
Frontiers in Public Health 01 frontiersin.org

The value of unsupervised 
machine learning algorithms 
based on CT and MRI for 
predicting sarcopenia
Huayan Zuo 1†, Qiu Bi 2†, Xiaolong Liu 3†, Guoli Bi 2, Yijin Wang 1, 
Yunzhu Wu 4, Guang Yang 5, Chengxiu Zhang 5, Yang Song 6, 
Gang Wang 7*‡, Qiyang Wang 8*‡ and Xiarong Gong 2*‡

1 Department of MRI the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming 
University of Science and Technology, Kunming, China, 2 Department of MRI, The First People’s 
Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and 
Technology, Kunming, China, 3 Department of Medical Imaging, The People’s Hospital of Puer, The 
Affiliated Hospital of Kunming University of Science and Technology, Kunming, China, 4 Institute for AI 
in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and 
Technology, Nanjing, China, 5 Shanghai Key Laboratory of Magnetic Resonance, East China Nornal 
University, Shanghai, China, 6 MR Research Collaboration, Siemens Healthineers, Shanghai, China, 
7 Department of Radiology, the First People’s Hospital of Yunnan Province, The Affiliated Hospital of 
Kunming University of Science and Technology, Kunming, China, 8 Department of Orthopedic Surgery, 
The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Province Spinal Cord 
Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, The Affiliated 
Hospital of Kunming University of Science and Technology, Kunming, China

Objectives: This study aims to investigate the efficacy of unsupervised machine 
learning algorithms, specifically the Gaussian Mixture Model (GMM), K-means 
clustering, and Otsu automatic threshold partitioning, in predicting sarcopenia 
based on computed tomography (CT) and magnetic resonance imaging (MRI) 
data.
Methods: A retrospective analysis was conducted on a dataset comprising 
191 patients diagnosed with sarcopenia and 327 control patients. Participants 
were randomly assigned to training and validation cohorts in a 6:4 ratio. The 
paravertebral muscles at the lumbar 3/4 intervertebral disc level were manually 
delineated as the region of interest (ROI) on non-enhanced CT and axial T2-
weighted MRI images. Muscle and adipose tissues were automatically segmented 
from the ROI using GMM, K-means, and Otsu algorithms at the cohort level. 
Quantitative metrics such as mean, volume, and volume percentage were 
computed, and these parameters were compared between the sarcopenia and 
non-sarcopenia groups. Logistic regression analysis was employed to develop 
predictive models for sarcopenia, with model performance evaluated using the 
area under the curve (AUC). The stability of the models was assessed through 
five-fold cross-validation.
Results: The study demonstrates that three unsupervised clustering algorithms 
utilizing CT data surpassed those employing MRI data. Notably, the CT-based 
Otsu model exhibited the highest predictive performance in both training and 
validation datasets, with AUC values of 0.986 and 0.958, respectively. This was 
followed by the CT-based GMM, which achieved AUC values of 0.990 and 0.903, 
and the K-means model, with AUC values of 0.727 and 0.772. Furthermore, the 
CT-based GMM model demonstrated superior stability upon five-fold cross-
validation, yielding an average AUC of 0.990.
Conclusion: The findings indicate that CT-based unsupervised machine 
learning models outperform their MRI-based counterparts, with the CT-based 
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Otsu and GMM models showing exceptional efficacy in sarcopenia prediction, 
as evidenced by AUC values exceeding 0.95.
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Introduction

The European Working Group on Sarcopenia in Older People 
(EWGSOP) currently defines sarcopenia as “a syndrome characterized 
by progressive and generalized loss and change in skeletal muscle 
quality and strength” (1). It is an age-related disease characterized by 
a decline in muscle quality, strength, and function (2). From a clinical 
standpoint, the SARC-F questionnaire is a straightforward and well-
established tool endorsed by the EWGSOP for identifying patients 
with compromised physical function and sarcopenia (3). However, 
diagnosing sarcopenia requires a variety of assessments, including 
muscle strength tests and more accurate imaging methods, often 
utilizing bioelectrical impedance analysis (BIA) or dual-energy X-ray 
absorptiometry (DXA) to evaluate muscle quality (4, 5). Dual-energy 
X-ray and bioelectrical impedance may underestimate the degree of 
muscle quality reduction, and factors such as hydration and water 
retention (such as heart, liver, or kidney failure) can affect the accuracy 
of these methods (6, 7). Additionally, many older population 
individuals experience conditions that lead to water retention, which 
can limit the applicability of certain assessment methods.

