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Over the past three years, the novel coronavirus (COVID-19) outbreak has caused 
millions of unexpected deaths worldwide. Ghana, like many other countries, recorded 
numerous COVID-19 deaths. The number of deaths from the commencement of 
the crisis formed a time series. This study examines the effect of the COVID-19 
pandemic on the number of deaths in Ghana using intervention analysis on time 
series data. Initially, we generated an ARIMA (3, 1, 0) model to examine monthly 
death data in Ghana from January 2018 to December 2022, identifying March 
2020 as the critical intervention point. March 2020 marked the commencement 
of the COVID-19 pandemic in Ghana. Secondly, we employed the ARIMA model 
to predict the post-pandemic death trend, and ultimately, we found no substantial 
discrepancy between the estimated and observed death count. Consequently, the 
analysis concluded that, despite a surge in global deaths, the estimated model 
indicated that the pandemic’s emergence did not result in a significant change 
in the number of deaths in Ghana beyond the anticipated figures based on pre-
pandemic patterns.
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1 Introduction

There is no doubt that every crisis poses a threat to life, regardless of its severity and the 
population affected. This threat was evident during the outbreak of the novel coronavirus 
(COVID-19) that caused millions of unexpected deaths (1). The death count and aggregates 
across countries generated a time series for the global community’s consideration. While it is 
assumed that a person’s health is relatively unimpaired until it fails, (2) projected that 
COVID-19 patients have a higher probability of death in the first two weeks, which then 
decreases after two weeks, then declines after two weeks. A pattern that adds to the 
unpredictability of the disease. Then declines after two weeks. A pattern that adds to the 
unpredictability of the disease. The drop is not only experienced in the number of deaths but 
also in the monthly peaks of COVID-19 new cases. These dynamics underscore the profound 
impact of the pandemic, both in terms of its unprecedented mortality burden and the valuable 
time-series data it produced for statistical analysis. Against this background, the present study 
investigates the effect of the COVID-19 pandemic on mortality levels in Ghana, employing 
time-series intervention analysis to assess changes over time.
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The COVID-19 pandemic has caused profound and sustained 
impacts on global mortality, health systems, and socio-economic 
stability. For instance, healthcare utilization patterns for 
non-COVID-19 care were considerably impacted by a confluence of 
patient- and institution-driven factors. Patient fear of contracting the 
virus led many individuals to delay or avoid seeking medical care, 
which, as (3) highlighted, could have mental and physical health 
consequences. Healthcare institutions restructured their services, as 
noted by (4, 5), by cancelling elective procedures and appointments, 
and imposing restrictions that created logistical barriers for patients. 
A measure that created a disproportionate impact on different care 
types and populations (6). For example, the management of chronic 
diseases was significantly disrupted in Korea, while (7) observed an 
adverse effect on people with disabilities. A World Health Organization 
(WHO) survey referenced by (8) further revealed that services for 
non-communicable diseases were partially or completely disrupted in 
many countries, with a higher percentage of disruptions occurring in 
low- and middle-income nations. Collectively, these factors 
contributed to a higher risk of complications and death, as (9) pointed 
out, demonstrating how the pandemic’s influence on healthcare 
extended far beyond COVID-19 cases.

Accurate mortality forecasting is crucial for anticipating 
healthcare demands, guiding policy responses, and evaluating the 
indirect effects of the pandemic on population health. Globally, 
statistical and computational models, including autoregressive 
integrated moving average (ARIMA) methods, have been widely 
applied to forecast mortality and morbidity trends, offering valuable 
insights for short- to medium-term public health planning (10–12).

In Africa, while COVID-19’s direct mortality burden has been 
significant in several African countries, indirect effects such as 
healthcare disruption, reduced care-seeking, and socio-economic 
stressors have also influenced overall mortality patterns. Forecasting 
in such contexts requires models that can work reliably with the 
available data while capturing both pandemic-related and background 
mortality trends (13). employed the generalized extreme value 
distribution to model the monthly maximum of daily new cases from 
Benin, Burkina  Faso, Cabo  Verde, Côte d’Ivoire, Gambia, Ghana, 
Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, 
Senegal, Sierra Leone, and Togo. The authors identified significant 
declines in the monthly maximums of daily new cases in ten of the 
sixteen countries: Ghana, Benin, Cabo Verde, Côte d’Ivoire, Guinea, 
Mauritania, Nigeria, Sierra Leone, Mali, and Senegal (14), showed that 
ARIMA could reliably forecast daily confirmed and death cases of 
COVID-19 in Nigeria, highlighting its applicability even in settings 
with limited resources. Here, “a COVID-19 death is defined for 
surveillance purposes as a death resulting from a clinically compatible 
illness in a probable or confirmed COVID-19 case, unless there is a 
clear alternative cause of death that cannot be related to COVID-19 
disease” (15).

