

Others 74 44 22 14 2 6
Hypertension (yes/ 74175 37/42 0.622 42/66 14/33 0.278 23/42 20/16 0.050
no)
Diabetes (yes/no) 21/128 11/68 0.972 18/90 7/40 0.783 6/59 2/34 0.787
Smoking (yes/no) 31/118 20/59 0.437 18/90 5/42 0.332 18/47 6/30 0.212
Pulmonary Disease 10/139 10/69 0.131 7/101 2/45 0.864 1/64 1/35 1.000
(yes/no)
Cardiac Disease 15/134 14/65 0.099 11/97 4/43 0.977 1/64 2/34 0.598
(yes/no)
BMI (kg/m?) 24.99 + 3.40 22.83 +3.18 <0.001% 22.11 +6.62 23.41 +3.03 0.963 23.99 +5.36 22.78 +3.53 0.014*
WBC (10°/L) 6.23+1.83 6.27 +2.06 0.992 6.13 +2.06 591 +1.89 0.664 6.00+1.72 7.00 +2.75 0.128
NEUT (10°/L) 3.65+ 1.57 3.83+£1.57 0.451 3.63+1.72 3.58 + 1.52 0.958 3.58 + 1.38 428 +2.43 0.236
NLR 1.84+0.55 1.80 £0.85 0.072 2.02+1.22 2.24+1.02 0.231 1.76 +0.30 1.76 £ 0.33 0.999
RBC (10"/L) 4.50 +0.54 4.36 +0.48 0.009% 4.49 +0.49 4.34+0.54 0.098 4.49 +0.50 4.26 +0.45 0.025%
Calcium (mmol/L) 2.15+0.12 2.13+0.10 0.545 4.49 +0.49 434 +0.54 0.167 2.15 +0.09 213 +0.11 0.915
Hemoglobin (g/L) 136.76 £ 18.03 130.77£16.31 | 0.009% = 13579 15.14 128.85+£16.31 | 0.011% = 138.89 % 16.14 131.00 £12.66 | 0.013*
Albumin (g/L) 37.89 +3.09 35.90 +3.32 <0.001% 39.25 + 3.45 37.48 £2.94 0.003 38.46 + 3.57 37.66 + 3.78 0.476

Data are mean * standard deviation; BMI, body mass index; WBC, white blood cell; NEUT, neutrophil; NLR, Neutrophil-to-Lymphocyte; RBC, red blood cell. *p < 0.05.

TABLE 3 Logistic regression analysis of clinical characteristics between the non-sarcopenia patients and the sarcopenia patients in the training group.

Univariable LR Multivariable LR

OR (95% Cl)

Clinical features

OR (95% Cl)

Age (years) 1.07 (1.03-1.12) 0.001* 1.07 (1.02-1.12) 0.004*
BMI (kg/m?) 0.81 (0.73-0.89) <0.001* 0.82 (0.73-0.91) <0.001*
RBC (10'%/L) 0.58 (0.33-1.00) 0.051 1.31 (0.47-3.63) 0.605
HGB (g/L) 0.98 (0.96-1.00) 0.017* 0.99 (0.96-1.02) 0.678
ALB (g/L) 0.82 (0.75-0.90) <0.001* 0.86(0.78-0.96) 0.007*

LR, Logistic regression; OR, odds ratio; CI, confidence interval; NA, not applicable. *p < 0.05.

percentage of muscle between the non-sarcopenia and sarcopenia
groups were statistically significant (p <0.05) in the CT-based
K-means model. In the MRI-based GMM model, differences in mean
of fat and differences in mean, volume of muscle were statistically
significant (p < 0.05). Similar significant differences were observed in
the MRI-based K-means and Otsu models. The analysis results are
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shown in Figure 3 and Supplementary Table 1. Independent predictors
in the CT-based GMM model was fat mean. In the CT-based K-means
model, the predictors were fat mean and percentage, and muscle
volume and percentage. In the CT-based Otsu model, the predictors
were fat mean and percentage, and muscle volume and percentage. In
the MRI-based GMM model, the predictor was muscle mean; in the
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FIGURE 3
(A-L) Bar graphs of MRI and CT characteristics derived from different models in the non-sarcopenia patients and the sarcopenia patients in the training
group. A red asterisk indicate statistical significance difference.
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TABLE 4 Logistic regression analysis of different imaging models between non-sarcopenia patients and the sarcopenia patients in the training group.