Accurate diagnosis of sarcopenia requires precise quantification 
of muscle including muscle quantity and quality. Computed 
tomography (CT) and magnetic resonance imaging (MRI) are 
considered the gold standards for non-invasive assessment of muscle 
(1, 8, 9). CT can directly analyze body composition and quantify 
muscle mass (10). Given that muscle density is associated with the 
extent of fat infiltration, CT can evaluate both muscle quantity and 
quality by accurately differentiating between fat and muscle tissues 
based on their specific attenuation characteristics, thereby providing 
detailed anatomical information (11). Over the past 25 years, the 
reliability of CT in assessing quantitative and qualitative changes in fat 
and muscle quality has been well demonstrated (12, 13). MRI also 
demonstrates high accuracy in assessing muscle and fat areas or 
volumes and in segmenting muscle on CT cross-sectional images (14). 
In addition to providing information on fatty infiltration similar to 
CT, MRI can also offer data on muscle edema, fiber infiltration, fiber 
contractility, and elasticity (15). However, these methods cannot 
provide precise measurements for evaluating changes over time, and 
no studies have compared CT and MRI for predicting sarcopenia. The 
majority of existing research predominantly employs supervised 
learning techniques, which necessitate substantial annotated datasets 
and exhibit high sensitivity to shifts in data distribution. In contrast to 
the prevalent focus on a single imaging modality (such as CT or MRI) 
in previous studies, this research uniquely integrates the strengths of 
both CT and MRI. CT is particularly effective for quantitative analyses 
of muscle density and fat infiltration, while MRI provides superior soft 
tissue contrast and detailed visualization of muscle fiber architecture.

To advance the exploration of sarcopenia, there is a pressing need 
for the development of precise quantitative assessment methodologies. 
Artificial intelligence (AI) holds potential to facilitate the integration 

of sarcopenia research, particularly concerning low muscle quantity 
and quality, into clinical practice (16). In recent years, the rapid 
advancement of AI technology has led to the increased application of 
unsupervised machine learning algorithms in the medical field, 
providing innovative strategies for sarcopenia prediction. Our 
preliminary investigations have demonstrated that unsupervised 
algorithms utilizing cohort-level clustering surpass those employing 
case-level clustering (17). In contrast to traditional radiomics, which 
necessitates large sample sizes for robust analysis, unsupervised 
machine learning algorithms exhibit reduced dependency on sample 
size. In the realm of medical image analysis, particularly in the 
assessment of muscle composition, there are significant challenges 
associated with acquiring large, high-quality labeled datasets due to 
financial and logistical constraints. Unsupervised learning algorithms 
address this limitation by identifying intrinsic data structures and 
patterns without the need for extensive annotations. This 
methodological approach is especially advantageous for studies on 
muscle composition where labeled data is scarce, as it reduces the 
dependency on annotations, lowers costs, and facilitates tissue 
segmentation and classification. These algorithms are capable of 
autonomously segmenting and classifying muscle tissues, as well as 
performing feature extraction and dimensionality reduction, thereby 
offering significant advantages. K-means clustering has been 
successfully applied to the automatic segmentation of muscle and fat 
(18). Although common unsupervised machine learning algorithms 
like the Gaussian mixture model (GMM) and Otsu thresholding are 
employed, there is limited literature on their application in 
muscle assessment.

This study aims to investigate the utility of unsupervised machine 
learning algorithms, such as Gaussian mixture modeling, K-means 
clustering, and Otsu thresholding, utilizing cohort-level CT and MRI 
data to predict sarcopenia.

Materials and methods

Study population

The study was conducted in accordance with the Declaration of 
Helsinki, and approved by the Institutional Review Board (or Ethics 
Committee) of the First People’s Hospital of Yunnan Province 
(reference number KHLL2023-KY209); date of approval 23 December 
2024. The data are anonymous, and therequirement for informed 
consent was therefore waived. We consecutively reviewed 518 patients 
admitted to our hospital between August 2019 and October 2023, 
including 327 non-sarcopenia patients and 191 sarcopenia patients. 
And its validity was verified using prospectively collected data (65 
non-sarcopenia patients and 36 sarcopenia patients) from our hospital 
between November 2023 and December 2024. Inclusion criteria: (1) 
patients diagnosed with sarcopenia or non-sarcopenia according to 
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the Asian Working Group on Sarcopenia (AWGS) 2019 guidelines: 
Low Appendicular skeletal muscle mass (Dual-energy X-ray 
absorptiometry: male < 7.0 kg/m2, female: < 5.4 kg/m2 or Bioelectrical 
impedance analysis: male < 7.0 kg/m2, female < 5.7 kg/m2) and low 
muscle strength (Handgrip strength: male < 28 kg, female < 18 kg) or 
Low physical performance (6-metre walk: < 1.0 m/s or 5-time chair 
stand test: ≥ 12 s or Short Physical Performance Battery: ≤ 9); (2) age 
between 18 and 90 years old; (3) all patients had routine MRI and CT 
scans of the lumbar spine at our hospital within 14 days before 
treatment. Exclusion criteria: (1) patients who did not undergo lumbar 
non-enhanced CT or axial non-fat-suppressed T2-weighted imaging 
(T2WI) scanning; (2) patients who had undergone surgical treatment 
(pedicle screw fixation, vertebroplasty, and kyphoplasty); (3) poor-
quality CT or MRI images, making evaluation impossible; (4) 
incomplete display of paraspinal muscles at the level of the L3/4 
intervertebral disc. A total of 383 patients were finally enrolled, 
including 257 non-sarcopenia patients and 126 patients with 
sarcopenia. Clinical and laboratory data were retrospectively collected, 

encompassing variables such as age, gender, height, weight, body mass 
index (BMI), occupation, hypertension, diabetes, coronary heart 
disease, smoking history, preoperative red blood cell count, white 
blood cell count, serum albumin (ALB), hemoglobin, neutrophil 
count, neutrophil-to-lymphocyte ratio (NLR), and calcium 
concentration. Figure 1 shows the flow chart of patient inclusion and 
exclusion criteria.