Indeed, failing health is inevitable as it remains constant over 
some recovery period; otherwise, death ensues (16). Research has 
proposed various scenarios that simulate the likelihood of deaths at 
any particular moment based on historical data. The Weibull 
distribution, according to (17), provides an optimal failure rate during 
surgical procedures, but the rate reduces as the person responds to 
treatment and the condition improves over time. The exponential 
distribution proffers a declining failure rate for a healthy individual 
over a designated period (18, 19), propose that the exponential 

distribution and the Weibull distribution may be inapplicable to rare 
cases, such as the failure rate of COVID-19 patients. Their proposal 
was based on the virus’s irregular failure rate and, therefore, may 
require a model with a non-monotonic failure rate. Following Farooq 
et  al.’s assertion, several studies have commenced modelling the 
uncertainty surrounding the failure rate of the COVID-19 infection 
(20), predicted intertemporal mortality for COVID-19 patients 
utilising an exponential-like approach (21), employed a novel flexible 
extended Weibull model to estimate the overall number of COVID-19 
fatalities, while Farooq et  al. in 2022 applied the new flexible 
Weibull model.

In contrast to the distributional approach in the studies of 
COVID-19 deaths, ARIMA models have proven effective in 
forecasting COVID-19 deaths, as demonstrated by several studies. 
Researchers such as (22, 23) have demonstrated the accuracy of 
autoregressive integrated moving averages (ARIMA) in predicting 
daily and weekly case and death counts, respectively. Studies by (24, 
25) highlight the use of time series metrics like mean absolute 
percentage error (MAPE), mean absolute error (MAE), mean absolute 
deviation (MAD), mean squared error (MSE), root mean squared 
error (RMSE), Akaike information criterion (AIC), Bayesian 
information criterion (BIC), autocorrelation function (ACF) and 
population attributable fraction (PAF) graphs to validate ARIMA’s 
suitability, often outperforming alternative methods like machine 
learning, neural network model, multiple regression, susceptible-
exposed-infectious-recovered (SEIR) models (26), further 
substantiated ARIMA’s reliability in predicting cumulative COVID-19 
deaths across heavily impacted nations, consistently surpassing 
benchmark forecasting techniques and indicating a general upward 
trend in fatalities. These findings underscore the value of ARIMA in 
providing accurate short-term forecasts for COVID-19 
death trajectories.

Available statistics through research reveal remarkable figures 
regarding fatalities due to COVID-19 infection. The WHO reported a 
total of 6,987,831 COVID-19 deaths worldwide as of November 19, 
2023. Among the total, the Americas accounted for the most 
considerable percentage of deaths, at 43%, followed by Europe at 32%. 
Africa recorded the lowest percentage of COVID-19 deaths at 3%. A 
study conducted by the (27) indicated that COVID-19 death rates for 
individuals aged 35 to 64 and those aged 65 and beyond are 1.3 times 
and 2.5 times greater, respectively, in the unvaccinated cohort 
compared to those who have received at least one booster dose (28), 
also discovered that deaths associated with COVID-19 were prevalent 
in Zambia, and the percentage of such deaths escalated with advancing 
age (29). South Africa documented around 20,000 fatalities and a case 
fatality rate of 2.7%, as reported by (30, 31). As of July 2, 2023, Ghana 
recorded 1,462 COVID-19 deaths (1). The puzzle in these statistics is 
the low number of COVID-19 death cases recorded in African 
nations, which have invariably larger population densities.

Literature identifies three factors that contribute to the low 
COVID-19 deaths in Africa. Mwananyanda et al. suggest that the low 
deaths may derive from inadequate data on COVID-19 deaths, which 
is attributed to exorbitant expenses associated with disease surveillance 
systems. In addition, the perception is that the younger population in 
African nations has developed herd immunity to COVID-19 due to 
their earlier exposure to the Ebola virus (32, 33). Finally (34, 35), 
corroborated that certain live attenuated vaccines (BCG vaccine, oral 
polio vaccine, and measles vaccines) elicit strong non-specific innate 
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immune responses that also confer protection against COVID-19 in 
the African population. Despite the low number of deaths in Africa, 
the impact of COVID-19 deaths has been profound. According to (2, 
36), the death toll in several African countries incurred economic 
costs due to the predominance of trained and capable individuals 
among the victims. The situation created a skills deficit for the 
economy and resulted in futile medical treatment expenses for the 
victims’ survival.