Different models

OR (95% CI)

Univariable LR

Multivariable LR
OR (95% Cl)

GMM CT_fat_Mean 0.81 (0.75-0.89) <0.001* 0.81 (0.74-0.89) <0.001*
CT_fat_Volume 1.00 (1.00-1.00) <0.001* 1.00 (1.00-1.00) 0.625
CT_muscle_Volume 1.00 (1.00-1.00) 0.136 NA NA
CT_fat_Percent 0.00 (0.00-0.00) <0.001* 3.58 (0.00-116816.27) 0.810
CT_muscle_Percent 7033.60 (423.61-116785.08) <0.001* 3.58 (0.00-116816.27) 0.810

Kmeans CT_fat_Mean 0.94 (0.91-0.97) <0.001* 0.89 (0.84-0.94) <0.001*
CT_muscle_Volume 1.00 (1.00-1.00) 0.001* 1.00 (1.00-1.00) 0.003*
CT_fat_Percent 17.70(1.59-197.11) 0.019* 0.00 (0.00-0.00) <0.001*
CT_muscle_Percent 0.06 (0.01-0.63) 0.019* 40846.54 (113.67-14677590.73) <0.001*

Otsu CT_fat_Mean 1.08 (1.05-1.11) <0.001* 1.74 (1.43-2.10) <0.001*
CT_fat_Volume 1.00 (1.00-1.00) <0.001* 1.00 (1.00-1.00) 0.125
CT_muscle_Volume 1.00 (1.00-1.00) <0.001* 1.00 (1.00-1.00) 0.040*
CT_fat_Percent 15150.84 (755.29-303920.42) <0.001* 6.58 (5.64-7.68) <0.001%*
CT_muscle_Percent 0.00 (0.00-0.00) <0.001* 0.00 (0.00-0.00) <0.001%*

GMM MRI_fat_Mean 1.00 (1.00-1.00) 0.005* 1.00 (1.00-1.00) 0.745
MRI_muscle_Mean 1.00 (1.00-1.01) 0.002%* 1.01 (1.00-1.02) 0.015%
MRI_muscle_Volume 1.00 (1.00-1.00) 0.038%* 1.00 (1.00-1.00) 0.478

Kmeans MRI_fat_Mean 1.00 (1.00-1.00) 0.430 NA NA
MRI_muscle_Mean 1.00 (1.00-1.01) 0.021%* 1.00 (1.00-1.00) 0.922
MRI_muscle_Volume 1.00 (1.00-1.00) 0.001* 1.00 (1.00-1.00) 0.010%*

Otsu MRI_fat_Mean 1.00 (1.00-1.00) 0.322 NA NA
MRI_muscle_Mean 1.00 (1.00-1.01) 0.010%* 1.00 (1.00-1.00) 0.458
MRI_muscle_Volume 1.00 (1.00-1.00) 0.002* 1.00 (1.00-1.00) 0.044*

GMM, Gaussian mixture model. *p < 0.05.

MRI-based K-means model, it was muscle volume; and in the
MRI-based Otsu model, it was muscle volume, as shown in Table 4.