Imaging data acquisition

All retrospective patients MRI scans were performed using 1.5 T 
scanner (MAGNETOM Aera, Siemens Healthineers Ltd., Erlangen, 
Germany) and 1.5 T scanner (Ingenia, Philips, Netherlands) with 6- 
and 8-channel body coils, respectively. All patients underwent routine 
supine lumbar spine MRI scanning with the following sequences: 
lumbar spine sagittal T2/T1-weighted fast spin–echo sequences and 
lumbar intervertebral disc axial T2-weighted fast spin-echo sequences. 

FIGURE 1

Flowchart of the patient collection process.
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The scan parameters are shown in Table 1. CT scans were performed 
using Somatom Definition, Aquilion One, Somatom Force, and 
Somatom Emotion 16 scanners with the following parameters: tube 
voltage = 100–120 kV, tube current = 20–500 mA, collimation 
degree = 40 mm, slice thickness = 3 mm, and pitch = 0.984:1. Some 
parameters were adjusted according to patients’ individual differences. 
All lumbar MRI scans of prospective patients were performed using a 
Siemens Aera 1.5 T MRI scanner (Germany), and all CT scans were 
conducted with a Siemens Somatom Force scanner, following 
standardized imaging protocols with identical scanning parameters as 
previously described.

Image quantitative measurement

To preserve the original information from CT and MRI scans, 
images were stored in a lossless DICOM format. 3D Slicer software 
(version 5.6.2) and Python (version 3.11.4) were used to preprocess 
the images. The Resample Image (BRAINS) module resampled the 
DICOM images to a voxel size of 1 × 1 × 1 mm3, and N4 bias field 
correction reduced nonuniformity caused by different scanner 
magnetic fields. A radiologist with 2  years of experience in 
musculoskeletal imaging utilized MRI axial T2-weighted imaging 
(T2WI) sequences and CT axial images for anatomical segmentation 
at the L3-4 intervertebral disc level. The regions of interest (ROIs) for 
the studied muscles, including the bilateral paraspinal muscles and the 
psoas major muscle, were manually segmented. Prior to training any 
algorithm, a series of preprocessing steps were carried out on the ROIs 
within the training set. In this study, three unsupervised clustering 
methods—Otsu method, K-means, and GMM—were employed to 
distinguish muscle and fat tissues in the paraspinal muscles of the 
lumbar spine. The Otsu method maximized the inter-class variance to 
classify voxel intensity values into two categories and determine the 
optimal intensity threshold. K-means clustering used k-means++ 
initialization and iterative centroid optimization to assign voxels into 
two clusters representing muscle and fat. GMM was initialized based 
on the results of K-means and updated using the Expectation–
Maximization (EM) algorithm. After clustering, we  analyzed the 
intensity distribution to determine the thresholds for muscle and fat 
and generated histograms of intensity values to identify peak positions. 
The Otsu method was then used to optimize these thresholds. Finally, 
the obtained thresholds were applied to classify voxels in the test set 
ROIs. Subsequently, after the clustering process, the intensity 
distributions were analyzed to establish threshold values for muscle 

and fat. Histograms of intensity values were generated to pinpoint 
peak positions, and these thresholds were further refined using 
Otsu’s method.

Based on population-level clustering involves accumulating voxel 
matrices from all patients’ GMM, K-means, and Otsu clustering results 
into a global matrix. Using Python (3.9.12) for consistent clustering, 
we obtain voxel consistency patterns at the population level. Ultimately, 
habitat images for each patient based on population-level clustering are 
obtained. The open-source software FeAture Explorer (FAE, v0.5.16) 
is used to extract habitat parameters, including the volume, percentage, 
and voxel mean across for each habitat.

To evaluate the reliability of intra-observer and inter-observer 
delineation of the ROI, a second independent delineation was 
performed 3 months later on a randomly selected cohort of 50 
patients. This task was executed by two radiologists: one who had 
previously delineated the ROI and another with 15 years of expertise 
in musculoskeletal diagnostics.

Model building

Initially, univariate analysis was employed to compare the 
characteristics of patients with and without sarcopenia within the 
training cohort, aiming to identify parameters with statistically 
significant differences. Subsequently, individual predictors for 
sarcopenia were selected based on univariate logistic regression 
analysis. A predictive model was then developed using multivariate 
logistic regression, incorporating efficient predictive parameters. 
Various models were constructed to predict sarcopenia utilizing three 
unsupervised machine learning algorithms: CT-based GMM, 
K-means, and Otsu models, as well as MRI-based GMM, K-means, 
and Otsu models. Additionally, a separate clinical model was 
developed. A flowchart of the research process is shown in Figure 2.

Statistical analysis

The study population was randomly divided into training and 
retrospective validation sets in a 6:4 ratio using Python (version 
3.12.4). Data were analyzed using SPSS statistical software (version 
26.0 for Windows, IBM) and GraphPad Prism 9.5. A p-value less than 
0.05 was considered statistically significant. A two-way random effects 
model, along with the Intraclass Correlation Coefficient (ICC), was 
utilized to assess the consistency of intra-observer and inter-observer 

TABLE 1  The details of MRI parameters of different sequences.