Given this circumstance, time series intervention analysis of 
COVID-19 deaths appears to provide valuable insights for 
governments and the global community in forecasting and controlling 
COVID-19 fatalities. By evaluating the impact of specific safety 
protocols, such as social distancing and behavior change campaigns, 
governments can formulate effective strategies for pandemic 
management (37), demonstrated this through segmented regression 
analysis in South Korea, showing an apparent decrease in COVID-19 
cases during periods of strict social distancing, followed by an increase 
in policy relaxation. This study, along with findings from (38, 39), 
corroborates the effectiveness of social distancing in reducing 
infectious disease transmission during outbreaks, highlighting its 
crucial role in mitigating hospital admissions and controlling the 
spread of the pandemic. The focus of time series intervention analysis 
of COVID-19 deaths has been given little attention in the literature.

Despite a growing body of literature on COVID-19 modelling, 
most of the studies (40–44) predominantly concentrated on disease 
transmission, mitigation strategies, social, and economic impact 
rather than the quantification and distribution of deaths experienced 
during the crisis period. Various statistical and mathematical 
techniques were employed to conduct a range of time series 
intervention analyses. For instance (40), developed a SEIQHRS 
(susceptible-exposed-infectious-quarantine-hospitalized-recovered-
susceptible) model that predicts the trajectory of the COVID-19 
pandemic, aiding in the formulation of an effective control strategy for 
COVID-19 in Ghana. Their findings suggested that COVID-19 deaths 
decreased with the introduction of safety protocols. However, the 
mitigation measures studied independently could not support a 
reduction in the reproductive number (44), employed a generalized 
linear time-series regression model to assess the effectiveness of the 
government’s decision to reopen the country’s borders during the 
spread of COVID-19. The study concluded that the mitigation 
strategies were somewhat effective. Conversely (41), observed an 
erratic pattern in the transmission of the disease as well as death cases, 
irrespective of the interventions implemented. Therefore, 
understanding and predicting monthly mortality trends is therefore 
critical for resource allocation, especially during public health crises 
such as the COVID-19 pandemic.

Most Ghanaian COVID-19 modelling studies reviewed focus on 
case counts or short-term epidemic projections, often omitting the 
indirect mortality effects and the broader all-cause perspective. In this 
paper, we aim to examine the impact of the COVID-19 pandemic, 
applying time series intervention analysis to provide evidence of a 
change in trend in the death count for Ghana. Consequently, we wish 
to test the hypothesis that the COVID-19 pandemic significantly 
increased the total number of deaths in Ghana. According to (45), 
intervention refers to an event, procedure, or process that alters the 
values of a time series. We  further illustrate the incidence of the 
COVID-19 pandemic as an intervention by a time series analysis, 

employing the total death count data from Ghana. The novelty of our 
approach lies in combining COVID-19 and non-COVID-19 deaths 
into a single all-cause mortality forecast, enabling a comprehensive 
assessment of the pandemic’s total mortality impact in Ghana. By 
leveraging routinely collected civil registration data, this study 
demonstrates a pragmatic, locally relevant application of time-series 
forecasting to inform national public health planning.

2 Methods

The study employed the Interrupted Time Series (ITS) design, a 
quasi-experimental approach, using monthly all-cause mortality data 
to develop and validate an ARIMA model. This design is ideal for 
evaluating the impact of a naturally occurring event, or “intervention,” 
on a trend over time (45). The analysis covered the period from 
January 2018 to December 2022, encompassing both pre-pandemic 
and pandemic periods. The monthly total death time series data for 
the study were obtained from the Ghana’s Birth and Death Registry 
(BDR). The BDR is the official governmental body responsible for 
compiling birth and death statistics in Ghana. The Registry compiles 
registrations from across all regions. The Registry operates under the 
Act 1027 of 2020, within the Ministry of Local Government and Rural 
Development of Ghana and adopt the District Health Information 
Management System (DHIMS2) to support public health reporting. 
Monthly death counts were extracted from aggregated administrative 
records and anonymised prior to analysis. Data underwent standard 
completeness and consistency checks as part of routine 
registry procedures.

Modelling all-cause mortality without distinguishing between 
COVID-19 and non-COVID-19 fatalities is justified by various valid 
methodological and practical considerations. This data are generally 
more timely and reliable than cause-specific data, which often 
encounter delays or misclassification during crisis periods, like as the 
COVID-19 pandemic (46). The aggregated data types have been 
extensively used for real-time forecasting and excess mortality 
estimation in several scenarios, including during COVID-19 surges; 
these methodologies are well established in epidemiological modelling 
(47). Furthermore, excess mortality frameworks, supported by 
organisations such as the WHO, acknowledge that integrating both 
direct and indirect pandemic-related deaths with other mortality 
statistics is essential for capturing the pandemic’s full impact, which 
cause-specific data may underrepresent (48). Collecting all-cause data 
without differentiating the cause of death is a reasonable and 
conventional approach for projecting population-level mortality, 
particularly when timely and comprehensive insights are necessary.