The performance of different models and
cross-validation on the training data set

Table 5 presents the comparison of the diagnostic efficiency of
different models. In the training set, the CT-based GMM model
achieved the highest AUC values (AUC = 0.990), followed by the
CT-based Otsu model (AUC =0.986), the clinical model
(AUC = 0.764), the CT-based K-means model (AUC = 0.727), the
MRI-based GMM model (AUC = 0.697), the MRI-based K-means
(AUC = 0.649), the MRI-based Otsu model
(AUC = 0.638). In the retrospective validation group, the diagnostic

model and
efficiency from highest to lowest was: CT-based Otsu model
(AUC = 0.958), CT-based GMM model (AUC = 0.903), the CT-based
K-means model (AUC =0.772) clinical model (AUC =0.719),
MRI-based K-means model (AUC = 0.537), MRI-based GMM model
(AUC = 0.537), and MRI-based Otsu model (AUC = 0.528). In the
prospective validation cohort, the CT-based Otsu model
demonstrated the highest diagnostic efficiency (AUC = 0.819).
Figure 4 shows a schematic of the segmentation for the
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better-performing models, and Figure 5 presents the ROC curves for
model comparison. Using five-fold cross-validation on the training
set, the CT-based GMM model demonstrated the best stability
(average AUC = 0.99), followed by the CT-based Otsu model (average
AUC = 0.94). Detailed ROC curves and average AUC values for the
five-fold cross-validation are shown in Supplementary Figures S3, 4.

Discussion

In this study, we introduce an innovative unsupervised learning
algorithm designed for the quantitative assessment of paraspinal
muscle components utilizing CT and MR imaging modalities. Our
findings indicate that the Otsu and GMM algorithms, when applied
to CT scans, exhibit superior efficacy in predicting sarcopenia.
Through logistic regression analysis, we determined that age, BMI,
and serum albumin levels are significantly associated with sarcopenia.
It is well-documented that the prevalence of sarcopenia escalates with
advancing age, and its implications for public health are intensifying
due to the aging population (19). BMI is a critical factor in sarcopenia
(20). BMI emerges as a pivotal factor in the context of sarcopenia, as
weight gain and obesity can expedite the onset and progression of this
condition, either directly or indirectly. In individuals with obesity, the

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1649400
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Zuo et al. 10.3389/fpubh.2025.1649400

TABLE 5 Comparison of AUCs for different models in the training group and the validation group.

Models AUC (95% CI) Cut-off

values

Youden index

Sensitivity

Specificity

Training group Clinical model 0.764 (0.699-0.828) 57.0% 84.6% 0.416 0.429
GMM_CT 0.990 (0.975-1.000) 96.2% 99.3% 0.955 0.236
Kmeans_CT 0.727 (0.656-0.797) 50.6% 87.9% 0.385 0.484
Otsu_CT 0.986 (0.975-0.997) 93.7% 95.3% 0.890 0.438
GMM_MRI 0.697 (0.616-0.779) 53.2% 94.0% 0.472 0.432
Kmeans_MRI 0.649 (0.574-0.724) 77.2% 51.7% 0.289 0.309
Otsu_MRI 0.638 (0.562-0.713) 77.2% 51.0% 0.282 0.313
Retrospective Clinical model 0.719 (0.639-0.800) 80.9% 57.4% 0.383 0.265
validation group GMM_CT 0.903 (0.833-0.972) 83.0% 99.1% 0.821 0.368
Kmeans_CT 0.772 (0.688-0.856) 63.8% 83.3% 0.471 0.400
Otsu_CT 0.958 (0.927-0.990) 85.1% 97.2% 0.823 0.522
GMM_MRI 0.537 (0.424-0.650) 89.8% 36.2% 0.260 0.274
Kmeans_MRI 0.537 (0.442-0.633) 72.3% 41.7% 0.140 0.290
Otsu_MRI 0.528 (0.432-0.623) 72.3% 40.7% 0.130 0.292
Prospective Clinical model 0.675 (0.575-0.765) 83.33% 55.38% 0.387 0.315
validation group GMM_CT 0.817 (0.727-0.887) 83.33% 73.85% 0.572 0.370
Kmeans_CT 0.801 (0.710-0.874) 66.67% 89.23% 0.559 0.365
Otsu_CT 0.819 (0.730-0.889) 80.56% 72.31% 0.529 0.391
GMM_MRI 0.550 (0.448-0.650) 75.00% 43.08% 0.181 0.349
Kmeans_MRI 0.693 (0.594-0.781) 58.33% 75.38% 0.337 0.402
Otsu_MRI 0.695 (0.596-0.783) 83.33% 50.77% 0.341 0.323