MRI scanning 
equipment and 
parameters

Repetition time 
(ms)

Echo time 
(ms)

Field of 
view (mm2)

Matrix Slice thickness 
(mm)

Slice gap 
(mm)

Siemens Aera 

1.5 T

Axial T2WI 3,100 94 210 × 210 384 × 288 4 0.4

Sagittal T2WI 3,820 86 400 × 400 384 × 288 4 0.4

Sagittal T1WI 644 9.5 400 × 400 384 × 288 4 0.4

Philips Ingenia 

1.5 T

Axial T2WI 1,181 100 180 × 300 180 × 193 4 0.4

Sagittal T2WI 180 100 180 × 300 200 × 248 4 0.4

Sagittal T1WI 692 9 180 × 300 200 × 248 4 0.4

T2WI, T2-weighted image; T1WI, T1-weighted image.
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measurement outcomes. The normality of the data was evaluated 
using the Kolmogorov–Smirnov test, with continuous variables 
reported as mean ± standard deviation. To compare differences in 
quantitative parameters such as age, height, weight, and BMI between 
the non-sarcopenia and sarcopenia groups in both the training and 
validation datasets, independent sample t-tests (for normally 
distributed data with homogeneity of variance) or Mann–Whitney U 
tests, along with chi-square and Fisher’s exact tests (for categorical 
variables), were employed. Statistically significant indicators were 
identified. In the training dataset, univariate logistic regression 
analysis and multivariate logistic regression with backward stepwise 
selection were conducted to identify independent predictors and to 
develop a predictive model for sarcopenia. The predictive performance 
of the models was evaluated and compared using the area under the 
receiver operating characteristic (ROC) curve (AUC), from which the 
corresponding AUC, optimal cutoff value, sensitivity, specificity, and 
accuracy were derived. The stability of each model was assessed with 
a five-fold cross-validation ROC curve. The calculation formulas for 
part of the data in this study are as follows: Sensitivity: Alias: True 
Positive Rate (TPR). The sensitivity formula is: Sensitivity = TP/
(TP + FN). Specificity: Alias: True Negative Rate (TNR). The 
specificity formula is: Specificity = TN/(TN + FP). The accuracy 
formula is: Accuracy = (TP + TN)/(TP + TN + FP + FN). TP (true 
positive); FP (false positive); FN (false negative); TN (true negative). 
The workflow of this study is illustrated in Supplementary Figure S1.

Results

Clinical parameters

The clinical characteristics of the subjects in the training and 
retrospective validation sets are summarized in Table 2. A total of 383 
patients were divided into a training set (228 patients) and a 
retrospective validation set (155 patients). In the training set, 149 
(65.35%) were non-sarcopenia patients and 79 (34.65%) were 
sarcopenia patients. In the retrospective validation set, there were 108 

non-sarcopenia patients (69.68%) and 47 sarcopenia patients 
(30.32%). The mean age of the sarcopenia group in the training set 
(71.65 ± 7.01 years) was greater than that of the non-sarcopenia group 
(68.13 ± 6.88 years). The statistical analysis revealed no significant 
differences between the non-sarcopenia and sarcopenia groups 
concerning variables such as gender, occupation, hypertension, 
diabetes mellitus, coronary heart disease, pulmonary disease, smoking 
history, preoperative white blood cell count, neutrophil count, NLR, 
and calcium ion concentration, with all p-values exceeding 0.05. 
However, significant differences were observed in age, BMI, 
preoperative RBC, hemoglobin, and serum albumin (all p < 0.05). 
According to univariate and multivariate logistic regression analysis, 
age, BMI, and preoperative serum albumin were effective predictive 
parameters, as shown in Table 3.

Intra- and inter-observer consistency of 
quantitative parameters

The quantitative parameters derived from a single radiologist 
delineating the ROI twice demonstrated strong intra-observer reliability, 
while those obtained from two radiologists independently delineating 
the ROI exhibited robust inter-observer reliability. Specifically, for ROI 
delineation in CT images, the intra-observer and inter-observer ICCs 
were 0.976 and 0.928, respectively. For ROI delineation in MRI images, 
the intra-observer and inter-observer ICCs were 0.994 and 0.945, 
respectively. Detailed results are presented in Supplementary Figure S2.

Image analysis

Within the training set, the differences in mean, volume, and 
percentage of fat, as well as in volume and percentage of muscle, 
between the non-sarcopenia and sarcopenia groups were statistically 
significant (p < 0.05) in the CT-based GMM. Similar significant 
differences were observed in the CT-based Otsu models. The 
differences in mean, and percentage of fat and in volume, and 

FIGURE 2

The overall workflow of this study.
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TABLE 3  Logistic regression analysis of clinical characteristics between the non-sarcopenia patients and the sarcopenia patients in the training group.