The emergence of COVID-19 pandemic variants, such as Delta 
and Omicron, with differing transmissibility and mortality profiles, is 
recognized as having significantly influenced the epidemic dynamics. 
However, the study’s objective was to model aggregate mortality 
statistics rather than variant-specific epidemiological behavior. 
According to (47), when reliable, variant-stratified mortality data for 
the entire forecasting period are unavailable across reporting systems, 
making direct inclusion of variant variables infeasible without 
introducing significant bias. In the case of this study, the effect of 
emerging variants is indirectly captured in the historical mortality 
data used for model training, which inherently captures the combined 
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impact of transmission dynamics, healthcare system responses, and 
changes in mortality risk over time. This approach, while not variant-
specific, has been widely applied in mortality forecasting during 
evolving pandemic phases (46).

As a result, the data for the study covers the period from January 
2018 to December 2022. Data from January 2018 to March 2020 was 
utilized to construct the pre-intervention time series model. 
Consequently, the forecast made beyond March 2020 constitutes an 
out-of-sample prediction. In this context, the pre-intervention period 
refers to all data points before March 2020, representing baseline 
mortality trends unaffected by the COVID-19 pandemic, while the 
post-intervention period covers data from March 2020 onward, 
reflecting the pandemic’s potential impact. The pre-intervention data 
are used to estimate the model parameters, and the fitted model is 
then applied to predict mortality in the post-intervention period, 
enabling assessment of any deviations attributable to the pandemic. 
Literature (45, 49, 50) provides that a reasonable ARIMA model 
requires at least 40 to 50 observations. This study satisfies this 
condition as we used 60 data points for our analysis. Table 1 presents 
the total monthly deaths in Ghana from January 2018 to December 
2022 as obtained from Ghana’s BDR.

The casual visualization of the data failed to adequately convey the 
impact of COVID-19 on the death count in Ghana. Therefore, 
we proceeded to find statistical techniques that can provide a suitable 
evaluation of the pandemic’s effect on the death count in Ghana. One 
such technique is the autoregressive integrated moving averages 
(ARIMA) (51), have documented the usefulness of ARIMA modelling 
in assessing health interventions. According to (52), the ARIMA model 
is advantageous for time series data that demonstrates a non-linear 
trend, probable seasonality, or periodicity, rendering it highly adaptable. 
In assessing the performance of the ARIMA model (53), deployed 
autoregressive (AR), moving average (MA), autoregressive moving 
average (ARMA), and ARIMA models to forecast the spread of 
COVID-19  in Saudi  Arabia. The performance of each model was 
assessed using the RMSE, MAE, coefficient of determination (R2), 
MAPE, and root mean squared relative error (RMSRE) performance 
metrics. Alzahrani et al. assert that the ARIMA model outperforms 
other models by achieving the lowest RMSE, MAPE, and RMSRE values, 
along with the highest R2 value (53). Time series intervention analysis 
has been employed to address various problems involving time series 
data (45, 54–58). The COVID-19 pandemic has also been studied from 
various perspectives (59, 60). However, none of these articles applies 
ARIMA with intervention analysis to assess the impact of the COVID-19 
pandemic on the number of deaths.

This study examines a specific scenario where the input consists 
of an indicator variable representing the occurrence and impact of the 

COVID-19 pandemic on the number of deaths in Ghana. The 
COVID-19 pandemic serves as the identified single intervention event 
occurring within the time under study. We posit that an intervention 
has occurred; therefore, we  examine whether evidence exists 
indicating that the anticipated change in the time series has taken 
place. Additionally, we enquire about the projected magnitude of this 
alteration. We  examine the three phases of ARIMA modelling to 
identify the order of differencing. This initial phase employs the 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to generate a 
stationary time series model for identification purposes. All statistical 
computations, probability estimations, and graphical analyses were 
performed using the RStudio statistical software version 2023.12.0.

Secondly, we provisionally diagnose and identify the parameters 
of the autoregressive and moving-average components of the ARIMA 
model by applying the autocorrelation function (ACF). Thirdly, 
we assess the residuals to evaluate the model’s fit to the data using the 
ACF of the residuals.

2.1 Time series intervention analysis

Suppose that at time t = T (where T is known), there has been an 
intervention in a time series. By intervention, we  refer to a 
modification of a procedure, law, policy, or other measures aimed at 
altering the values of the series .ty  Intervention analysis in time series 
involves examining alterations in the mean level of a series following 
an intervention, assuming that the same ARIMA structure applies 
both before and after the intervention. The ARIMA (p, d, q) model, 
with no intervention, is written as

	 φ φ θ ε θ ε ε′ ′ ′
− − − −= +…+ + +…+ +1 1 1 1 ,t t p t p t q t q ty y y 	 (1)

where ′
−= − 1t t ty y y  is the differenced series (it may have been 

differenced more than once), the error term ( )εε σ∼ 20,
iid

t N  and 

p = order of the autoregressive part, d = degree of first differencing 
involved, q = order of the moving average part. Equation 1 can 
be written as

	 ( )( ) ( )εΦ − =Θ1 ,d
t tB B y B

	 ( ) ( ) ( )ε− −= − Φ Θ11 ,d
t ty B B B

	

TABLE 1  Monthly deaths in Ghana from January 2018 to December 2022.