AUCG, area under the curve.

accumulation of pro-inflammatory macrophages and other immune
cells within adipose tissue, coupled with the dysregulated secretion of
various adipokines and cytokines, fosters a chronic pro-inflammatory
state (21, 22). Furthermore, the excessive secretion from adipose tissue
and the compromised lipid storage capacity observed in obese
individuals contribute to ectopic lipid deposition within skeletal
muscle. Intramuscular lipids contribute to mitochondrial dysfunction
and enhance the secretion of specific pro-inflammatory myokines,
thereby inducing muscle dysfunction (23). It is hypothesized that
individuals with higher adiposity may have increased protein intake,
which serves as a protective factor against sarcopenia (24).
Consequently, maintaining a healthy weight is essential for preserving
muscle mass and strength in older adults. Serum albumin
concentration is a valuable indicator of an individual’s nutritional
status, with lower levels signifying reduced protein reserves and the
initiation of catabolic processes that lead to muscle degradation (25-
27). Elevated free cortisol levels have been observed in patients with
hypoalbuminemia, further promoting muscle breakdown, particularly
in inactive individuals. Albumin is capable of activating the
phosphatidylinositol 3-kinase pathway, which mediates muscle. This
study used measurement of muscle mass at the level of the L3 because
the muscle mass at the L3 vertebral level is recognized as a pivotal
indicator for evaluating total body muscle mass. The cross-sectional
area (CSA) at this level demonstrates a robust correlation with overall
body muscle mass and serves as an effective reflection of the systemic
musculature’s health status. Numerous clinical guidelines and studies
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have identified the skeletal muscle cross-sectional area (SMCSA) at
the L3 level as a critical metric for assessing sarcopenia (28).

In our study, the predictive performance of CT-based models was
superior to that of MRI-based models. CT has emerged as the most
widely utilized cross-sectional imaging modality globally. Fron et al.
(10) demonstrated a high level of concordance in imaging-derived
biomarkers of muscle quantity and mass between CT and MRI in
healthy subjects, indicating that both modalities can be used
interchangeably for skeletal muscle assessment. The muscle area
calculated from CT scans exhibits a strong correlation with total body
muscle mass and is regarded as the gold standard for body composition
analysis and the diagnosis of abnormal body composition phenotypes,
particularly in malnourished patients (29-31). Tandon et al. observed
that skeletal muscle area measurements obtained directly from CT and
MRI tend to be systematically larger in CT than in MRI (32, 33). CT
is capable of accurately quantifying muscle quality and identifying
intramuscular fat, making it suitable for assessing muscle steatosis
(34). Quantitative tissue measurements from CT are highly
reproducible and show a strong correlation with clinical outcomes
(35). CT offers advantages in the staging and follow-up of cancer and
other diseases, rendering it ideal for the opportunistic evaluation of
sarcopenia without the need for additional tests. Consequently, CT is
extensively utilized in research across several retrospective and
prospective analyses (36).

MRI holds promise for the assessment of sarcopenia; however, its
application is constrained by high costs, extended scanning and
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FIGURE 4

Exemplary slices showing the differentiation between muscle (blue) and fat (red) obtained with the CT-based Gaussian Mixture Model (B,F), CT-based
Otsu thresholding method (C,G) and MRI-based Otsu thresholding method (D,H), (A-D): A 62-year-old male with sarcopenia; (E-=H): an 66-year-old
female without sarcopenia. The AUC of the CT-based Gaussian Mixture Model and the Otsu model for predicting sarcopenia was 0.98 and 0.93,
respectively. The AUC of the Gaussian mixture model and the Otsu model for predicting sarcopenia was 0.990 and 0.986, respectively.