Clinical features Univariable LR Multivariable LR

OR (95% CI) p OR (95% CI) p

Age (years) 1.07 (1.03–1.12) 0.001* 1.07 (1.02–1.12) 0.004*

BMI (kg/m2) 0.81 (0.73–0.89) <0.001* 0.82 (0.73–0.91) <0.001*

RBC (1012/L) 0.58 (0.33–1.00) 0.051 1.31 (0.47–3.63) 0.605

HGB (g/L) 0.98 (0.96–1.00) 0.017* 0.99 (0.96–1.02) 0.678

ALB (g/L) 0.82 (0.75–0.90) <0.001* 0.86(0.78–0.96) 0.007*

LR, Logistic regression; OR, odds ratio; CI, confidence interval; NA, not applicable. *p < 0.05.

percentage of muscle between the non-sarcopenia and sarcopenia 
groups were statistically significant (p < 0.05) in the CT-based 
K-means model. In the MRI-based GMM model, differences in mean 
of fat and differences in mean, volume of muscle were statistically 
significant (p < 0.05). Similar significant differences were observed in 
the MRI-based K-means and Otsu models. The analysis results are 

shown in Figure 3 and Supplementary Table 1. Independent predictors 
in the CT-based GMM model was fat mean. In the CT-based K-means 
model, the predictors were fat mean and percentage, and muscle 
volume and percentage. In the CT-based Otsu model, the predictors 
were fat mean and percentage, and muscle volume and percentage. In 
the MRI-based GMM model, the predictor was muscle mean; in the 

TABLE 2  Demographic and clinical characteristics of the training and validation groups.

Clinical 
features

Training group (n = 228) Retrospective validation group 
(n = 155)

Prospective validation group 
(n = 101)

Non- 
sarcopenia 
(n = 149)

Sarcopenia 
(n = 79)

p
Non- 

sarcopenia 
(n = 108)

Sarcopenia 
(n = 47)

p
Non- 

sarcopenia 
(n = 65)

Sarcopenia 
(n = 36)

p

Age (years) 68.13 ± 6.88 71.65 ± 7.01 <0.001* 67.20 ± 5.81 70.77 ± 5.90 0.001* 67.43 ± 5.91 71.28 ± 7.22 0.015*

Gender (Female/

Male)
88/61 45/34 0.760 60/48

35/12 0.026*
34/31

24/12 0.140

Career

 � Worker 23 7 0.681 35 7 0.077 13 12 0.011*

 � Retired 22 13 14 12 11 1

 � Farmer 27 13 32 12 27 14

 � Freelance 3 2 5 2 12 3

 � Others 74 44 22 14 2 6

Hypertension (yes/

no)

74/75 37/42 0.622 42/66 14/33 0.278 23/42 20/16 0.050

Diabetes (yes/no) 21/128 11/68 0.972 18/90 7/40 0.783 6/59 2/34 0.787

Smoking (yes/no) 31/118 20/59 0.437 18/90 5/42 0.332 18/47 6/30 0.212

Pulmonary Disease 

(yes/no)

10/139 10/69 0.131 7/101 2/45 0.864 1/64 1/35 1.000

Cardiac Disease 

(yes/no)

15/134 14/65 0.099 11/97 4/43 0.977 1/64 2/34 0.598

BMI (kg/m2) 24.99 ± 3.40 22.83 ± 3.18 <0.001* 22.11 ± 6.62 23.41 ± 3.03 0.963 23.99 ± 5.36 22.78 ± 3.53 0.014*

WBC (109/L) 6.23 ± 1.83 6.27 ± 2.06 0.992 6.13 ± 2.06 5.91 ± 1.89 0.664 6.00±1.72 7.00 ± 2.75 0.128

NEUT (109/L) 3.65 ± 1.57 3.83 ± 1.57 0.451 3.63 ± 1.72 3.58 ± 1.52 0.958 3.58 ± 1.38 4.28 ± 2.43 0.236

NLR 1.84 ± 0.55 1.80 ± 0.85 0.072 2.02 ± 1.22 2.24 ± 1.02 0.231 1.76 ± 0.30 1.76 ± 0.33 0.999

RBC (1012/L) 4.50 ± 0.54 4.36 ± 0.48 0.009* 4.49 ± 0.49 4.34 ± 0.54 0.098 4.49 ± 0.50 4.26 ± 0.45 0.025*

Calcium (mmol/L) 2.15 ± 0.12 2.13 ± 0.10 0.545 4.49 ± 0.49 4.34 ± 0.54 0.167 2.15 ± 0.09 2.13 ± 0.11 0.915

Hemoglobin (g/L) 136.76 ± 18.03 130.77 ± 16.31 0.009* 135.79 ± 15.14 128.85 ± 16.31 0.011* 138.89 ± 16.14 131.00 ± 12.66 0.013*

Albumin (g/L) 37.89 ± 3.09 35.90 ± 3.32 <0.001* 39.25 ± 3.45 37.48 ± 2.94 0.003* 38.46 ± 3.57 37.66 ± 3.78 0.476

Data are mean  ±  standard deviation; BMI, body mass index; WBC, white blood cell; NEUT, neutrophil; NLR, Neutrophil-to-Lymphocyte; RBC, red blood cell. *p < 0.05.
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FIGURE 3

(A–L) Bar graphs of MRI and CT characteristics derived from different models in the non-sarcopenia patients and the sarcopenia patients in the training 
group. A red asterisk indicate statistical significance difference.
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TABLE 4  Logistic regression analysis of different imaging models between non-sarcopenia patients and the sarcopenia patients in the training group.