Monthly deaths

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2022 4,721 4,330 4,810 3,778 3,667 3,733 4,218 4,442 4,263 4,673 4,664 3,648

2021 4,437 4,938 5,095 4,636 4,160 4,174 4,619 4,958 5,047 4,676 4,694 3,915

2020 4,805 4,447 3,544 3,742 4,206 4,205 4,441 4,458 4,520 4,319 4,591 3,748

2019 4,737 4,152 4,192 3,950 4,327 4,018 4,532 4,107 4,149 4,326 4,211 4,353

2018 4,863 4,120 3,837 4,223 4,098 3,819 3,981 4,377 4,182 4,363 4,393 3,373
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where B is the backshift operator, ( )Φ ,B and ( )Θ B are 
the AR and MA polynomials, respectively. These functions are 

defined by ( ) ( )φ φ φΦ = − − − −

2
1 21 q

qB B B B  and 

( ) ( )θ θ θΘ = + + + +

2
1 21 .q

qB B B B  Let ta  be the amount of change 
at time t that is attributable to the intervention. By definition, ta  is zero 
before time T (time of the intervention). The value ta  may or may not 
be 0 after time T. According to (45), the overall model, including the 
intervention effect, is written as:

	 = + .t t tz a y 	

There are several different response patterns, ,ta  for how an 
intervention may affect the values of a series for t ≥ T (the intervention 
point). Four possible patterns are as follows:

	 1.	 Figure  1 describes an intervention effect model with a 
permanent constant change in level of magnitude of δ0 
after time 𝑇.

We can describe the impact of the intervention model as

	 δ
<=  ≥ 0

0,
, .t

t T
a

t T

	 2.	 Figure 2 describes an intervention effect model with a brief 
constant change lasting for δt times past the intervention time T.

Thus, the intervention effect model is given by

	

δ δ< ≤ += 


0,
0, elsewhere.t

T t T t
a

	 3.	 Figure  3 describes an intervention model with a gradually 
increasing effect of the rate ω that eventually levels off.

Thus, we use the model:

	

( )δ ω

ω

−

<


= −
 ≥

−

0

0,

1
, .

1

t Tt

t T

a
t T

where ω <1.

	 4.	 Figure 4 describes an intervention model with an immediate 
change, followed by a gradual decay of rate ω back to the 
original pre-intervention level with no permanent effect.

The model is, therefore, given by

	
δ ω − −

≤= 
>

1
0

0,

,
t t T

t T
a

t T

where ω <1.

2.2 Estimating the intervention effect

We consider the simple model

	 δ= +0 ,t t tz I y 	 (2)

where tI  is an indicator variable such that tI = 1 when t ≥ T and tI
= 0 when t < T, and ( ) ( ) ( )ε− −= − Φ Θ11 .d

t ty B B B  This model can 
be written, formally, as

	 ( ) ( )π δ π ε= +0 ,t t tB z B I 	 (3)

where ( ) ( ) ( ) ( )π π
∞

−

=

= − Φ Θ = −∑1

1

1 1 .d i
i

i

B B B B B Letting 

( )π=t tu B I  and ( )π= ,i tv B y  we can write Equation 3 in the form of 

FIGURE 1

Intervention effect model with a permanent constant change in level 
of magnitude.

FIGURE 2

Intervention effect model with a brief constant change.

FIGURE 3

Intervention effect model with a gradually increasing effect of the 
rate ω.
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a simple linear model δ ε= + = …0 , 1,2, ,i t tv u t n. Hence, the maximum 
likelihood estimator of δ0 is approximately 

δ
= =

=∑ ∑ 2
0

1 1
/ˆ

n n

t t t
i i

u v u  with ( ) εδ σ
=

= ∑2 2
0

1
var / .ˆ

n

t
i

u

3 Results and discussion

Initially, we  used the information presented in Table  1, 
designating March 2020 as the single intervention point (the month 
marking the commencement of the COVID-19 pandemic in 
Ghana), to determine the ARIMA model for the 
pre-pandemic series.

The Kwiatkowski Phillips Schmidt Shin (KPSS) test, conducted to 
assess the stationarity of the pre-intervention data with a lag order of 
two, yielded a p-value of 0.063, indicating, at the 5% level of 
significance, that the series is stationary. A superior result was 
obtained after performing a first-order difference of the data. The 
KPSS test produced a p-value of less than 0.077 with a lag of order two. 
This result shows that the first-order difference of the pre-pandemic 
data is stationary. Since we had to ‘difference’ the data once, the d value 
for our ARIMA (p, d, q) model resulted in one.