FIGURE 5

validation group (C).
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post-processing durations, operational complexity, and the absence of
standardized protocols. The quality of MRI imaging is highly
contingent upon the configuration of scanning parameters.
Inappropriate selection of parameters, such as echo time (TE),
repetition time (TR), may lead to suboptimal image contrast or
increased noise, thus compromising the clear visualization of soft
tissues. In addition, this study segmented muscle and fat in the
paraspinal muscles on T2WT and CT. The soft tissue contrast of MRI
is not as clear as that of CT, so its predictive performance for
sarcopenia is lower than that of CT. Consequently, its clinical use is
largely confined to scenarios involving disease treatment or follow-up
(37). The Otsu automatic thresholding algorithm, which segments
images into foreground and background by optimizing inter-class
variance based on the gray-level histogram, has been employed by Rui
et al. to segment muscle tissue and quantify the fatty content of the
gluteus maximus. This method yielded Dice Similarity Coefficients
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(DSCs) of 0.930 and 0.873, with fat ratio measurements aligning
closely with those of radiologists, thereby demonstrating robust
segmentation performance and potential for further muscle
assessment (38, 39). In our study, the Otsu thresholding technique
exhibited strong predictive capabilities, effectively delineating muscle
tissue contours and features pertinent to sarcopenia prediction.
Additionally, the GMM, a renowned segmentation method
grounded in mixture models, provides flexibility and efficacy for
multivariate data analysis, and is frequently employed by researchers
to address critical challenges in image segmentation. Ryan et al. (40)
employed the GMM for the segmentation of abdominal organs,
achieving DSC values ranging from 0.7 to 0.9, thereby establishing a
benchmark for large-scale automatic abdominal segmentation. In our
research, the GMM also exhibited superior predictive efficacy,
suggesting that among the models evaluated, the GMM holds greater
utility for assessing sarcopenia. This phenomenon may be attributed
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to the GMM’s capability to partition data into distinct Gaussian
distributions by identifying these distributions within the dataset, thus
enabling the model to adapt to real-world data with diverse cluster
structures (41).

Conversely, K-means clustering, a fundamental clustering technique
known for its straightforward structure, rapid segmentation, and
versatility, was found by Thomas et al. (13) to effectively quantify total
muscle volume compartments in sarcopenia, successfully distinguishing
between contractile and non-contractile tissue components. However, in
our study, the performance of K-means was suboptimal, potentially due
to challenges in determining initial cluster centers and the slow
convergence speed when processing large-scale images (42).

This study has some limitations. Firstly, this study is a single-
center retrospective analysis with a limited sample size and lacks
external validation. Although we have employed five-fold cross-
validation to verify our findings, future research should involve
multi-center studies with larger sample sizes. Secondly, despite
standardizing image processing, variations in MRI scanning
parameters, such as slice thickness, exist among different patients.
The impact of these variations on our analysis remains uncertain, and
we intend to conduct prospective validation in the future. Thirdly, the
ROIs in this study were manually delineated by a single operator.
While manual sketching is considered the gold standard in research,
it is time-consuming and susceptible to the operator’s experience.
Future studies should explore more accurate automatic or semi-
automatic methods for lesion delineation.

Conclusion

Unsupervised clustering algorithms based on CT and MRI have
demonstrated effectiveness in predicting sarcopenia, with the CT-based
Otsu and GMM exhibiting superior accuracy, achieving an AUC
greater than 0.95. This model can be widely used in primary healthcare
settings or developing regions with aging populations and can assist
healthcare providers in treating patients with early-stage sarcopenia.
Our research underscores the importance of imaging modalities (CT
and MRI) in diagnosing sarcopenia. Integrating these evaluations with
clinical symptoms and physical exams can improve diagnostic accuracy
and patient care. For prevention, lifestyle interventions are crucial.
Healthcare professionals should promote regular exercise, balanced
diets, and healthy habits through comprehensive health education.
Implementing these insights in healthcare policies and practices can
enhance outcomes for sarcopenia patients, reduce healthcare burdens,
and improve quality of life for the aging population.
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