Different models Univariable LR Multivariable LR

OR (95% CI) p OR (95% CI) p

GMM CT_fat_Mean 0.81 (0.75–0.89) <0.001* 0.81 (0.74–0.89) <0.001*

CT_fat_Volume 1.00 (1.00–1.00) <0.001* 1.00 (1.00–1.00) 0.625

CT_muscle_Volume 1.00 (1.00–1.00) 0.136 NA NA

CT_fat_Percent 0.00 (0.00–0.00) <0.001* 3.58 (0.00–116816.27) 0.810

CT_muscle_Percent 7033.60 (423.61–116785.08) <0.001* 3.58 (0.00–116816.27) 0.810

Kmeans CT_fat_Mean 0.94 (0.91–0.97) <0.001* 0.89 (0.84–0.94) <0.001*

CT_muscle_Volume 1.00 (1.00–1.00) 0.001* 1.00 (1.00–1.00) 0.003*

CT_fat_Percent 17.70(1.59–197.11) 0.019* 0.00 (0.00–0.00) <0.001*

CT_muscle_Percent 0.06 (0.01–0.63) 0.019* 40846.54 (113.67–14677590.73) <0.001*

Otsu CT_fat_Mean 1.08 (1.05–1.11) <0.001* 1.74 (1.43–2.10) <0.001*

CT_fat_Volume 1.00 (1.00–1.00) <0.001* 1.00 (1.00–1.00) 0.125

CT_muscle_Volume 1.00 (1.00–1.00) <0.001* 1.00 (1.00–1.00) 0.040*

CT_fat_Percent 15150.84 (755.29–303920.42) <0.001* 6.58 (5.64–7.68) <0.001*

CT_muscle_Percent 0.00 (0.00–0.00) <0.001* 0.00 (0.00–0.00) <0.001*

GMM MRI_fat_Mean 1.00 (1.00–1.00) 0.005* 1.00 (1.00–1.00) 0.745

MRI_muscle_Mean 1.00 (1.00–1.01) 0.002* 1.01 (1.00–1.02) 0.015*

MRI_muscle_Volume 1.00 (1.00–1.00) 0.038* 1.00 (1.00–1.00) 0.478

Kmeans MRI_fat_Mean 1.00 (1.00–1.00) 0.430 NA NA

MRI_muscle_Mean 1.00 (1.00–1.01) 0.021* 1.00 (1.00–1.00) 0.922

MRI_muscle_Volume 1.00 (1.00–1.00) 0.001* 1.00 (1.00–1.00) 0.010*

Otsu MRI_fat_Mean 1.00 (1.00–1.00) 0.322 NA NA

MRI_muscle_Mean 1.00 (1.00–1.01) 0.010* 1.00 (1.00–1.00) 0.458

MRI_muscle_Volume 1.00 (1.00–1.00) 0.002* 1.00 (1.00–1.00) 0.044*

GMM, Gaussian mixture model. *p < 0.05.

MRI-based K-means model, it was muscle volume; and in the 
MRI-based Otsu model, it was muscle volume, as shown in Table 4.

The performance of different models and 
cross-validation on the training data set

Table 5 presents the comparison of the diagnostic efficiency of 
different models. In the training set, the CT-based GMM model 
achieved the highest AUC values (AUC = 0.990), followed by the 
CT-based Otsu model (AUC = 0.986), the clinical model 
(AUC = 0.764), the CT-based K-means model (AUC = 0.727), the 
MRI-based GMM model (AUC = 0.697), the MRI-based K-means 
model (AUC = 0.649), and the MRI-based Otsu model 
(AUC = 0.638). In the retrospective validation group, the diagnostic 
efficiency from highest to lowest was: CT-based Otsu model 
(AUC = 0.958), CT-based GMM model (AUC = 0.903), the CT-based 
K-means model (AUC = 0.772) clinical model (AUC = 0.719), 
MRI-based K-means model (AUC = 0.537), MRI-based GMM model 
(AUC = 0.537), and MRI-based Otsu model (AUC = 0.528). In the 
prospective validation cohort, the CT-based Otsu model 
demonstrated the highest diagnostic efficiency (AUC = 0.819). 
Figure  4 shows a schematic of the segmentation for the 

better-performing models, and Figure 5 presents the ROC curves for 
model comparison. Using five-fold cross-validation on the training 
set, the CT-based GMM model demonstrated the best stability 
(average AUC = 0.99), followed by the CT-based Otsu model (average 
AUC = 0.94). Detailed ROC curves and average AUC values for the 
five-fold cross-validation are shown in Supplementary Figures S3, S4.

Discussion

In this study, we introduce an innovative unsupervised learning 
algorithm designed for the quantitative assessment of paraspinal 
muscle components utilizing CT and MR imaging modalities. Our 
findings indicate that the Otsu and GMM algorithms, when applied 
to CT scans, exhibit superior efficacy in predicting sarcopenia. 
Through logistic regression analysis, we determined that age, BMI, 
and serum albumin levels are significantly associated with sarcopenia. 
It is well-documented that the prevalence of sarcopenia escalates with 
advancing age, and its implications for public health are intensifying 
due to the aging population (19). BMI is a critical factor in sarcopenia 
(20). BMI emerges as a pivotal factor in the context of sarcopenia, as 
weight gain and obesity can expedite the onset and progression of this 
condition, either directly or indirectly. In individuals with obesity, the 

https://doi.org/10.3389/fpubh.2025.1649400
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zuo et al.� 10.3389/fpubh.2025.1649400