Table 2 presents a comparative analysis of the ARIMA models: 
ARIMA (1, 1, 0), ARIMA (2, 1, 0), and ARIMA (3, 1, 0). The Akaike 
Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) for ARIMA (3, 1, 0) are lower than those for ARIMA (2, 1, 0) 
and ARIMA (1, 1, 0). Therefore, the optimal model is ARIMA (3, 1, 0).

Figure 5 shows the standardized residual plot for the ARIMA (3, 
1, 0) model, accompanied by the Q-Q normality plot, the ACF residual 
plot, and the p-value plot of the Ljung-Box statistic. The standardized 
residuals plot demonstrates the absence of a trend in the residuals and, 
in general, no change in variance with time. The ACF of the residuals 
shows no significant autocorrelations. In the Q-Q plot, the points 
appear to align along a straight trajectory. As a result, the residuals 
exhibit a normal distribution. The p-value for the Ljung-Box statistic 
at lag 20 is 0.5228, indicating that the residuals are independently 
distributed. Therefore, we conclude that the model does not exhibit a 
lack of fit.

We employ the ARIMA (3, 1, 0) model to forecast values for the 
period after the intervention point and subsequently compute the 
differences between the observed and the predicted values. The 

observed values represent the actual total deaths recorded after the 
intervention point. The predicted values are the estimates generated 
by our ARIMA (3, 1, 0) model. The predicted values are expected to 
be  lower than the observed values if, and only if, the COVID-19 
pandemic indeed caused a higher number of deaths, as observed in 
regions such as Europe, America, and Asia (1).

Table 3 presents the observed and predicted values for the period 
following the intervention point along with the observed absolute 
percentage differences.

It can be deduced from Table 3 that 22 of the 32 estimated values 
fall within 10% of the actual values for the post-intervention period, 
with 15 within 5% and 7 exhibiting errors between 10 and 20%. The 
sum of the death counts during the post-intervention period gave a 
value of 140,784 (the observed). When we  used our estimated 
pre-intervention ARIMA model to calculate the total number of post-
intervention deaths, the result was 142,217. The difference (−1433.0) 
indicates fewer deaths in the post-intervention period, consistent with 
(40), which suggests that COVID-19 deaths decreased following the 
introduction of safety protocols. This finding contrasts with the 
anticipated increase in deaths resulting from the COVID-19 
pandemic. Similarly, during the post-intervention period, the average 
observed death count was 4399.5 compared to the estimated average 
predicted deaths of 4444.3. The difference between these two averages 
provides an assessment of the causal impact of the COVID-19 
pandemic on the number of deaths in Ghana.

The effect is −44.8, representing a decrease of approximately 1% 
in the number of deaths. From Equation 2, it can be inferred that δ0 
measures the intervention effect. Its estimate determines the 
magnitude of change between the average observed deaths and the 
average predicted death counts. Consequently, the estimated 
intervention effect, δ0̂ ,  is −44.8. Thus, representing a marginal 
difference of about 1% in death counts. This decrease in total death 
count means a marginal number of lives were saved during the period 
understudy. This translates to a substantial number of lives, raising a 
public health intervention issue. Thus, freeing some level of burden on 
the healthcare system in Ghana. The implication is that if the 
population of Ghana is approximately 35 million people, with an 
average annual death rate of approximately 7 deaths per 1,000 people. 
Then, it can be estimated that Ghana had averagely, 245,000 deaths 
annually. Therefore, a decrease of 1% in the number of deaths would 
mean 2,450 lives were saved.

Furthermore, we tested the significance of this marginal difference 
between the expected and the observed death counts. We used both 
the paired t-test and the Wilcoxon matched-pairs signed-rank test. 
Prior to the paired t-test, we obtained a Shapiro–Wilk normality test 
statistic of 0.945 and a corresponding p-value of 0.101. This result also 
shows that the differences found in Table 3 conform to a normal 
distribution. Hence, the paired sample t-test produced a test statistic 
of −0.584 with a p-value of 0.563. The findings indicate that there is 
no significant difference between the observed and the predicted 
death toll for the post-intervention period. Alternatively, the Wilcoxon 
matched-pairs signed-rank test also confirmed this conclusion with a 
test statistic of 283 and a p-value of 0.722.

Figure 6 shows our original data set and predicted values for the 
period after the intervention point based on the pre-pandemic 
ARIMA (3, 1, 0) model. The ARIMA model’s effectiveness in this 
study is consistent with prior applications in health-related time-series 
forecasting. Similar success has been reported in China (10), across 

FIGURE 4

Intervention effect model with an immediate change, followed by a 
gradual decay of rate back to the original pre-intervention level.
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nine countries in Europe, Asia, and the Americas (11), and in Nigeria 
(14), underscoring its suitability for short-term mortality prediction 
even in resource-limited settings.

This study examines the trends in road traffic fatalities (RTF) in 
Ghana from 1990 to 2024  in order to determine whether the 
COVID-19 lockdowns may have impacted overall mortality trends.

The purpose of this is to eliminate the possibility of a confounding 
decrease in mortality that is attributable to other factors, such as 
lockdowns. It was crucial to evaluate whether any decrease in RTF 
could have counteracted increases in COVID-19-related mortality, 
potentially concealing excess deaths during the pandemic, as 
lockdowns were anticipated to reduce traffic accidents and, as a result, 
fatalities from RTF. Nonetheless, as shown in Figure 7, RTF continued 
to rise throughout the pandemic period, indicating that the lack of 
observed excess mortality in our results is unlikely to be explained by 
reductions in traffic accident deaths.

While Ghana’s Birth and Death Registry applies WHO standards 
and uses DHIMS2 to support public health reporting, this study 
acknowledges potential challenges including the reliability of death 
registration data, possible cause-of-death misclassification or 
underreporting, and the influence of seasonal or regional reporting 
variations. To address these issues, sensitivity analysis was performed 

to evaluate the robustness of our findings. Specifically, post-
intervention mortality figures were adjusted by ±10% to account for 
potntial underreporting or overreporting, allowing us to assess the 
impact of missing or misclassified data on the results. In this analysis, 
independent sample t-tests were used to compare pre-intervention 
and post-intervention residuals across two scenarios: a 10% downward 
adjustment and a 10% upward adjustment. The pre and post 
intervention residuals in the −10% adjusted dataset had different 
means, but there was no significant difference between the residuals 
[t  = 1.13, p  = 0.2633, 95% CI: (−74.39, 266.95)]. Likewise, no 
significant difference was observed in the +10% scenario [t = −0.14, 
p = 0.8882, 95% CI: (−216.10, 187.64)]. Across both scenarios, the 
t-test consistently indicated no significant differences between the pre- 
and post-intervention residuals. This suggests that:

	•	 The intervention had no detectable impact on residual patterns.
	•	 The analysis is robust to ±10% modifications in post-intervention 

data, accounting for possible underreporting or overreporting.

To determine if the available sample size was sufficient to detect a 
significant difference between groups (pre- and post-intervention), a 
power analysis was conducted. According to the findings, the study’s 

TABLE 2  Comparative analysis of ARIMA (2, 1, 0), ARIMA (2, 1, 0) and ARIMA (3, 1, 0).

Model 
Components

ARIMA (1, 1, 0) ARIMA (2, 1, 0) ARIMA (3, 1, 0)

Estimate SE p-value Estimate SE p-value Estimate SE p-value

AR(1) −0.5594 0.1756 0.0041 −0.8818 0.2089 0.0004 −1.1013 0.2197 0.0001

AR(2) −0.4893 0.2044 0.0256 −0.9100 0.2683 0.0027

AR(3) −0.4355 0.2041 0.0448

Constant −6.1980 52.7626 0.9075 4.4404 31.8013 0.8902 9.4769 20.3814 0.6467

AIC 15.09849 14.98564 14.91084

BIC 15.24475 15.18066 15.15462

FIGURE 5

Standardized residual, ACF of residual, normal Q-Q of standard residuals, and p-values of Ljung-Box statistic.
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TABLE 3  The predicted and observed values after the intervention point.

Month-year Observed Predicted Difference % Difference Month-year Observed Predicted Difference % Difference