Frontiers in Public Health 09 frontiersin.org

accumulation of pro-inflammatory macrophages and other immune 
cells within adipose tissue, coupled with the dysregulated secretion of 
various adipokines and cytokines, fosters a chronic pro-inflammatory 
state (21, 22). Furthermore, the excessive secretion from adipose tissue 
and the compromised lipid storage capacity observed in obese 
individuals contribute to ectopic lipid deposition within skeletal 
muscle. Intramuscular lipids contribute to mitochondrial dysfunction 
and enhance the secretion of specific pro-inflammatory myokines, 
thereby inducing muscle dysfunction (23). It is hypothesized that 
individuals with higher adiposity may have increased protein intake, 
which serves as a protective factor against sarcopenia (24). 
Consequently, maintaining a healthy weight is essential for preserving 
muscle mass and strength in older adults. Serum albumin 
concentration is a valuable indicator of an individual’s nutritional 
status, with lower levels signifying reduced protein reserves and the 
initiation of catabolic processes that lead to muscle degradation (25–
27). Elevated free cortisol levels have been observed in patients with 
hypoalbuminemia, further promoting muscle breakdown, particularly 
in inactive individuals. Albumin is capable of activating the 
phosphatidylinositol 3-kinase pathway, which mediates muscle. This 
study used measurement of muscle mass at the level of the L3 because 
the muscle mass at the L3 vertebral level is recognized as a pivotal 
indicator for evaluating total body muscle mass. The cross-sectional 
area (CSA) at this level demonstrates a robust correlation with overall 
body muscle mass and serves as an effective reflection of the systemic 
musculature’s health status. Numerous clinical guidelines and studies 

have identified the skeletal muscle cross-sectional area (SMCSA) at 
the L3 level as a critical metric for assessing sarcopenia (28).

In our study, the predictive performance of CT-based models was 
superior to that of MRI-based models. CT has emerged as the most 
widely utilized cross-sectional imaging modality globally. Fron et al. 
(10) demonstrated a high level of concordance in imaging-derived 
biomarkers of muscle quantity and mass between CT and MRI in 
healthy subjects, indicating that both modalities can be  used 
interchangeably for skeletal muscle assessment. The muscle area 
calculated from CT scans exhibits a strong correlation with total body 
muscle mass and is regarded as the gold standard for body composition 
analysis and the diagnosis of abnormal body composition phenotypes, 
particularly in malnourished patients (29–31). Tandon et al. observed 
that skeletal muscle area measurements obtained directly from CT and 
MRI tend to be systematically larger in CT than in MRI (32, 33). CT 
is capable of accurately quantifying muscle quality and identifying 
intramuscular fat, making it suitable for assessing muscle steatosis 
(34). Quantitative tissue measurements from CT are highly 
reproducible and show a strong correlation with clinical outcomes 
(35). CT offers advantages in the staging and follow-up of cancer and 
other diseases, rendering it ideal for the opportunistic evaluation of 
sarcopenia without the need for additional tests. Consequently, CT is 
extensively utilized in research across several retrospective and 
prospective analyses (36).

MRI holds promise for the assessment of sarcopenia; however, its 
application is constrained by high costs, extended scanning and 

TABLE 5  Comparison of AUCs for different models in the training group and the validation group.

Groups Models AUC (95% CI) Sensitivity Specificity Youden index Cut-off 
values

Training group Clinical model 0.764 (0.699–0.828) 57.0% 84.6% 0.416 0.429

GMM_CT 0.990 (0.975–1.000) 96.2% 99.3% 0.955 0.236

Kmeans_CT 0.727 (0.656–0.797) 50.6% 87.9% 0.385 0.484

Otsu_CT 0.986 (0.975–0.997) 93.7% 95.3% 0.890 0.438

GMM_MRI 0.697 (0.616–0.779) 53.2% 94.0% 0.472 0.432

Kmeans_MRI 0.649 (0.574–0.724) 77.2% 51.7% 0.289 0.309

Otsu_MRI 0.638 (0.562–0.713) 77.2% 51.0% 0.282 0.313

Retrospective 

validation group

Clinical model 0.719 (0.639–0.800) 80.9% 57.4% 0.383 0.265

GMM_CT 0.903 (0.833–0.972) 83.0% 99.1% 0.821 0.368

Kmeans_CT 0.772 (0.688–0.856) 63.8% 83.3% 0.471 0.400

Otsu_CT 0.958 (0.927–0.990) 85.1% 97.2% 0.823 0.522

GMM_MRI 0.537 (0.424–0.650) 89.8% 36.2% 0.260 0.274

Kmeans_MRI 0.537 (0.442–0.633) 72.3% 41.7% 0.140 0.290

Otsu_MRI 0.528 (0.432–0.623) 72.3% 40.7% 0.130 0.292

Prospective 

validation group

Clinical model 0.675 (0.575–0.765) 83.33% 55.38% 0.387 0.315

GMM_CT 0.817 (0.727–0.887) 83.33% 73.85% 0.572 0.370

Kmeans_CT 0.801 (0.710–0.874) 66.67% 89.23% 0.559 0.365

Otsu_CT 0.819 (0.730–0.889) 80.56% 72.31% 0.529 0.391

GMM_MRI 0.550 (0.448–0.650) 75.00% 43.08% 0.181 0.349

Kmeans_MRI 0.693 (0.594–0.781) 58.33% 75.38% 0.337 0.402

Otsu_MRI 0.695 (0.596–0.783) 83.33% 50.77% 0.341 0.323

AUC, area under the curve.
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FIGURE 4