May-20 4206.0 4437.3 −231.3 5.5 Sep-21 5047.0 4452.7 594.3 11.8

Jun-20 4205.0 4100.5 104.5 2.5 Oct-21 4676.0 4465.3 210.7 4.5

Jul-20 4441.0 4239.7 201.3 4.5 Nov-21 4694.0 4464.4 229.6 4.9

Aug-20 4458.0 4540.0 −82.0 1.8 Dec-21 3915.0 4476.5 −561.5 14.3

Sep-20 4520.0 4262.0 258.0 5.7 Jan-22 4721.0 4491.2 229.8 4.9

Oct-20 4319.0 4266.9 52.1 1.2 Feb-22 4330.0 4497.1 −167.1 3.9

Nov-20 4591.0 4416.4 174.6 3.8 Mar-22 4810.0 4504.6 305.4 6.3

Dec-20 3748.0 4401.0 −653.0 17.4 Apr-22 3778.0 4517.2 −739.2 19.6

Jan-21 4437.0 4312.4 124.6 2.8 May-22 3667.0 4526.6 −859.6 23.4

Feb-21 4938.0 4391.5 546.5 11.1 Jun-22 3733.0 4534.2 −801.2 21.5

Mar-21 5095.0 4424.4 670.6 13.2 Jul-22 4218.0 4544.5 −326.5 7.7

Apr-21 4636.0 4387.5 248.5 5.4 Aug-22 4442.0 4554.8 −112.8 2.5

May-21 4160.0 4396.4 −236.4 5.7 Sep-22 4263.0 4563.4 −300.4 7.0

Jun-21 4174.0 4438.5 −264.5 6.3 Oct-22 4673.0 4572.7 100.3 2.1

Jul-21 4619.0 4432.8 186.2 4.0 Nov-22 4664.0 4582.8 81.2 1.7

Aug-21 4958.0 4429.6 528.4 10.7 Dec-22 3648.0 4592.1 −944.1 25.9

Total 140784.0 142217.0 −1433.0 263.8

Mean 4399.5 4444.3 −44.8 8.2
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statistical power to identify a modest effect size (Cohen’s d = 0.2) was 
85.8%. This degree of power implies that the sample sizes (n1 = 27 and 
n2 = 33) were sufficient to detect any differences, regardless of their 
magnitude. The dependability of the test results was further supported 
by the comparatively low Type II error rate (the likelihood of missing 
a true effect), which was 14.2%. These findings demonstrate that the 
analysis was well-powered to identify subtle effects at the selected 
significance level, which is crucial for research where even modest 
variations could have theoretical or practical implications. As a result, 
a statistically significant change is likely to be indicative of a major 
impact. Conversely, if no significant difference is observed, it 
strengthens the interpretation that any potential differences between 
the groups are likely negligible rather than missed due to insufficient 
sample size.

The outcome of the study verifies that the COVID-19 pandemic 
did not significantly influence the monthly death toll in Ghana. This 
result is consistent with previous studies such as (40, 41, 44), which 
indicated no definitive evidence that the COVID-19 pandemic led to 
an increase in number of deaths in Ghana during the period under 
examination. The minimal change noted in this study, which diverges 
from global expectations of elevated excess mortality, may 
be attributed to public health measures, demographic robustness, a 
reduced incidence of severe COVID-19 comorbidities, or the 

possibility that Africa’s youthful demographic is acquiring herd 
immunity from previous infections. These factors highlight the need 
for pandemic preparedness strategies tailored to the sub-Saharan 
African context.

4 Conclusion and recommendation

The rapid spread of the COVID-19 pandemic resulted in 
numerous fatalities worldwide from the time of the commencement 
of the epidemic to the end of December 2021. The primary objective 
of our study is to examine the impact of the pandemic on the number 
of deaths in Ghana using an ARIMA model with intervention analysis 
applied to monthly death data from January 2018 to December 2022. 
The ARIMA modeling framework was selected for its reliability and 
widespread use in analyzing time series data involving discrete 
interventions. March 2020, when COVID-19 was officially recorded 
in Ghana, provided a distinct temporal reference point. This made it 
suitable to model the pandemic’s impact as a discrete shock within the 
ARIMA framework. ARIMA’s adaptability in detecting patterns, 
capturing autocorrelation, and accounting for both short-term shocks 
and long-term trends further justified its application to the mortality 
data. We recognize that the pandemic’s impact on mortality is unlikely 
to manifest as a single abrupt change. The effects could have evolved 
gradually, influenced by multiple overlapping waves, behavioral shifts, 
and public health policies. Future studies may benefit from applying 
models better suited to capturing gradual or multiple interventions, 
such as segmented regression or Bayesian structural time 
series approaches.

Selecting ARIMA parameters (p, d, q) presents several challenges, 
especially for noisy or limited datasets. This may lead to overfitting or 
underfitting, therefore affecting model interpretability and accuracy. 
To address this, our model selection was supported by diagnostic tests, 
including ACF plots, the Ljung–Box test, KPSS test, and residual 
analysis, which assessed stationarity and ensured residuals 
approximated white noise. The selection of the model was additionally 
reinforced by employing the AIC and the BIC to determine the most 
parsimonious and well-fitting model.

Additionally, both parametric (paired t-test) and 
non-parametric (Wilcoxon signed-rank test) methods were applied 
to compare forecasted and observed deaths post-intervention. 
Mortality during the study period aligned closely with patterns 

FIGURE 6

The observed time series graph with the forecasted values for the period after the intervention point.
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FIGURE 7

Changes in national road traffic fatality in Ghana.
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predicted from historical data. The absence of substantial change 
identified in this study may be attributed to the implemented safety 
protocols or the belief that the younger demographic in African 
countries is acquiring herd immunity to COVID-19 due to prior 
exposure to other infections. While our findings may be reassuring, 
maintaining vigilance remains crucial to prevent future threats and 
strengthen data systems for more resilient decision-making. 
Continued vigilance and sustained investment in data systems and 
public health infrastructure are essential, along with ongoing 
surveillance, excess mortality monitoring, and capacity-building 
for analytical modeling to effectively detect and respond to future 
public health shocks.
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