Exemplary slices showing the differentiation between muscle (blue) and fat (red) obtained with the CT-based Gaussian Mixture Model (B,F), CT-based 
Otsu thresholding method (C,G) and MRI-based Otsu thresholding method (D,H), (A–D): A 62-year-old male with sarcopenia; (E–H): an 66-year-old 
female without sarcopenia. The AUC of the CT-based Gaussian Mixture Model and the Otsu model for predicting sarcopenia was 0.98 and 0.93, 
respectively. The AUC of the Gaussian mixture model and the Otsu model for predicting sarcopenia was 0.990 and 0.986, respectively.

FIGURE 5

Receiver operator characteristic (ROC) curves of different models in the training group (A), the retrospective validation group (B) and the prospective 
validation group (C).

post-processing durations, operational complexity, and the absence of 
standardized protocols. The quality of MRI imaging is highly 
contingent upon the configuration of scanning parameters. 
Inappropriate selection of parameters, such as echo time (TE), 
repetition time (TR), may lead to suboptimal image contrast or 
increased noise, thus compromising the clear visualization of soft 
tissues. In addition, this study segmented muscle and fat in the 
paraspinal muscles on T2WI and CT. The soft tissue contrast of MRI 
is not as clear as that of CT, so its predictive performance for 
sarcopenia is lower than that of CT. Consequently, its clinical use is 
largely confined to scenarios involving disease treatment or follow-up 
(37). The Otsu automatic thresholding algorithm, which segments 
images into foreground and background by optimizing inter-class 
variance based on the gray-level histogram, has been employed by Rui 
et al. to segment muscle tissue and quantify the fatty content of the 
gluteus maximus. This method yielded Dice Similarity Coefficients 

(DSCs) of 0.930 and 0.873, with fat ratio measurements aligning 
closely with those of radiologists, thereby demonstrating robust 
segmentation performance and potential for further muscle 
assessment (38, 39). In our study, the Otsu thresholding technique 
exhibited strong predictive capabilities, effectively delineating muscle 
tissue contours and features pertinent to sarcopenia prediction.

Additionally, the GMM, a renowned segmentation method 
grounded in mixture models, provides flexibility and efficacy for 
multivariate data analysis, and is frequently employed by researchers 
to address critical challenges in image segmentation. Ryan et al. (40) 
employed the GMM for the segmentation of abdominal organs, 
achieving DSC values ranging from 0.7 to 0.9, thereby establishing a 
benchmark for large-scale automatic abdominal segmentation. In our 
research, the GMM also exhibited superior predictive efficacy, 
suggesting that among the models evaluated, the GMM holds greater 
utility for assessing sarcopenia. This phenomenon may be attributed 
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to the GMM’s capability to partition data into distinct Gaussian 
distributions by identifying these distributions within the dataset, thus 
enabling the model to adapt to real-world data with diverse cluster 
structures (41).

Conversely, K-means clustering, a fundamental clustering technique 
known for its straightforward structure, rapid segmentation, and 
versatility, was found by Thomas et al. (13) to effectively quantify total 
muscle volume compartments in sarcopenia, successfully distinguishing 
between contractile and non-contractile tissue components. However, in 
our study, the performance of K-means was suboptimal, potentially due 
to challenges in determining initial cluster centers and the slow 
convergence speed when processing large-scale images (42).

This study has some limitations. Firstly, this study is a single-
center retrospective analysis with a limited sample size and lacks 
external validation. Although we  have employed five-fold cross-
validation to verify our findings, future research should involve 
multi-center studies with larger sample sizes. Secondly, despite 
standardizing image processing, variations in MRI scanning 
parameters, such as slice thickness, exist among different patients. 
The impact of these variations on our analysis remains uncertain, and 
we intend to conduct prospective validation in the future. Thirdly, the 
ROIs in this study were manually delineated by a single operator. 
While manual sketching is considered the gold standard in research, 
it is time-consuming and susceptible to the operator’s experience. 
Future studies should explore more accurate automatic or semi-
automatic methods for lesion delineation.

Conclusion

Unsupervised clustering algorithms based on CT and MRI have 
demonstrated effectiveness in predicting sarcopenia, with the CT-based 
Otsu and GMM exhibiting superior accuracy, achieving an AUC 
greater than 0.95. This model can be widely used in primary healthcare 
settings or developing regions with aging populations and can assist 
healthcare providers in treating patients with early-stage sarcopenia. 
Our research underscores the importance of imaging modalities (CT 
and MRI) in diagnosing sarcopenia. Integrating these evaluations with 
clinical symptoms and physical exams can improve diagnostic accuracy 
and patient care. For prevention, lifestyle interventions are crucial. 
Healthcare professionals should promote regular exercise, balanced 
diets, and healthy habits through comprehensive health education. 
Implementing these insights in healthcare policies and practices can 
enhance outcomes for sarcopenia patients, reduce healthcare burdens, 
and improve quality of life for the aging population.
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